首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Meridional ocean freshwater transports and convergences are calculated from absolute geostrophic velocities and Ekman transports. The freshwater transports are analyzed in terms of mass-balanced contributions from the shallow, ventilated circulation of the subtropical gyres, intermediate and deep water overturns, and Indonesian Throughflow and Bering Strait components. The following are the major conclusions:
1.
Excess freshwater in high latitudes must be transported to the evaporative lower latitudes, as is well known. The calculations here show that the northern hemisphere transports most of its high latitude freshwater equatorward through North Atlantic Deep Water (NADW) formation (as in [Rahmstorf, S., 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics 12, 799-811]), in which saline subtropical surface waters absorb the freshened Arctic and subpolar North Atlantic surface waters (0.45 ± 0.15 Sv for a 15 Sv overturn), plus a small contribution from the high latitude North Pacific through Bering Strait (0.06 ± 0.02 Sv). In the North Pacific, formation of 2.4 Sv of North Pacific Intermediate Water (NPIW) transports 0.07 ± 0.02 Sv of freshwater equatorward.In complete contrast, almost all of the 0.61 ± 0.13 Sv of freshwater gained in the Southern Ocean is transported equatorward in the upper ocean, in roughly equal magnitudes of about 0.2 Sv each in the three subtropical gyres, with a smaller contribution of <0.1 Sv from the Indonesian Throughflow loop through the Southern Ocean. The large Southern Ocean deep water formation (27 Sv) exports almost no freshwater (0.01 ± 0.03 Sv) or actually imports freshwater if deep overturns in each ocean are considered separately (−0.06 ± 0.04 Sv).This northern-southern hemisphere asymmetry is likely a consequence of the “Drake Passage” effect, which limits the southward transport of warm, saline surface waters into the Antarctic [Toggweiler, J.R., Samuels, B., 1995a. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research I 42(4), 477-500]. The salinity contrast between the deep Atlantic, Pacific and Indian source waters and the denser new Antarctic waters is limited by their small temperature contrast, resulting in small freshwater transports. No such constraint applies to NADW formation, which draws on warm, saline subtropical surface waters .
2.
The Atlantic/Arctic and Indian Oceans are net evaporative basins, hence import freshwater via ocean circulation. For the Atlantic/Arctic north of 32°S, freshwater import (0.28 ± 0.04 Sv) comes from the Pacific through Bering Strait (0.06 ± 0.02 Sv), from the Southern Ocean via the shallow gyre circulation (0.20 ± 0.02 Sv), and from three nearly canceling conversions to the NADW layer (0.02 ± 0.02 Sv): from saline Benguela Current surface water (−0.05 ± 0.01 Sv), fresh AAIW (0.06 ± 0.01 Sv) and fresh AABW/LCDW (0.01 ± 0.01 Sv). Thus, the NADW freshwater balance is nearly closed within the Atlantic/Arctic Ocean and the freshwater transport associated with export of NADW to the Southern Ocean is only a small component of the Atlantic freshwater budget.For the Indian Ocean north of 32°S, import of the required 0.37 ± 0.10 Sv of freshwater comes from the Pacific through the Indonesian Throughflow (0.23 ± 0.05 Sv) and the Southern Ocean via the shallow gyre circulation (0.18 ± 0.02 Sv), with a small export southward due to freshening of bottom waters as they upwell into deep and intermediate waters (−0.04 ± 0.03 Sv).The Pacific north of 28°S is essentially neutral with respect to freshwater, −0.04 ± 0.09 Sv. This is the nearly balancing sum of export to the Atlantic through Bering Strait (−0.07 ± 0.02 Sv), export to the Indian through the Indonesian Throughflow (−0.17 ± 0.05 Sv), a negligible export due to freshening of upwelled bottom waters (−0.03 ± 0.03 Sv), and import of 0.23 ± 0.04 Sv from the Southern Ocean via the shallow gyre circulation.
3.
Bering Strait’ssmall freshwater transport of <0.1 Sv helps maintains the Atlantic-Pacific salinity difference. However, proportionally large variations in the small Bering Strait transport would only marginally impact NADW salinity, whose freshening relative to saline surface water is mainly due to air-sea/runoff fluxes in the subpolar North Atlantic and Arctic. In contrast, in the Pacific, because the total overturning rate is much smaller than in the Atlantic, Bering Strait freshwater export has proportionally much greater impact on North Pacific salinity balances, including NPIW salinity.
  相似文献   

2.
The distribution and circulation of water masses in the region between 6°W and 3°E and between the Antarctic continental shelf and 60°S are analyzed using hydrographic and shipboard acoustic Doppler current profiler (ADCP) data taken during austral summer 2005/2006 and austral winter 2006. In both seasons two gateways are apparent where Warm Deep Water (WDW) and other water masses enter the Weddell Gyre through the Lazarev Sea: (a) a probably topographically trapped westward, then southwestward circulation around the northwestern edge of Maud Rise with maximum velocities of about 20 cm s−1 and (b) the Antarctic Coastal Current (AntCC), which is confined to the Antarctic continental shelf slope and is associated with maximum velocities of about 25 cm s−1.Along two meridional sections that run close to the top of Maud Rise along 3°E, geostrophic velocity shears were calculated from CTD measurements and referenced to velocity profiles recorded by an ADCP in the upper 300 m. The mean accuracy of the absolute geostrophic velocity is estimated at ±2 cm s−1. The net baroclinic transport across the 3°E section amounts to 20 and 17 Sv westward for the summer and winter season, respectively. The majority of the baroclinic transport, which accounts for ∼60% of the total baroclinic transport during both surveys, occurs north of Maud Rise between 65° and 60°S.However, the comparison between geostrophic estimates and direct velocity measurements shows that the circulation within the study area has a strong barotropic component, so that calculations based on the dynamic method underestimate the transport considerably. Estimation of the net absolute volume transports across 3°E suggests a westward flow of 23.9±19.9 Sv in austral summer and 93.6±20.1 Sv in austral winter. Part of this large seasonal transport variation can be explained by differences in the gyre-scale forcing through wind stress curl.  相似文献   

3.
An inverse model of the large scale circulation in the South Indian Ocean   总被引:1,自引:0,他引:1  
An overview of the large-scale circulation of the South Indian Ocean (SIO) (10°S-70°S/20°E-120°E) is proposed based on historical hydrographic data (1903-1996) synthesized with a finite-difference inverse model. The in situ density, potential temperature and salinity fields of selected hydrographic stations are projected on the basis of EOFs. Then the EOF coefficients (the projected values) are interpolated on the model grid (1° in latitude, 2° in longitude) using an objective analysis whose spatial correlation functions are fitted to the data set. The resulting fields are the input of the inverse model. This procedure filters out the small-scale features. Twelve modes are needed to keep the vertical structures of the fields but the first three modes are sufficient to reproduce the large-scale horizontal features of the SIO: the Subtropical Gyre, the Weddell Gyre, the different branches of the Antarctic Circumpolar Current.The dynamics is steady state. The estimated circulation is in geostrophic balance and satisfies mass, heat and potential vorticity conservation. The wind and air-sea heat forcing are annual means from ERS1 and ECMWF, respectively.The main features of the various current systems of the SIO are quantified and reveal topographic control of the deep and bottom circulation. The cyclonic Weddell Gyre, mainly barotropic, transports 45 Sv (1 Sv = 106m3/s), and has an eastern extension limited by the southern part of the Antarctic Circumpolar Current.The bottom circulation north of 50°S is complex. The Deep Western Boundary Currents are identified as well as cyclonic recirculations. South east of the Kerguelen Plateau, the bottom circulation is in good agreement with previous water mass analysis. The comparison between some recent regional analysis and the inverse estimation is limited by the model resolution and lack of deep data.The meridional overturning circulation (MOC) is estimated from the finite difference inverse model. Between 26°S and 32°S the reversal of the current deepens and reaches 1400 m at 32°S. The major part of the deep meridional transport at 32°S is located between the African coast and the Madagascar Ridge, carried by the Agulhas Undercurrent. The mean value for this meridional thermohaline recirculation is 8.8 ± 4.4 Sv between 26°S and 32°S. The Agulhas Undercurrent (11 Sv) is associated with a weak Agulhas Current (55 Sv). The MOC is thus trapped in the western margin of the Southwest Indian Ridge. The corresponding vertical velocity along 32°S between 30°E and 42°E is 7.2 × 10−5 ± 8.9 × 10−5 cm s−1. The net meridional heat flux represents −0.53 PW at 18°S and −0.33 PW at 32°S (negative values for southward transports). The intensity of the meridional heat flux is linked to the intensity of the Agulhas Current and to the vertical mixing.  相似文献   

4.
The first global ocean reanalysis with focus on the Asian-Australian region was performed for the period October 1992 to June 2006. The 14-year experiment assimilated available observations of altimetric sea-level anomaly, satellite SST and quality-controlled in situ temperature and salinity profiles from a range of sources, including field surveys and the Argo float array. This study focuses on dominant circulation patterns in the South-East Asian/Australian region as simulated by an eddy-resolving and data-assimilating ocean general circulation model. New estimates of the ocean circulation are provided which are largely in agreement with the limited number of observations. Transports of key currents in the region are as follows: The total (top-to-bottom) annual mean Indonesian Throughflow transport and its standard deviation are 9.7 ± 4.4 Sv from the Pacific to the Indian Ocean with a minimum in January (6.6 Sv) and a maximum in April (12.3 Sv). The Leeuwin Current along the west coast of Australia is dominated by eddy structures with a mean southward transport of 4.1 ± 2.0 Sv at 34°S. Along the southern coast of Australia a narrow shelf edge current known as the South Australian Current advects 4.5 ± 2.6 Sv eastward at 130°E. The South Australian Current converges east of Tasmania with the eddy-rich extension of East Australian Current. At 32°S this current transports 36.8 ± 18.5 Sv southward. A dominating feature of the circulation between north-eastern Australia and Papua-New Guinea is the strong and quasi-permanent Coral Sea Gyre. This gyre is associated with the highly variable Hiri Current which runs along the south coast of Papua-New Guinea and advects 8.2 ± 19.1 Sv into the Western Pacific Ocean. All of these transport estimates are subject to strong eddy variability.  相似文献   

5.
A reduced estimate of Agulhas Current transport provides the motivation to examine the sensitivity of Indian Ocean circulation and meridional heat transport to the strength of the western boundary current. The new transport estimate is 70 Sv, much smaller than the previous value of 85 Sv. Consideration of three case studies for a large, medium and small Agulhas Current transport demonstrate that the divergence of heat transport over the Indian Ocean north of 32°S has a sensitivity of 0.08 PW per 10 Sv of Agulhas transport, and freshwater convergence has a sensitivity of 0.03×109 kg s−1 per 10 Sv of transport. Moreover, a smaller Agulhas Current leads to a better silica balance and a smaller meridional overturning circulation for the Indian Ocean. The mean Agulhas Current transport estimated from time-series current meter measurements is used to constrain the geostrophic transport in the western boundary region in order to re-evaluate the circulation, heat and freshwater transports across 32°S. The Indonesian Throughflow is taken to be 12 Sv at an average temperature of 18°C. The constrained circulation exhibits a vertical–meridional circulation with a net northward flow below 2000 dbar of 10.1 Sv. The heat transport divergence is estimated to be 0.66 PW, the freshwater convergence to be 0.54×109 kg s−1, and the silica convergence to be 335 kmol s−1. Meridional transports are separated into barotropic, baroclinic and horizontal components, with each component conserving mass. The barotropic component is strongly dependent on the estimated size of the Indonesian Throughflow. Surprisingly, the baroclinic component depends principally on the large-scale density distribution and is nearly invariant to the size of the overturning circulation. The horizontal heat and freshwater flux components are strongly influenced by the size of the Agulhas Current because it is warmer and saltier than the mid-ocean. The horizontal fluxes of heat and salt penetrate down to 1500 m depth, suggesting that warm and salty Red Sea Water may be involved in converting the intermediate and upper deep waters which enter the Indian Ocean from the Southern Ocean into warmer and saltier waters before they exit in the Agulhas Current.  相似文献   

6.
An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s−1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s−1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the ‘Northern Current’.  相似文献   

7.
A ‘quasi-island’ approach for examining the meridional flux of warm and intermediate water from the Southern Ocean into the South Atlantic, the South Pacific and the Indian Ocean has recently been proposed ( [Nof, 2000a] and [Nof, 2002]). This approach considers the continents to be ‘pseudo islands’ in the sense that they are entirely surrounded by water, but have no circulation around them. The method employs an integration of the linearized momentum equations along a closed contour containing the continents. This allows the meridional transport into these oceans to be computed without having to find the detailed solution to the complete wind-thermohaline problem.The solution gives two results; one expected, the other unexpected. It shows that, as expected, about 9±5 Sv of upper and intermediate water enter the South Atlantic from the Southern Ocean. The unexpected result is that the Pacific-Indian Ocean system should contain a ‘shallow’ meridional overturning cell carrying 18±5 Sv. What is meant by shallow here is that the cell does not extend all the way to the bottom (as it does in the Atlantic) but is terminated at mid-depth. (This reflects the fact that there is no bottom water formation in the Pacific.) Both of these calculations rely on the observation that there is almost no flow through the Bering Strait and on the assumption that there is a negligible pressure torque on the Bering Strait’s sill.Here, we present a new and different approach, which does not rely on either of the above two conditions regarding the Bering Strait and yet gives essentially the same result. The approach does not involve any quasi-island calculation but rather employs an integration of the linearized zonal momentum equation along a closed open-water latitudinal belt connecting the tips of South Africa and South America. The integration relies on the existence of a belt (corridor) where the linearized general circulation equations are valid. It allows for a net northward mass flux through either the Sverdrup interior or the western boundary currents. It is found that the belt-corridor approach gives 29±5 Sv for the total meridional flux of surface and intermediate water from the Southern Ocean. This agrees very well with the quasi-island calculations, which give a total northward flux of 27±5 Sv. Given the spacing between the continents and the small variability of the southern winds with longitude, one may assume that 9 Sv of the total 29 Sv enters the Atlantic and the other 20 Sv enters the combined Pacific-Indian Ocean system, which is also in agreement with the quasi-island calculation. These agreements indicate that the assumptions made in the earlier studies regarding the Bering Strait are probably valid.  相似文献   

8.
The formation of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) significantly contributes to the total uptake and storage of anthropogenic gases, such as CO2 and chlorofluorocarbons (CFCs), within the world's oceans. SAMW and AAIW formation rates in the South Pacific are quantified based on CFC-12 inventories using hydrographic data from WOCE, CLIVAR, and data collected in the austral winter of 2005. This study documents the first wintertime observations of CFC-11 and CFC-12 saturations with respect to the 2005 atmosphere in the formation region of the southeast Pacific for SAMW and AAIW. SAMW is 94% and 95% saturated for CFC-11 and CFC-12, respectively, and AAIW is 60% saturated for both CFC-11 and CFC-12. SAMW is defined from the Subantarctic Front to the equator between potential densities 26.80-27.06 kg m−3, and AAIW is defined from the Polar Front to 20°N between potential densities 27.06-27.40 kg m−3. CFC-12 inventories are 16.0×106 moles for SAMW and 8.7×106 moles for AAIW, corresponding to formation rates of 7.3±2.1 Sv for SAMW and 5.8±1.7 Sv for AAIW circulating within the South Pacific. Inter-ocean transports of SAMW from the South Pacific to the South Atlantic are estimated to be 4.4±0.6 Sv. Thus, the total formation of SAMW in the South Pacific is approximately 11.7±2.2 Sv. These formation rates represent the average formation rates over the major period of CFC input, from 1970 to 2005. The CFC-12 inventory maps provide direct evidence for two areas of formation of SAMW, one in the southeast Pacific and one in the central Pacific. Furthermore, eddies in the central Pacific containing high CFC concentrations may contribute to SAMW and to a lesser extent AAIW formation. These CFC-derived rates provide a baseline with which to compare past and future formation rates of SAMW and AAIW.  相似文献   

9.
We conducted full-depth hydrographic observations in the southwestern region of the Northwest Pacific Basin in September 2004 and November 2005. Deep-circulation currents crossed the observation line between the East Mariana Ridge and the Shatsky Rise, carrying Lower Circumpolar Deep Water westward in the lower deep layer (θ<1.2 °C) and Upper Circumpolar Deep Water (UCDW) and North Pacific Deep Water (NPDW) eastward in the upper deep layer (1.3–2.2 °C). In the lower deep layer at depths greater than approximately 3500 m, the eastern branch current of the deep circulation was located south of the Shatsky Rise at 30°24′–30°59′N with volume transport of 3.9 Sv (1 Sv=106 m3 s−1) in 2004 and at 30°06′–31°15′N with 1.6 Sv in 2005. The western branch current of the deep circulation was located north of the Ogasawara Plateau at 26°27′–27°03′N with almost 2.1 Sv in 2004 and at 26°27′–26°45′N with 2.7 Sv in 2005. Integrating past and present results, volume transport southwest of the Shatsky Rise is concluded to be a little less than 4 Sv for the eastern branch current and a little more than 2 Sv for the western branch current. In the upper deep layer at depths of approximately 2000–3500 m, UCDW and NPDW, characterized by high and low dissolved oxygen, respectively, were carried eastward at the observation line by the return flow of the deep circulation composing meridional overturning circulation. UCDW was confined between the East Mariana Ridge and the Ogasawara Plateau (22°03′–25°33′N) in 2004, whereas it extended to 26°45′N north of the Ogasawara Plateau in 2005. NPDW existed over the foot and slope of the Shatsky Rise from 29°48′N in 2004 and 30°06′N in 2005 to at least 32°30′N at the top of the Shatsky Rise. Volume transport of UCDW was estimated to be 4.6 Sv in 2004, whereas that of NPDW was 1.4 Sv in 2004 and 2.6 Sv in 2005, although the values for NPDW may be slightly underestimated, because they do not include the component north of the top of the Shatsky Rise. Volume transport of UCDW and NPDW southwest of the Shatsky Rise is concluded to be approximately 5 and 3 Sv, respectively. The pathways of UCDW and NPDW are new findings and suggest a correction for the past view of the deep circulation in the Pacific Ocean.  相似文献   

10.
In order to estimate the contribution of cold Pacific deep water to the Indonesian throughflow (ITF) and the flushing of the deep Banda Sea, a current meter mooring has been deployed for nearly 3 years on the sill in the Lifamatola Passage as part of the International Nusantara Stratification and Transport (INSTANT) programme. The velocity, temperature, and salinity data, obtained from the mooring, reflect vigorous horizontal and vertical motion in the lowest 500 m over the ~2000 m deep sill, with speeds regularly surpassing 100 cm/s. The strong residual flow over the sill in the passage and internal, mainly diurnal, tides contribute to this bottom intensified motion. The average volume transport of the deep throughflow from the Maluku Sea to the Seram Sea below 1250 m is 2.5 Sv (1 Sv=106 m3/s), with a transport-weighted mean temperature of 3.2 °C. This result considerably increases existing estimates of the inflow of the ITF into the Indonesian seas by about 25% and lowers the total mean inflow temperature of the ITF to below 13 °C. At shallower levels, between 1250 m and the sea surface, the flow is directed towards the Maluku Sea, north of the passage. The typical residual velocities in this layer are low (~3 cm/s), contributing to an estimated northward flow of 0.9–1.3 Sv. When more results from the INSTANT programme for the other Indonesian passages become available, a strongly improved estimate of the mass and heat budget of the ITF becomes feasible.  相似文献   

11.
High-resolution data collected southeast of the Canary Islands during late winter 2006 are analyzed to describe the hydrography and three-dimensional circulation in the coastal transition zone off NW Africa. The data are optimally interpolated over a regular grid, the geostrophic velocity field is calculated and the Q-vector formulation of the omega equation is used to compute the quasi-geostrophic (QG) mesoscale vertical velocity. The coastal transition zone is divided into upwelling, frontal and offshore regions with distinct physical and dynamic characteristics. The upwelling region is characterized by cold and weakly stratified waters flowing towards the equator, with a poleward undercurrent of approximately 0.05 m s−1 over the continental slope. The frontal region exhibits a southwestward baroclinic jet associated with cross-shore raising isopycnals; the jet transport is close to 1 Sv, with maximum velocities of 0.18 m s−1 at surface decreasing to 0.05 m s−1 at 300 db. Vertical sections across the frontal region show the presence of deep eddies probably generated by the topographic blocking of the islands to the southward current, as well as much shallower eddies that likely have arisen as instabilities of the baroclinic upwelling jet. The QG mesoscale vertical velocity field is patchy, estimated to range from −18 to 12 m day−1, with the largest absolute values corresponding to an anticyclonic eddy located south of Fuerteventura Island. These values are significantly larger than estimates for other vertical velocities: diapycnal vertical velocities associated with mixing in the frontal region (a few meters per day), and wind-induced vertical velocities (non-linear Ekman pumping arising from the interaction between the wind stress and the background vorticity, maximum values of a few meters per day; linear Ekman pumping due to the divergence of Ekman transport, a fraction of a meter per day; or the coastal constraint in the upwelling region, about 0.7 m day−1). However, the patchiness in both the QG mesoscale vertical velocity and the non-linear Ekman pumping velocity cause their integrated vertical transports to be one order of magnitude smaller than either coastal Ekman transport (0.08 Sv), integrated linear Ekman pumping (−0.05 Sv) or diapycnal transfer (about 0.1–0.2 Sv). The pattern of the near-surface fluorescence field is a good indicator of these different contributions, with large homogeneous values in the coastal upwelling region and a patchy structure associated with the offshore mesoscale structures.  相似文献   

12.
Vessel-based observations of the oceanic surface layer during the 14-day 2004 SAGE ocean fertilization experiment were conducted using ADCP, CTD and temperature microstructure in a frame of reference moving with a patch of injected SF6 tracer. During the experiment the mixed layer depth zmld ranged between 50 and 80 m, with several re-stratifying events that brought zmld up to less than 40 m. These re-stratifying events were not directly attributable to local surface-down development of stratification and were more likely associated with horizontal variation in density structure. Comparison between the CTD and a one-dimensional model confirmed that the SAGE experiment was governed by 3-d processes. A new method for estimating zmld was developed that incorporates a component that is proportional to density gradient. This highlighted the need for well-conditioned near-surface data which are not always available from vessel-based survey CTD profiles. A centred-displacement scale, Lc, equivalent to the Thorpe lengthscale, reached a maximum of 20 m, with the eddy-centroid located at around 40 m depth. Temperature gradient microstructure-derived estimates of the vertical turbulent eddy diffusivity of scalar (temperature) material yielded bin-averaged values around 10−3 m2 s−1 in the pycnocline rising to over 10−2 m2 s−1 higher in the surface layer. This suggests transport rates of nitrate and silicate at the base of the surface layer generate mixed layer increases of the order of 38 and 13 mmol/m2/day, respectively, during SAGE. However, the variability in measured vertical transport processes highlights the importance of transient events like wind mixing and horizontal intrusions.  相似文献   

13.
Dense water formation and circulation in the Barents Sea   总被引:1,自引:0,他引:1  
Dense water masses from Arctic shelf seas are an important part of the Arctic thermohaline system. We present previously unpublished observations from shallow banks in the Barents Sea, which reveal large interannual variability in dense water temperature and salinity. To examine the formation and circulation of dense water, and the processes governing interannual variability, a regional coupled ice-ocean model is applied to the Barents Sea for the period 1948-2007. Volume and characteristics of dense water are investigated with respect to the initial autumn surface salinity, atmospheric cooling, and sea-ice growth (salt flux). In the southern Barents Sea (Spitsbergen Bank and Central Bank) dense water formation is associated with advection of Atlantic Water into the Barents Sea and corresponding variations in initial salinities and heat loss at the air-sea interface. The characteristics of the dense water on the Spitsbergen Bank and Central Bank are thus determined by the regional climate of the Barents Sea. Preconditioning is also important to dense water variability on the northern banks, and can be related to local ice melt (Great Bank) and properties of the Novaya Zemlya Coastal Current (Novaya Zemlya Bank). The dense water mainly exits the Barents Sea between Frans Josef Land and Novaya Zemlya, where it constitutes 63% (1.2 Sv) of the net outflow and has an average density of 1028.07 kg m−3. An amount of 0.4 Sv enters the Arctic Ocean between Svalbard and Frans Josef Land. Covering 9% of the ocean area, the banks contribute with approximately 1/3 of the exported dense water. Formation on the banks is more important when the Barents Sea is in a cold state (less Atlantic Water inflow, more sea-ice). During warm periods with high throughflow more dense water is produced broadly over the shelf by general cooling of the northward flowing Atlantic Water. However, our results indicate that during extremely warm periods (1950s and late 2000s) the total export of dense water to the Arctic Ocean becomes strongly reduced.  相似文献   

14.
根据中国近海高分辨率 ( 1 / 6°)环流模式的模拟结果 ,计算了南沙邻近海域与外海之间的海水体积、热量和盐量输运及其对印度尼西亚贯穿流的贡献。研究海域为 0°— 1 4°N的整个南海南部海域。计算得出 ,穿过研究海域流向印度尼西亚海域 ,最终流向印度洋的年平均体积、热量和盐量输运分别为 5 .2Sv( 1Sv =1× 1 0 6m3·s- 1 )、0 .5 7PW和 1 84Gg·s- 1 ,大约占印度尼西亚贯穿流相应输运量的 1 / 4。这一结果表明南海是全球大传送带这一全球海洋最主要热盐环流系统的重要通道之一。从南海流向印度尼西亚海域的通道以卡里马塔海峡为最主要 ,以下依次为巴拉巴克海峡、民都洛海峡和马六甲海峡。大的南向通量主要发生在冬、秋季 ,春末夏初总的通量向北。计算还得出输入本海区的热输运量比输出少 0 .0 64PW ,由这一结果推得 ,通过海 -气界面由大气进入海洋的年平均净热通量约为 30W·m- 2 。  相似文献   

15.
The influences of the large-scale interannual variations in the eastern Indian Ocean on the variability of the Indonesian throughflow are investigated by using an ocean general circulation model, driven by the ERS satellite winds from July 1992 to June 1997. The empirical orthogonal function (EOF) analysis of the simulated surface dynamic height variability captures two dominant modes on an interannual time scale, which are quite consistent with the available observations. The first mode indicates large amplitude in the western tropical Pacific and has a strong relation to the El Niño events, while the second EOF exhibits the large amplitude in the eastern Indian Ocean. The simulated net Indonesian throughflow shows an interannual variation of amplitude of about 15 Sv, with large transport from the Pacific to the Indian Ocean during 1994/95 and small transport during 1992 and 1997. It turns out that the net throughflow variation shows a high correlation with the second EOF mode (r = 0.51) for the whole five-year simulation. On the other hand, the correlation with the first mode is rather low (r = ?0.07). However, the relative importance of the EOF modes to the throughflow variability changes with time. The upper-layer transport above a depth of 230 m in the Indonesian archipelago is also affected by the second mode. The difference in the upper-layer transport across 1°S and 110°E generates warm water convergence/divergence with a magnitude of 4 Sv within the Indonesian Seas on the interannual time scale, which shows good correspondence with sea surface temperature variation averaged over the Indonesian archipelago.  相似文献   

16.
用Argo温盐资料估计印度尼西亚贯穿流多年平均地转输送   总被引:1,自引:0,他引:1  
利用Argo浮标资料,估计了2003—2007年期间印度尼西亚贯穿流(ITF)出口处114.5οE断面上层(0—1000m)的地转流,并与WOA05资料进行对比。在114.5οE断面上9.5ο—18.5οS之间,依据Argo资料计算的上层(0—1000m)地转流年平均输送为4.2Sv(1 Sv = 106m3.s-1),比依据WOA05资料计算的流量大0.5Sv左右,与前人对IX1断面的估算接近。依据Argo资料计算的ITF的季节变化也与WOA05比较一致,最大输送都出现在7月份,可以达到10Sv,而冬季二者差异较大。比较了盐度资料的差异以及114.5οE断面南侧缺测对估计ITF地转流输送的影响,发现盐度资料的改善可以改进对ITF地转输送量的估计,而断面南侧的缺测对ITF年平均输送的影响较小。因此,Argo资料可以作为监测ITF输送量的一种有效手段,特别是用于年平均流量的研究。  相似文献   

17.
The cycling and oxidation pathways of organic carbon were investigated at a single shallow water estuarine site in Trinity Bay, Texas, the uppermost lobe of Galveston Bay, during November 2000. Radio-isotopes were used to estimate sediment mixing and accumulation rates, and benthic chamber and pore water measurements were used to determine sediment-water exchange fluxes of oxygen, nutrients and metals, and infer carbon oxidation rates. Using 7Be and 234ThXS, the sediment-mixing coefficient (Db) was 4.3 ± 1.8 cm2 y−1, a value that lies at the lower limit for marine environments, indicating that mixing was not important in these sediments at this time. Sediment accumulation rates (Sa), estimated using 137Cs and 210PbXS, were 0.16 ± 0.02 g cm−2 y−1. The supply rate of organic carbon to the sediment-water interface was 30 ± 3.9 mmol C m−2 d−1, of which ∼10% or 2.9 ± 0.44 mmol C m−2 d−1was lost from the system through burial below the 1-cm thick surface mixed layer. Measured fluxes of O2 were 26 ± 3.8 mmol m−2 d−1 and equated to a carbon oxidation rate of 20 ± 3.3 mmol C m−2 d−1, which is an upper limit due to the potential for oxidation of additional reduced species. Using organic carbon gradients in the surface mixed layer, carbon oxidation was estimated at 2.6 ± 1.1 mmol C m−2 d−1. Independent estimates made using pore water concentration gradients of ammonium and C:N stoichiometry, equaled 2.8 ± 0.46 mmol C m−2 d−1. The flux of DOC out of the sediments (DOCefflux) was 5.6 ± 1.3 mmol C m−2 d−1. In general, while mass balance was achieved indicating the sediments were at steady state during this time, changes in environmental conditions within the bay and the surrounding area, mean this conclusion might not always hold. These results show that the majority of carbon oxidation occurred at the sediment-water interface, via O2 reduction. This likely results from the high frequency of sediment resuspension events combined with the shallow sediment mixing zone, leaving anaerobic oxidants responsible for only ∼10–15% of the carbon oxidized in these sediments.  相似文献   

18.
In summer 1996, a tracer release experiment using sulphur hexafluoride (SF6) was launched in the intermediate-depth waters of the central Greenland Sea (GS), to study the mixing and ventilation processes in the region and its role in the northern limb of the Atlantic overturning circulation. Here we describe the hydrographic context of the experiment, the methods adopted and the results from the monitoring of the horizontal tracer spread for the 1996-2002 period documented by ∼10 shipboard surveys. The tracer marked “Greenland Sea Arctic Intermediate Water” (GSAIW). This was redistributed in the gyre by variable winter convection penetrating only to mid-depths, reaching at most 1800 m depth during the strongest event observed in 2002.For the first 18 months, the tracer remained mainly in the Greenland Sea. Vigorous horizontal mixing within the Greenland Sea gyre and a tight circulation of the gyre interacting slowly with the other basins under strong topographic influences were identified. We use the tracer distributions to derive the horizontal shear at the scale of the Greenland Sea gyre, and rates of horizontal mixing at ∼10 and ∼300 km scales. Mixing rates at small scale are high, several times those observed at comparable depths at lower latitudes. Horizontal stirring at the sub-gyre scale is mediated by numerous and vigorous eddies. Evidence obtained during the tracer release suggests that these play an important role in mixing water masses to form the intermediate waters of the central Greenland Sea.By year two, the tracer had entered the surrounding current systems at intermediate depths and small concentrations were in proximity to the overflows into the North Atlantic. After 3 years, the tracer had spread over the Nordic Seas basins. Finally by year six, an intensive large survey provided an overall synoptic documentation of the spreading of the tagged GSAIW in the Nordic Seas. A circulation scheme of the tagged water originating from the centre of the GS is deduced from the horizontal spread of the tracer. We present this circulation and evaluate the transport budgets of the tracer between the GS and the surroundings basins. The overall residence time for the tagged GSAIW in the Greenland Sea was about 2.5 years. We infer an export of intermediate water of GSAIW from the GS of 1 to 1.85 Sv (1 Sv = 106 m3 s−1) for the period from September 1998 to June 2002 based on the evolution of the amount of tracer leaving the GS gyre. There is strong exchange between the Greenland Sea and Arctic Ocean via Fram Strait, but the contribution of the Greenland Sea to the Denmark Strait and Iceland Scotland overflows is modest, probably not exceeding 6% during the period under study.  相似文献   

19.
Spring diatom blooms are important for sequestering atmospheric CO2 below the permanent thermocline in the form of particulate organic carbon (POC). We measured downward POC flux during a sub-polar North Atlantic spring bloom at 100 m using thorium-234 (234Th) disequilibria, and below 100 m using neutrally buoyant drifting sediment traps. The cruise followed a Lagrangian float, and a pronounced diatom bloom occurred in a 600 km2 area around the float. Particle flux was low during the first three weeks of the bloom, between 10 and 30 mg POC m−2 d−1. Then, nearly 20 days after the bloom had started, export as diagnosed from 234Th rose to 360-620 mg POC m−2 d−1, co-incident with silicate depletion in the surface mixed layer. Sediment traps at 600 and 750 m depth collected 160 and 150 mg POC m−2 d−1, with a settled volume of particles of 1000-1500 mL m−2 d−1. This implies that 25-43% of the 100 m POC export sank below 750 m. The sinking particles were ungrazed diatom aggregates that contained transparent exopolymer particles (TEP). We conclude that diatom blooms can lead to substantial particle export that is transferred efficiently through the mesopelagic. We also present an improved method of calibrating the Alcian Blue solution against Gum Xanthan for TEP measurements.  相似文献   

20.
Marine sponges are key players in the transfer of carbon from the pelagic microbial food web into the benthos. Selective uptake of prokaryotic picoplankton (<2 μm) by a demosponge (Callyspongia sp.), and carbon flux through this process, were examined for the first time in the oligotrophic coastal waters of southwestern Australia, where sponge abundance and biodiversity ranks among the highest in the world. Water sampling and flow rate measurements were conducted over five sampling occasions following the InEx method of Yahel et al. (2005), with heterotrophic bacteria and autotrophic Synechococcus cyanobacteria identified and enumerated by flow cytometry. Callyspongia sp. demonstrated high filtration efficiencies, particularly for high DNA (HDNA) bacteria (up to 85.3% in summer 2008) and Synechococcus (up to 91.1% in autumn 2007), however efficiency varied non-uniformly with time and food type (p < 0.01). Overall filtration efficiency for Synechococcus (86.6 ± 6.3%; mean ± s.d.) was always significantly higher (p < 0.05) than for low DNA (LDNA) bacteria (40 ± 17.2%), except during winter 2007 (p = 0.14) when ambient Synechococcus concentrations were lowest. When compared to ambient abundances of the different food types, Callyspongia sp. exhibited consistently negative selectivity for LDNA bacteria and positive selectivity for Synechococcus, while HDNA bacteria was generally a neutral or positive selection. The total carbon removal rate (sum of all prokaryotic picoplankton cells), calculated on a per unit area basis, varied significantly with time (p < 0.01), with lowest rates recorded during the winter (0.5 ± 0.4–0.6 ± 0.8 mg C m−2 d−1) and highest values recorded in summer (3.5 ± 1.9 mg C m−2 d−1). These flux estimates quantify the role of a demosponge species in the ultimate fate of prokaryotic picoplankton within the nearshore food webs of southwestern Australia, and support the conclusion that sponges actively select food particles that optimise their nutritional intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号