首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
在X射引线观测提高了星系团质量和半径测量精度的新形势下,本讨论了宇宙常数不等于零的平坦宇宙冷暗物质结构形成模型,利用球对称扰动区在宇宙常数不为零时的动力学方程的解,估计了星系团形成红移与宇宙常数是否为零的关系,计算了星系团质量函数随红移的演化。  相似文献   

2.
在X射线观测提高了星系团质量和半径测量精度的新形势下,本文讨论了宇宙常数不等于零的平坦宇宙冷暗物质结构形成模型,利用球对称扰动区在宇宙常数不为零时的动力学方程的解,估计了星系团形成红移与宇宙常数是否为零的关系,计算了星系团质量函数随红移的演化.计算表明,红移为零时星系团的数密度基本上由谱参数Γ决定.若假定星系团质量只有20%的不确定性,可限定Γ的适用范围约为0.15-0.32.高红移星系团的数密度观测不仅有可能对宇宙常数是否为零作出鉴别,而且当精度够高时还能对宇宙物质密度的大小作出限制  相似文献   

3.
磁化吸积盘的不稳定性研究   总被引:1,自引:0,他引:1  
从磁流体动力学方程组出发,用微扰法得到的色散方程中含有环向磁场.利用全新的反常粘滞和反常阻抗,对吸积盘进行数值计算,结果表明,只有竖直方向的弱磁场才可以引发一种单调不稳定性.磁场对粘性吸积盘表现为非稳定性因素,增长率随磁场的增强而增大,且最大增长率大于理想情况下的值.垂向磁场足够强时,单调不稳定性不会出现.  相似文献   

4.
曹新伍  张家铝 《天文学报》1993,34(4):366-373
本文采用了多方物态方程p=kρ^(1+1/n)研究了在黑洞附近跨声速α吸积盘的径向线性稳定性,在导出扰动色散关系时考虑了吸积流的径向运动速度,结果表明粘滞系数α存在一上限αc,当α>αc时,吸积流是不稳定的,αc与多方指数n及吸积流的径向速度vr有关。  相似文献   

5.
本文在Thorne工作的基础上讨论了吸积盘中黑洞的有关参量的演化,以及由Schwarzschild黑洞吸积盘向Kerr黑洞吸积盘演化过程中对吸积盘辐射通量的影响,最后针对几个典型的辐射过程,分别讨论了黑洞吸积盘在牛顿框架中的温度分布方程与广义相对论的温度分布方程的热不稳定性,并给出此类问题的热不稳定性的判据。  相似文献   

6.
本文在Thorne工作基础上讨论了吸积盘中黑洞的有关参量的演化,以及由Schwa-rzschild黑洞吸积盘向Kerr黑洞吸积盘演化过程中对吸积盘辐射通量的影响,最后针对几个典型的辐射过程,分别讨论了黑洞吸积盘在牛顿框架中的温度分布方程与广义相对论的温度分布方程的热不稳定性,并给出此类问题的热不稳定性的判据。  相似文献   

7.
星系盘厚度效应的研究   总被引:1,自引:0,他引:1  
在三维引力Poisson方程严格解基础上,探讨了有限厚星系盘基盘的动力学性质,并进一步讨论了盘的厚度效应对银河系所需晕质量的影响。研究了扰动盘的动力学性质,通过将扰动引力势Poisson方程的严格解与林家翘、徐遐生提出的自维持密度波理论相结合,建立了三维旋涡星系有限厚盘上密度波的色散关系。在此色散关系的基础上讨论了盘的局域稳定性,研究了旋涡星系旋臂的形态、三维盘状星系密度波的群速度。研究表明厚度是星系盘研究中不容忽略的重要参量。另外在有限厚盘星系密度波色散关系的基础上还探讨了一种确定星系厚度的新方法。  相似文献   

8.
本文从二维气体动力学和泊松方程出发,研究星际气体激波和线性恒星密度波自洽的密度波理论,求出准稳、紧卷、双臂的线性恒星密度波和星际气体激波的总合自洽解。所得结果表明,在采用不完全的流体力学线性方程组及全局的引力方程的条件下,得到的是收敛的自洽解,该解给出了与局部渐近解相同的色散关系、非谐波形式的总密度分布及总引力分布,所得结果还表明,若采用完全的流体力学线性化方程组,将得出不稳定的线性恒星密度波。  相似文献   

9.
本文从磁流力学理论出发,研究了有流动情况下等离子体柱的扭折不稳定性线性理论,并以所导出的色散方程计算色散曲线,从而估计速度因子在线性不稳定性理论中所起的作用。本文发现流体的流动与磁场环向分量H_(eφ)一样是一个不稳定因子,随着流动速度的出现和增加,不稳定性增长率会提高几倍至几十倍,发生不稳定的波长范围会扩大.在速度较大的情况下,对短波扰动,m=0,m=1模几乎会同时出现。最后,用本文计算结果对太阳大气中出现的几个典型事例,进行了简单的定性解释。  相似文献   

10.
含粘滞的弱磁化吸积盘的非轴对称脉动不稳定性   总被引:1,自引:0,他引:1  
汪定雄  杨兰田 《天文学报》1997,38(3):250-256
本文讨论了一种含扩散型粘滞的弱磁化等温吸积盘模型.在作者原有工作的基础上研究了吸积盘对非轴对称扰动(含径向、环向和垂向三个方向的扰动)所表现的脉动不稳定性.结果表明,径向扰动是最重要、最根本的扰动:在无径向扰动时,吸积盘中不存在环向扰动与垂向扰动所产生的脉动不稳定性.在径向扰动存在时,吸积盘除了可能存在纯径向脉动不稳定性外,还可能存在由于径向扰动与垂向扰动的耦合所引起的轴对称脉动不稳定性,以及由于径向扰动与环向扰动的耦合所引起的非轴对称脉动不稳定性.当上述三个方向的扰动并存时,对应的非轴对称脉动不稳定性也可能存在.  相似文献   

11.
We consider the non-axisymmetric, dynamical instability of a thin accretion torus with a non-zero shift of corotation radius. By numerical method we evaluated the wave number dependence of the linear rate of growth of instability and the co-rotation shift. The rate of growth is only slightly affected by the non-zero co-rotation shift, while the dispersion relation in the case of a shift is the same as that of the linear KdV equation. This shows that the “planet-like” solution found in numerical simulations of thin tori is very probably analogous to the soliton solution of the KdV equation.  相似文献   

12.
We investigate the linear stability of a shocked accretion flow on to a black hole in the adiabatic limit. Our linear analyses and numerical calculations show that, despite the post-shock deceleration, the shock is generally unstable to non-axisymmetric perturbations. The simulation results of Molteni, Tóth & Kuznetsov can be well explained by our linear eigenmodes. The mechanism of this instability is confirmed to be based on the cycle of acoustic waves between the corotation radius and the shock. We obtain an analytical formula to calculate the oscillation period from the physical parameters of the flow. We argue that the quasi-periodic oscillation should be a common phenomenon in accretion flows with angular momentum.  相似文献   

13.
We study the nature of non-axisymmetric dynamical instabilities in differentially rotating stars with both linear eigenmode analysis and hydrodynamic simulations in Newtonian gravity. We especially investigate the following three types of instability; the one-armed spiral instability, the low   T /| W |  bar instability, and the high   T /| W |  bar instability, where T is the rotational kinetic energy and W is the gravitational potential energy. The nature of the dynamical instabilities is clarified by using a canonical angular momentum as a diagnostic. We find that the one-armed spiral and the low   T /| W |  bar instabilities occur around the corotation radius, and they grow through the inflow of canonical angular momentum around the corotation radius. The result is a clear contrast to that of a classical dynamical bar instability in high   T /| W |  . We also discuss the feature of gravitational waves generated from these three types of instability.  相似文献   

14.
This paper concerns the interaction between non-axisymmetric inertial waves and their corotation resonances in a hydrodynamical disc. Inertial waves are of interest because they can localize in resonant cavities circumscribed by Lindblad radii and, as a consequence, can exhibit discrete oscillation frequencies that may be observed. It is often hypothesized that these trapped eigenmodes are affiliated with the poorly understood quasi-periodic oscillation phenomenon. We demonstrate that a large class of non-axisymmetric three-dimensional (3D) inertial waves cannot manifest as trapped normal modes. This class includes any inertial wave whose resonant cavity contains a corotation singularity. Instead, these 'singular' modes constitute a continuous spectrum and, as an ensemble, are convected with the flow, giving rise to shearing waves. Finally, we present a simple demonstration of how the corotation singularity stabilizes 3D perturbations in a slender torus.  相似文献   

15.
We present the results of axisymmetric, time-dependent magnetohydrodynamic simulations of accretion flows around black holes. The calculations begin from a rotationally supported thick torus which contains a weak poloidal field. Accretion is produced by growth and saturation of the magnetorotational instability (MRI) provided that the wavelength of the fastest growing mode is less than the thickness of the torus. Using a computational grid that spans more than two decades in radius, we compare the time-averaged properties of the flow with previous hydrodynamical simulations. The net mass accretion rate is small compared with the mass inflow and outflow rates at large radii associated with turbulent eddies. Turbulence is driven by the MRI rather than convection. The two-dimensional structure of the time-averaged flow is significantly different compared with the hydrodynamical case. We discuss the limitations imposed on our results by the assumption of axisymmetry and the relatively small radial domain.  相似文献   

16.
The problem of the effect of a strongly magnetic star on a surrounding accretion disc is considered. For stellar rotation periods greater than a critical value, a numerical solution is found for a steady disc with turbulent magnetic diffusion, including electron scattering opacity and radiation pressure. Inside the corotation radius, the extraction of disc angular momentum by magnetic coupling to the star becomes strong and this leads to enhanced viscous stress and dissipation. The resulting elevated temperature causes electron scattering opacity and radiation pressure to become significant further from the star than in the absence of its magnetic field. The disc ends as its height increases rapidly due to the large central pressure, its density decreases and magnetically induced viscous instability occurs.  相似文献   

17.
The excitation of spiral waves by an external perturbation in a disc deposits angular momentum in the vicinity of the corotation resonance (the radius where the speed of a rotating pattern matches the local rotation rate). We use matched asymptotic expansions to derive a reduced model that captures non-linear dynamics of the resulting torque and fluid motions. The model is similar to that derived for forced Rossby wave critical layers in geophysical fluid dynamics. Using the model we explore the saturation of the corotation torque, which occurs when the background potential (specific) vorticity is redistributed by the disturbance. We also consider the effects of dissipation. If there is a radial transport of potential vorticity, the corotation torque does not saturate. The main application is to the creation, growth and migration of protoplanets within discs like the primordial solar nebula. The disturbance also nucleates vortices in the vicinity of corotation, which may spark further epochs of planet formation.  相似文献   

18.
In differentially rotating discs with no self-gravity, density waves cannot propagate around the corotation, where the wave pattern rotation speed equals the fluid rotation rate. Waves incident upon the corotation barrier may be super-reflected (commonly referred to as corotation amplifier), but the reflection can be strongly affected by wave absorptions at the corotation resonance/singularity. The sign of the absorption is related to the Rossby wave zone very near the corotation radius. We derive the explicit expressions for the complex reflection and transmission coefficients, taking into account wave absorption at the corotation resonance. We show that for generic discs, this absorption plays a much more important role than wave transmission across the corotation barrier. Depending on the sign of the gradient of the vortensity of the disc,  ζ=κ2/(2ΩΣ)  (where Ω is the rotation rate, κ is the epicyclic frequency and Σ is the surface density), the corotation resonance can either enhance or diminish the super-reflectivity, and this can be understood in terms of the location of the Rossby wave zone relative to the corotation radius. Our results provide the explicit conditions (in terms of disc thickness, rotation profile and vortensity gradient) for which super-reflection can be achieved. Global overstable disc modes may be possible for discs with super-reflection at the corotation barrier.  相似文献   

19.
The radial structure of a thin accretion disc is calculated in the presence of a central dipole magnetic field aligned with the rotation axis. The problem is treated using a modified expression for the turbulent magnetic diffusion, which allows the angular momentum equation to be integrated analytically. The governing algebraic equations are solved iteratively between 1 and 104 stellar radii. An analytic approximation is provided that is valid near the disruption radius at about 100 stellar radii. At that point, which is approximately 60 per cent of the Alfvén radius and typically about 30 per cent of the corotation radius, the disc becomes viscously unstable. This instability results from the fact that both radiation pressure and opacity caused by electron scattering become important. This in turn is a consequence of the magnetic field which leads to an enhanced temperature in the inner parts. This is because the magnetic field gives rise to a strongly enhanced vertically integrated viscosity, so that the viscous torque can balance the magnetic torque.  相似文献   

20.
This paper investigates the tidal effect on accretion disk in CVs and sets up a simplified model in which the secondary's gravitation is substituted by a mean tidal torque. We find that a linear tidal torque will not be able to maintain an equilibrium disk. By using the result of the radius of the equilibrium disk approximately equals to the tidal radius, which was obtained by using the two dimensional numerical simulation invoking nonlinear tidal effect, we give the modified tidal dissipation function for our simplified model which could be used to interpret the outburst of the dwarf nova with tidal effect. The paper also shows that the radius of an equilibrium disk with a torus is slightly small than the Lubow-Shu radius, and the tidal effect may also cause the cycle of quiescence-superoutburst in addition to the cycle of quiescence-outbursts-superoutburst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号