首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《Sedimentology》2018,65(5):1631-1666
Detailed logging and analysis of the facies architecture of the upper Tithonian to middle Berriasian Aguilar del Alfambra Formation (Galve sub‐basin, north‐east Spain) have made it possible to characterize a wide variety of clastic, mixed clastic–carbonate and carbonate facies, which were deposited in coastal mudflats to shallow subtidal areas of an open‐coast tidal flat. The sedimentary model proposed improves what is known about mixed coastal systems, both concerning facies and sedimentary processes. This sedimentary system was located in an embayed, non‐protected area of a wide C‐shaped coast that was seasonally dominated by wave storms. Clastic and mixed clastic–carbonate muds accumulated in poorly drained to well‐drained, marine‐influenced coastal mudflat areas, with local fluvial sandstones (tide‐influenced fluvial channels and sheet‐flood deposits) and conglomerate tsunami deposits. Carbonate‐dominated tidal flat areas were the loci of deposition of fenestral‐laminated carbonate muds and grainy (peloidal) sediments with hummocky cross‐stratification. Laterally, the tidal flat was clastic‐dominated and characterized by heterolithic sediments with hummocky cross‐stratification and local tidal sandy bars. Peloidal and heterolithic sediments with hummocky cross‐stratification are the key facies for interpreting the wave (storm) dominance in the tidal flat. Subsidence and high rates of sedimentation controlled the rapid burial of the storm features and thus preserved them from reworking by fair‐weather waves and tides.  相似文献   

2.
On the south‐west coast of Vancouver Island, Canada, sedimentological and ichnological analysis of three beach–shoreface complexes developed along a strait margin was undertaken to quantify process–response relations in straits and to develop a model for strait‐margin beaches. For all three beaches, evidence of tidal processes are expressed best in the lower shoreface and offshore and, to a lesser extent, in the middle shoreface. Tidal currents are dominant offshore, below 18 m water depth (relative to the mean spring high tide), whereas wave processes dominate sediment deposition in the nearshore (intertidal zone to 5 m water depth). From 18 to 5 m water depth, tidal processes decrease in importance relative to wave processes. The relatively high tidal energy in the offshore and lower shoreface is manifest sedimentologically by the dominance of sand, of a similar grain size to the upper shoreface/intertidal zone and, by the prevalence of current‐generated structures (current ripples) oriented parallel to the shoreline. In addition, the offshore and lower shoreface of strait‐bound beach–shoreface complexes are recognized ichnologically by traces typical of the Skolithos Ichnofacies. This situation contrasts to the dominantly horizontal feeding traces characteristic of the Cruziana Ichnofacies that are prevalent in the lower shoreface and offshore of open‐coast (wave‐dominated) beach–shorefaces. These sedimentological and ichnological characteristics reflect tidal influence on sediment deposition; consequently, the term ‘tide‐influenced shoreface’ most accurately describes these depositional environments.  相似文献   

3.
Regionally extensive parasequences in the upper McMurray Formation, Grouse Paleovalley, north‐east Alberta, Canada, preserve a shift in depositional processes in a paralic environment from tide domination, with notable fluvial influence, through to wave domination. Three stacked parasequences form the upper McMurray Formation and are separated by allogenic flooding surfaces. Sediments within the three parasequences are grouped into three facies associations: wave‐dominated/storm‐dominated deltas, storm‐affected shorefaces to sheltered bay‐margin and fluvio‐tidal brackish‐water channels. The two oldest parasequences comprise dominantly tide‐dominated, wave‐influenced/fluvial‐influenced, shoreface to bay‐margin deposits bisected by penecontemporaneous brackish‐water channels. Brackish‐water channels trend approximately north‐west/south‐east, which is perpendicular to the interpreted shoreline trend; this implies that the basinward and progradational direction was towards the north‐west during deposition of the upper McMurray Formation in Grouse Paleovalley. The youngest parasequence is interpreted as amalgamated wave‐dominated/storm‐dominated delta lobes. The transition from tide‐dominated deposition in the oldest two parasequences to wave‐dominated deposition in the youngest is attributed mainly to drowning of carbonate highlands to the north and north‐west of the study area, and potentially to relative changes in accommodation space and deposition rate. The sedimentological, ichnological and regional distribution of the three facies associations within each parasequence are compared to modern and Holocene analogues that have experienced similar shifts in process dominance. Through this comparison it is possible to consider how shifts in depositional processes are expressed in the rock record. In particular, this study provides one of few ancient examples of preservation of depositional process shifts and showcases how topography impacts the character and architecture of marginal‐marine systems.  相似文献   

4.
Thin‐bedded delta‐front and prodelta facies of the Upper Cretaceous Ferron Notom Delta Complex near Hanksville in southern Utah, USA, show significant along‐strike facies variability. Primary initiation processes that form these thin beds include surge‐type turbidity currents, hyperpycnal flows and storm surges. The relative proportion of sedimentary structures generated by each of these depositional processes/events has been calculated from a series of measured sedimentological sections within a single parasequence (PS6–1) which is exposed continuously along depositional strike. For each measured section, sedimentological data including grain size, lithology, bedding thickness, sedimentary structures and ichnological suites have been documented. Parasequence 6–1 shows a strong along‐strike variation with a wave‐dominated environment in the north, passing abruptly into a fluvial‐dominated area, then to an environment with varying degrees of fluvial and wave influence southward, and back to a wave‐dominated environment further to the south‐east. The lateral facies variations integrated with palaeocurrent data indicate that parasequence 6–1 is deposited as a storm‐dominated symmetrical delta with a large river‐dominated bayhead system linked to an updip fluvial feeder valley. This article indicates that it is practical to quantify the relative importance of depositional processes and determine the along‐strike variation within an ancient delta system using thin‐bedded facies analysis. The wide range of vertical stratification and grading sequences present in these event beds also allows construction of conceptual models of deposition from turbidity currents (i.e. surge‐type turbidity currents and hyperpycnal flows) and storm surges, and shows that there are significant interactions and linkages of these often paired processes.  相似文献   

5.
Open‐coast tidal flats are hybrid depositional systems resulting from the interaction of waves and tides. Modern examples have been recognized, but few cases have been described in ancient rock successions. An example of an ancient open‐coast tidal flat, the depositional architecture of the Lagarto and Palmares formations (Cambrian–Ordovician of the Sergipano Belt, north‐eastern Brazil) is presented here. Detailed field analyses of outcrops allowed the development of a conceptual architectural model for a coastal depositional environment that is substantially different from classical wave‐dominated or tide‐dominated coastal models. This architectural model is dominated by storm wave, low orbital velocity wave and tidal current beds, which vary in their characteristics and distribution. In a landward direction, the storm deposits decrease in abundance, dimension (thickness and spacing) and grain size, and vary from accretionary through scour and drape to anisotropic hummocky cross‐stratification beds. Low orbital wave deposits are more common in the medium and upper portion of the tidal flat. Tidal deposits, which are characterized by mudstone interbedded with sandstone strata, are dominant in the landward portion of the tidal flat. Hummocky cross‐stratification beds in the rock record are believed, in general, to represent storm deposits in palaeoenvironments below the fair‐weather wave base. However, in this model of an open‐coast tidal flat, hummocky cross‐stratification beds were found in very shallow waters above the fair‐weather wave base. Indeed, this depositional environment was characterized by: (i) fair‐weather waves and tides that lacked sufficient energy to rework the storm deposits; (ii) an absence of biological communities that could disrupt the storm deposits; and (iii) high aggradation rates linked to an active foreland basin, which contributed definitively to the rapid burial and preservation of these hummocky cross‐stratification deposits.  相似文献   

6.
In central Wisconsin, Cambrian strata of the Elk Mound Group record deposition on open‐coast, wave‐dominated tidal flats. Mature, medium‐grained quartz arenite is dominated by parallel‐bedding with upper‐flow regime parallel‐lamination, deposited during high‐energy storms that also produced three‐dimensional bedforms on the flats. Abundant wave ripples were produced as storms waned or during fair weather, in water depths ≤2 m. Indicators of variably shallow water (washout structures and stranded cnidarian medusae) and subaerial exposure (adhesion marks, rain‐drop impressions and desiccation cracks, including cracked medusae) are abundant. Parallel‐bedded facies preserve a Cruziana ichnofacies, similar to other Cambrian tidal‐flat deposits. Flats were dissected by small, mainly straight channels, the floors of which were grazed intensely by molluscs. Most channels were ephemeral but some developed low levées, point bars and cut‐banks, probably reflecting stabilization by abundant microbial mats and biofilms. Channels were filled with trough cross‐bedding that is interpreted to have been produced mainly during storm runoff. The strata resemble deposits of open‐coast, wave‐dominated tidal flats on the east coast of India and west coast of Korea. Ancient wave‐dominated and open‐coast tidal flats documented to date appear to have been limited to mud‐rich strata with ‘classic’ tidal indicators such as flaser bedding and tidal bundles. The Cambrian (Miaolingian to early Furongian) Elk Mound Group demonstrates that sandy, wave‐dominated tidal flats also can be recognized in the stratigraphic record.  相似文献   

7.
Integrated ichnological and sedimentological analyses of core samples from the Upper Jurassic Ula Formation in the Norwegian Central Graben were undertaken to quantify the influence of storm waves on sedimentation. Two main facies associations (offshore and shoreface) that form a progradational coarsening upward succession are recognizable within the cores. The offshore deposits are characterized by massive to finely laminated mudstones and fine‐grained sandstones, within a moderately to highly bioturbated complex. The trace fossil assemblage is dominated by deposit‐feeding structures (for example, Planolites, Phycosiphon and Rosselia) and constitutes an expression of the proximal Zoophycos to distal Cruziana ichnofacies. The absence of grazing behaviours and dominance of deposit‐feeding ichnofossils is a reflection of the increased wave energies present (i.e. storm‐generated currents) within an offshore setting. The shoreface succession is represented by highly bioturbated fine‐grained to medium‐grained sandstones, with intervals of planar and trough cross‐bedding, thin pebble lags and bivalve‐rich shell layers. The ichnofossil assemblage, forming part of the Skolithos ichnofacies, is dominated by higher energy Ophiomorpha nodosa ichnofossils and lower energy Ophiomorpha irregulaire and Siphonichnus ichnofossils. The presence of sporadic wave‐generated sedimentary structures and variability in ichnofossil diversity and abundance attests to the influence of storm‐generated currents during deposition. As a whole, the Ula Formation strongly reflects the influence of storm deposits on sediment deposition; consequently, storm‐influenced shoreface most accurately describes these depositional environments.  相似文献   

8.
《Sedimentology》2018,65(3):721-744
Storm surges generated by tropical cyclones have been considered a primary process for building coarse‐sand beach ridges along the north‐eastern Queensland coast, Australia. This interpretation has led to the development of palaeotempestology based on the beach ridges. To better identify the sedimentary processes responsible for these ridges, a high‐resolution chronostratigraphic analysis of a series of ridges was carried out at Cowley Beach, Queensland, a meso‐tidal beach system with a >3 m tide range. Optically stimulated luminescence ages indicate that 10 ridges accreted seaward over the last 2500 to 2700 years. The ridge crests sit +3·5 to 5·1 m above Australian Height Datum (ca mean sea‐level). A ground‐penetrating radar profile shows two distinct radar facies, both of which are dissected by truncation surfaces. Hummocky structures in the upper facies indicate that the nucleus of the beach ridge forms as a berm at +2·5 m Australian Height Datum, equivalent to the fair‐weather swash limit during high tide. The lower facies comprises a sequence of seaward‐dipping reflections. Beach progradation thus occurs via fair‐weather‐wave accretion of sand, with erosion by storm waves resulting in a sporadic sedimentary record. The ridge deposits above the fair‐weather swash limit are primarily composed of coarse and medium sands with pumice gravels and are largely emplaced during surge events. Inundation of the ridges is more likely to occur in relation to a cyclone passing during high tide. The ridges may also include an aeolian component as cyclonic winds can transport beach sand inland, especially during low tide, and some layers above +2·5 m Australian Height Datum are finer than aeolian ripples found on the backshore. Coarse‐sand ridges at Cowley Beach are thus products of fair‐weather swash and cyclone inundation modulated by tides. Knowledge of this composite depositional process can better inform the development of robust palaeoenvironmental reconstructions from the ridges.  相似文献   

9.
The dominance of isotropic hummocky cross‐stratification, recording deposition solely by oscillatory flows, in many ancient storm‐dominated shoreface–shelf successions is enigmatic. Based on conventional sedimentological investigations, this study shows that storm deposits in three different and stratigraphically separated siliciclastic sediment wedges within the Lower Cretaceous succession in Svalbard record various depositional processes and principally contrasting sequence stratigraphic architectures. The lower wedge is characterized by low, but comparatively steeper, depositional dips than the middle and upper wedges, and records a change from storm‐dominated offshore transition – lower shoreface to storm‐dominated prodelta – distal delta front deposits. The occurrence of anisotropic hummocky cross‐stratification sandstone beds, scour‐and‐fill features of possible hyperpycnal‐flow origin, and wave‐modified turbidites within this part of the wedge suggests that the proximity to a fluvio‐deltaic system influenced the observed storm‐bed variability. The mudstone‐dominated part of the lower wedge records offshore shelf deposition below storm‐wave base. In the middle wedge, scours, gutter casts and anisotropic hummocky cross‐stratified storm beds occur in inferred distal settings in association with bathymetric steps situated across the platform break of retrogradationally stacked parasequences. These steps gave rise to localized, steeper‐gradient depositional dips which promoted the generation of basinward‐directed flows that occasionally scoured into the underlying seafloor. Storm‐wave and tidal current interaction promoted the development and migration of large‐scale, compound bedforms and smaller‐scale hummocky bedforms preserved as anisotropic hummocky cross‐stratification. The upper wedge consists of thick, seaward‐stepping successions of isotropic hummocky cross‐stratification‐bearing sandstone beds attributed to progradation across a shallow, gently dipping ramp‐type shelf. The associated distal facies are characterized by abundant lenticular, wave ripple cross‐laminated sandstone, suggesting that the basin floor was predominantly positioned above, but near, storm‐wave base. Consequently, shelf morphology and physiography, and the nature of the feeder system (for example, proximity to deltaic systems) are inferred to exert some control on storm‐bed variability and the resulting stratigraphic architecture.  相似文献   

10.
Shallow marine sediments of the Broughton Formation are dominated by immature volcanic debris of intermediate to basic composition, generated in an adjacent subaerial environment by volcanism responsible for the nine shoshonite units intercalated within sediments of the Kiama region. Sediment was supplied to the offshore environment via periodic storm‐generated, expanded high density turbidity currents. Initial deposition, represented by the Westley Park Sandstone Member, was below storm wave base, during which time the depositional surface was subjected to post‐depositional tractional reworking by northerly directed, tidally influenced bottom currents. The resulting positive‐relief sand bodies on the seafloor contain tractional sedimentary structures (the ‘tractional facies association'). Areas of the substrate between these sand bodies retained their turbidite bedding structure (the ‘rhythmically bedded facies association') but were extensively bioturbated by a diverse deposit‐feeding biomass.

Upon emplacement of the lowest of the nine shoshonite units as a tri‐composite, locally intrusive lava flow, the depositional surface was elevated, transgressing storm wave base. The body of the shoshonite flow also shielded the substrate from the northerly directed tractional currents, allowing the development and preservation of the hummocky cross‐stratified sandstone facies in the Kiama Sandstone Member. Following burial of the shoshonite flow by continued deposition, this local shielding effect was overcome and tractional currents again reworked the entire depositional surface.  相似文献   

11.
Five coarsening upward shallow marine sandstone sequences (2–10 m thick), are described from the late Precambrian of North Norway, where they occur in a laterally continuous and tectonically undeformed outcrop. The sequences consist of five facies with distinct assemblages of sedimentary structures and palaeocurrent patterns. Each facies is the product of alternate phases of sedimentation during relatively high- and low-energy periods. Facies 1 to 4 are interpreted as representing prograding, subtidal sand bars. Sand bar progradation occurred during the highest energy periods when unidirectional currents flowed to the northwest, depositing trough cross-bedded sandstones (facies 3 and 4) on the bar crests and flanks, and sheet sandstone beds (facies 1 and 2) in the offshore environments. Weaker northwesterly flowing currents continued during moderate energy fair weather periods. Low energy fair weather periods were dominated by wave processes, which formed largescale, low-angle, westerly inclined surfaces on the bar flanks (facies 4) and wave rippled sandstone beds (facies 2) and flat laminated siltstone layers (facies 1) in the offshore environments. One sand bar was dissected by channels and infilled by tabular cross-bedded sandstones (facies 5). Bipolar palaeocurrent evidence, with two modes separated into two laterally equivalent channel systems, suggests deposition by tidal currents in mutually evasive ebb and flood channels. The inferred processes of these sand bars are compared with those associated with modern storm-generated and tidal current generated linear sand ridges. Both are influenced by the interaction of relatively low and high energy conditions. The presence of the tidal channel facies, however, combined with the inferred strong bottom current regime, is more analogous to a tidal current hydraulic regime.  相似文献   

12.
To understand the depositional processes and environmental changes during the initial flooding of the North China Platform, this study focuses on the Lower to Middle Cambrian Zhushadong and Mantou formations in Shandong Province, China. The succession in the Jinan and Laiwu areas comprises mixed carbonate and siliciclastic deposits composed of limestone, dolostone, stromatolite, thrombolite, purple and grey mudstone, and sandstone. A detailed sedimentary facies analysis of seven well‐exposed sections suggests that five facies associations are the result of an intercalation of carbonate and siliciclastic depositional environments, including local alluvial fans, shallowing‐upward carbonate–siliciclastic peritidal cycles, oolite dominant shoals, shoreface and lagoonal environments. These facies associations successively show a transition from an initially inundated tide‐dominated carbonate platform to a wave‐dominated shallow marine environment. In particular, the peritidal sediments were deposited during a large number of depositional cycles. These sediments consist of lime mudstone, dolomite, stromatolite and purple and grey mudstones. These shallowing‐upward cycles generally resulted from carbonate production in response to an increase of accommodation during rising sea‐level. The carbonate production was, however, interrupted by frequent siliciclastic input from the adjacent emergent archipelago. The depositional cycles thus formed under the influence of both autogenetic changes, including sediment supply from the archipelago, and allogenic control of relative sea‐level rise in the carbonate factory. A low‐relief archipelago with an active tidal regime allowed the development of tide‐dominated siliciclastic and carbonate environments on the vast platform. Siliciclastic input to these tidal environments terminated when most of the archipelago became submerged due to a rapid rise in sea‐level. This study provides insights on how a vast Cambrian carbonate platform maintained synchronous sedimentation under a tidal regime, forming distinct cycles of mixed carbonates and siliciclastics as the system kept up with rising relative sea‐level during the early stage of basin development in the North China Platform.  相似文献   

13.
Stratigraphic patterns and sequence development in tectonically active extensional basins remain poorly documented in comparison with passive‐margin settings. Rift basin fills are generally characterized by coarsening‐upward trends in response to the rapid creation of accommodation by extensional faulting, and the progressive filling of graben during more quiescent periods. The Early Permian Irwin River Coal Measures in the Northern Perth Basin (Western Australia) record a complex stratigraphic arrangement of conglomerate, sandstone, mudstone and coal, and have been attributed to delta plain depositional environments that developed in a cool–temperate climatic setting during syn‐rift activity. Sedimentary analysis of outcrop and core data from the fault‐bounded Irwin Terrace is used to distinguish nine facies associations reflecting deposition in braided rivers, fixed‐anastomosed channel belts, tide‐influenced coastal environments and storm‐affected distal bays. The broader depositional system is interpreted as a morphologically asymmetrical tide‐dominated embayment with a fluvial and wave influence. The stratigraphic architecture of the Irwin River Coal Measures was strongly influenced by the evolving rift basin margin. Fault reactivation of the major basin‐bounding Darling Fault in the early syn‐rift phase caused footwall uplift and the inception of transverse palaeo‐valleys occupied by braided fluvial systems. Fault block subsidence during the subsequent balanced, backstepping and drowning phases resulted in a dominantly retrogradational stacking pattern indicating progressive flooding of marginal‐marine areas and culminating in deposition of distal marine elements. In the active rift basin, it is proposed that preservation of a shallow‐marine syn‐rift sequence was promoted by the geomorphological confinement of the embayed system increasing tidal current acceleration and hampering transgressive ravinement. The proposed sequence model demonstrates that transgressive successions can develop in the early syn‐rift phase in response to footwall uplift and tectonic subsidence. The syn‐rift sequence recording the filling of an embayment on a rift basin margin may be applied in similar tectonic and/or depositional contexts worldwide.  相似文献   

14.
Depositional models that use heterogeneity in mud‐dominated successions to distinguish and diagnose environments within the offshore realm are still in their infancy, despite significant recent advances in understanding the complex and dynamic processes of mud deposition. Six cored intervals of the main body of the Mancos Shale, the lower Blue Gate Member, Uinta Basin, were examined sedimentologically, stratigraphically and geochemically in order to evaluate facies heterogeneity and depositional mechanisms. Unique sedimentological and geochemical features are used to identify three offshore environments of deposition: the prodelta, the mudbelt and the sediment‐starved shelf. Prodelta deposits consist of interlaminated siltstone and sandstone and exhibit variable and stressed trace fossil assemblages, and indicators of high sedimentation rates. The prodelta was dominated by river‐fed hyperpycnal flow. Mudbelt deposits consist of interlaminated siltstone and sandstone and are characterized by higher bioturbation indices and more diverse trace fossil assemblages. Ripples, scours, truncations and normally graded laminations are abundant in prodelta and mudbelt deposits indicating dynamic current conditions. Mudbelt sediment dispersal was achieved by both combined flow above storm wave base and current‐enhanced and wave‐enhanced sediment gravity flows below storm wave base. Sediment‐starved shelf deposits are dominantly siltstone to claystone with the highest calcite and organic content. Bioturbation is limited to absent. Sediment‐starved shelf deposits were the result of a combination of shelfal currents and hypopycnal settling of sediment. Despite representing the smallest volume, sediment‐starved shelf deposits are the most prospective for shale hydrocarbon resource development, due to elevated organic and carbonate content. Sediment‐starved shelf deposits are found in either retrogradational to aggradational parasequence sets or early distal aggradational to progradational parasequence sets, bounding the maximum flooding surface. An improved framework classification of offshore mudstone depositional processes based on diagnostic sedimentary criteria advances our predictive ability in complex and dynamic mud‐dominated environments and informs resource prospectivity.  相似文献   

15.
Tide‐dominated deltas have an inherently complex distribution of heterogeneities on several different scales and are less well‐understood than their wave‐dominated and river‐dominated counterparts. Depositional models of these environments are based on a small set of ancient examples and are, therefore, immature. The Early Jurassic Gule Horn Formation is particularly well‐exposed in extensive sea cliffs from which a 32 km long, 250 m high virtual outcrop model has been acquired using helicopter‐mounted light detection and ranging (LiDAR). This dataset, combined with a set of sedimentological logs, facilitates interpretation and measurement of depositional elements and tracing of stratigraphic surfaces over seismic‐scale distances. The aim of this article is to use this dataset to increase the understanding of depositional elements and lithologies in proximal, unconfined, tide‐dominated deltas from the delta plain to prodelta. Deposition occurred in a structurally controlled embayment, and immature sediments indicate proximity to the sediment source. The succession is tide dominated but contains evidence for strong fluvial influence and minor wave influence. Wave influence is more pronounced in transgressive intervals. Nine architectural elements have been identified, and their internal architecture and stratigraphical distribution has been investigated. The distal parts comprise prodelta, delta front and unconfined tidal bar deposits. The medial part is characterized by relatively narrow, amalgamated channel fills with fluid mud‐rich bases and sandier deposits upward, interpreted as distributary channels filled by tidal bars deposited near the turbidity maximum. The proximal parts of the studied system are dominated by sandy distributary channel and heterolithic tidal‐flat deposits. The sandbodies of the proximal tidal channels are several kilometres wide and wider than exposures in all cases. Parasequence boundaries are easily defined in the prodelta to delta‐front environments, but are difficult to trace into the more proximal deposits. This article illustrates the proximal to distal organization of facies in unconfined tide‐dominated deltas and shows how such environments react to relative sea‐level rise.  相似文献   

16.
川西北江油马角坝地区黄龙组下部风暴沉积特征   总被引:2,自引:0,他引:2       下载免费PDF全文
川西北江油马角坝地区上石炭统黄龙组下部发育典型的风暴沉积,包括介壳灰岩、砾屑灰岩、瘤块状灰岩、砂屑灰岩和正常沉积灰岩或泥岩等沉积类型,以及冲刷沟槽、瘤块状构造、粒序层理、水平层理、波状层理和生物扰动等沉积构造。根据野外观察和室内显微分析,结合风暴沉积标志组合,在江油马角坝地区2个剖面的黄龙组下部各识别出4层风暴层,并划分出5套风暴沉积组合。组合Ⅰ以冲刷沟槽、介壳滞留层、粗砾滞留层、块状层理、水平层理、波状层理、泥灰岩层和生物富集层为特征,沉积于正常浪基面以上强风暴作用的开阔台地环境。组合Ⅱ以瘤块状构造、粒序层理和块状层理的生物碎屑灰岩为特征,沉积于正常浪基面之上受重力流影响的局限台地环境。组合Ⅲ以冲刷沟槽、粗砾滞留层、粒序层理、块状层理为特征,沉积于浪基面以上持续风暴流作用的开阔台地边缘浅滩环境。组合Ⅳ由冲刷沟槽、正粒序层理和块状层理的生物碎屑灰岩组成,产出于组合Ⅲ之上,表明该组合在前一期风暴未完全结束时又遭到后一期风暴的侵袭,接受浪基面之上的浅滩沉积。组合Ⅴ由冲刷沟槽、粗砾滞留层和泥岩层组成,沉积于晴天浪基面以上缺少物源的极浅水开阔台地环境。以上5种组合风暴岩都发育于台地中上部,与一般的斜坡风暴岩有明显的差别,均属于近源极浅水风暴岩。风暴岩的研究对地层对比、古气候、岩相古地理、沉积盆地演化和油气勘探具有重要的理论和现实意义。  相似文献   

17.
Existing facies models of tide‐dominated deltas largely omit fine‐grained, mud‐rich successions. Sedimentary facies and sequence stratigraphic analysis of the exceptionally well‐preserved Late Eocene Dir Abu Lifa Member (Western Desert, Egypt) aims to bridge this gap. The succession was deposited in a structurally controlled, shallow, macrotidal embayment and deposition was supplemented by fluvial processes but lacked wave influence. The succession contains two stacked, progradational parasequence sets bounded by regionally extensive flooding surfaces. Within this succession two main genetic elements are identified: non‐channelized tidal bars and tidal channels. Non‐channelized tidal bars comprise coarsening‐upward sandbodies, including large, downcurrent‐dipping accretion surfaces, sometimes capped by palaeosols indicating emergence. Tidal channels are preserved as single‐storey and multilateral bodies filled by: (i) laterally migrating, elongate tidal bars (inclined heterolithic strata, 5 to 25 m thick); (ii) forward‐facing lobate bars (sigmoidal heterolithic strata, up to 10 m thick); (iii) side bars displaying oblique to vertical accretion (4 to 7 m thick); or (iv) vertically‐accreting mud (1 to 4 m thick). Palaeocurrent data show that channels were swept by bidirectional tidal currents and typically were mutually evasive. Along‐strike variability defines a similar large‐scale architecture in both parasequence sets: a deeply scoured channel belt characterized by widespread inclined heterolithic strata is eroded from the parasequence‐set top, and flanked by stacked, non‐channelized tidal bars and smaller channelized bodies. The tide‐dominated delta is characterized by: (i) the regressive stratigraphic context; (ii) net‐progradational stratigraphic architecture within the succession; (iii) the absence of upward deepening trends and tidal ravinement surfaces; and (iv) architectural relations that demonstrate contemporaneous tidal distributary channel infill and tidal bar accretion at the delta front. The detailed facies analysis of this fine‐grained, tide‐dominated deltaic succession expands the range of depositional models available for the evaluation of ancient tidal successions, which are currently biased towards transgressive, valley‐confined estuarine and coarser grained deltaic depositional systems.  相似文献   

18.
塔里木盆地苏盖特布拉克地区下寒武统肖尔布拉克组发育较为典型的风暴岩。风暴沉积标志主要有冲刷充填构造、风暴砾屑层和丘状交错层理等。在野外实测和室内薄片观察基础上,依据风暴沉积物、沉积位置和沉积标志组合的不同,划分出5种风暴沉积序列。序列Ⅰ为mm级或cm级的递变纹层,截切深水微生物礁,为风暴浪基面以下的深水陆棚远源风暴浊流沉积;序列Ⅱ发育异地型风暴砾屑、粒序段、平行纹层段和水平层理黑色钙质页岩,为风暴浪基面与晴天浪基面之间的缓斜坡下部沉积;序列Ⅲ为风暴成因的生屑、砾屑与平行纹层、丘状纹层的组合,多出现在风暴浪基面与晴天浪基面之间的缓斜坡上部;序列Ⅳ以渠模与复合丘状交错层理的组合为特征,为水体较浅的晴天浪基面附近的沉积;序列Ⅴ由风暴砂砾屑及沉积充填构造、平行纹层段组成,上部单元为正常天气沉积的蓝细菌礁滩垮塌体,为晴天浪基面以上的台地边缘礁滩前缘沉积。风暴层序自下而上的沉积环境演化为深水陆棚→浅水陆棚缓斜坡下部→缓斜坡上部→台地边缘前缘,形成向上变浅沉积特征。风暴岩的发现和研究,对于塔里木早寒武世古纬度与古板块演化、古地理及沉积学研究具有重要意义。  相似文献   

19.
The Maastrichtian Patti Formation, which consists of shale - claystone and sandstone members, constitutes one of the three Upper Cretaceous lithostratigraphic units of the intracratonic southeastern Bida Basin, in central Nigeria. Well exposed outcrops of this formation were investigated at various locations around the confluence of the Niger and Benue Rivers. The lithostratigraphic sections were measured and their peculiar sedimentological features such as textures, physical and biogenic sedimentary structures, facies variations and associations were documented and used to interpret the depositional environments and develop a paleogeographic model. Some selected representative samples of the sedimentary depositional facies were also subjected to grain size analysis.Three shoreline sedimentary depositional facies composed of shoreface, tidal channel, and tidal marsh to coastal swamp facies were recognized in the study area. Continental sedimentary depositional facies such as fluvial channel, swamp, and overbank were also documented. The sandstones of the shoreface and tidal channel facies are medium- to coarse-grained, moderately sorted (standard deviation ranges from 0.45–1.28 averaging 0.72), and quartzarenitic. The fluvial channel sandstone facies are coarse- to very coarse-grained, mostly poorly sorted (standard deviation ranges from 0.6–1.56 averaging 1.17), and subarkosic. Typical sedimentary structures displayed by the shoreface and tidal channel facies include burrows, clay drapes, hummocky and herringbone cross stratifications, whereas the fluvial channel sandstone facies are dominated by massive and planar cross beddings. The tidal marsh to coastal swamp shales and ferruginised siltstone facies are fossiliferous and bioturbated, whereas the nonmarine swamp siltstones contain vegetal imprints and lignite interbeds. The overbank claystone facies are massive and kaolinitic.In the study area, a regressive to transgressive model is proposed for the Patti Formation. This model correlates with stratigraphically equivalent sediments of the Ajali and Mamu Formations in the adjacent Anambra Basin to a great extent.  相似文献   

20.
《Sedimentology》2018,65(6):2171-2201
In modern siliciclastic environments terrestrial and aquatic vegetation binds substrate, controls weathering and erosion rates, influences run‐off, sediment supply and subsequent depositional architecture. This study assesses the applicability of modern depositional models that are impacted by vascular vegetation, as analogues for ancient pre‐land plant systems. A review of pre‐Devonian published literature demonstrates a paucity of described tidal successions; this is possibly due to the application of modern analogues for interpreting the record when there is a lack of tidal indicators. This paucity suggests a need for revised models of tidal deposition that consider the different environmental conditions prior to land plant evolution. This study examines the Ordovician–Silurian Tumblagooda Sandstone, which is exposed in the gorge of the Murchison River and coastal cliffs near Kalbarri, Western Australia. The Tumblagooda Sandstone comprises stacked sand‐rich facies, with well‐preserved bedforms and trace fossils. Previous interpretations of the depositional setting have proposed from a mixed sheet‐braided fluvial and intertidal flats; to a continental setting dominated by fluvial and aeolian processes. An enigmatic element is the rarity of mud‐rich facies preserved in the succession. Outcrop logging, facies and petrographic analysis record dominantly shallow water conditions with episodes of emergence. Abundant ichnotaxa indicate that marine conditions and bi‐directional flow structures are evidence for an intertidal and subtidal depositional environment. A macrotidal estuary setting is proposed, with evidence for tidal channels and repeated fluvial incursions. Physical and biogenic sedimentary structures are indicative of tidal conditions. The lack of clay and silt resulted in the absence of flaser or lenticular‐bedding. Instead cyclic deposition of thin beds and foreset bioturbation replaced mud drape deposits. Higher energy conditions prevailed in the absence of the binding activity of plants in the terrestrial and marine realm. This is suggestive of different weathering processes and a reduction in the preservation of some sedimentary features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号