首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Examples of positive correlations between initial 87Sr/86Sr and δ18O have now been shown to be very common in igneous rock series. These data in general require some type of mixing of mantle-derived igneous rocks with high-18O, high-87Sr crustal metamorphic rocks that once resided on or near the Earth's surface, such as sedimentary rocks or hydrothermally altered volcanic rocks. Mixing that involves assimilation of country rocks by magmas, however, is not a simple two-end-member process; heat balance requires appreciable crystallization of cumulates. In such cases, the isotopic compositions may strongly reflect this open-system behavior and indicate the process of assimilation, whereas the major element chemical compositions of the contaminated magmas will be largely controlled by crystal-melt equilibria and crystallization paths fixed by multicomponent cotectics. A variety of oxygen and strontium isotope “mixing” curves were therefore calculated for this process of combined assimilation-fractional crystallization. The positions and characteristics of the resultant curves on δ18O-87Sr/86Sr diagrams markedly diverge from simple two end-member mixing relationships. Based on the above, model calculations can be crudely fitted to two igneous rock suites (Adamello and Roccamonfina in Italy), but the shapes of the calculated curves appear to rule out magmatic assimilation as an explanation for most δ18O-87Sr/86Sr correlations discovered so far, including all of those involving calc-alkaline granitic batholiths and andesitic volcanic rocks. The isotopic relationships in such magma types must be inherited from their source regions, presumably reflecting patterns that existed in the parent rocks (or magmas) prior to or during melting.  相似文献   

2.
The annular (6–8 km diameter) Golda Zuelva and Mboutou anorogenic complexes of North Cameroun are composed of a suite of alkaline plutonic rocks ranging from olivine gabbro to amphibole and biotite granite. For the Mboutou complex there are two overlapping centres. In the Golda Zuelva complex the plutonic rocks are associated with a later hawaiite to rhyolite volcanic suite. A Rb/Sr whole rock isochron gives an age of 66±3 Ma for the Golda Zuelva granites, with initial87Sr/86Sr ratio of 0.7020, and demonstrates that plutonism and volcanism were essentially contemporaneous and probably cogenetic. For Golda Zuelva and the north Mboutou centre18O/16O (5.6–6.2),87Sr/86Sr (0.7030–0.7045) and Pb isotopic ratios (207Pb/204Pb: 15.60–15.64) support a mantle origin for the initial magmas. Unlike Sr isotopes, the O isotopic ratios of the granitic end members at Golda Zuelva (~7.5) indicate crustal contamination. Post-magmatic alteration was not significant.For the younger south Mboutou centre the O-, Sr- and Pb-isotopic data indicate more extensive magma-crust interaction and in a different (higher level?) crustal environment with δ18O granite=3.3‰,87Sr/86Sr ratios up to 0.706 and Pb isotopic ratios more markedly displaced from the oceanic volcanic field. The low-18O granites probably record, at least in part, a magmatic process with subsequent minor post-magmatic alteration effects. The major and trace element systematics between the north and south Mboutou centres are directly comparable. The evolution of the magmas were dominated by fractional crystallisation and progressive crustal contamination processes.  相似文献   

3.
Andesites from the Peruvian Andes and the Banda arc of Indonesia are characterized by unusually high and variable 87Sr/86Sr ratios. The Banda arc samples, including two cordierite-bearing lavas from Ambon, show a clear positive correlation between 87Sr/86Sr and δ18O. The andesitic rocks have δ18O values that range from 5.6 to 9.2‰. Over that range in δ18O, 87Sr/86Sr increases from 0.7044 to 0.7095. The cordierite-bearing lavas have δ18O values of approximately 15‰ and 87Sr/86Sr ratios of approximately 0.717. The similarity between δ18O values and 87Sr/86Sr ratios in total rocks and separated plagioclase phenocrysts of the Banda arc samples indicates that the measured isotope ratios are primary and have not been affected by secondary, low-temperature post-eruptive alteration. The observed variation between O and Sr isotopic ratios can be modeled by two-component mixing in which one component is of mantle isotopic composition. As the crust beneath the Banda arc is probably oceanic, contamination of the manle component may have resulted from the subduction of either continentally-derived sediments or continental crust. Mixing calculations indicate that the contaminant could have an isotopic composition similar to that observed in the cordierite-bearing lavas.The Andean samples, despite petrographic evidence of freshness, exhibit whole-rock δ18O values significantly higher than those of corresponding plagioclase phenocryst separates, indicating extensive low-temperature post-eruptive alteration. The plagioclase mineral separates show a range of δ18O values between 6.9 and 7.9‰. The 87Sr/86Sr ratios of these same samples are, in most instances, not significantly different from those measured for the whole rock, thus signifying that the phenocrysts and groundmass were in isotopic equilibrium at the time of eruption. Unlike the lavas of the Banda arc, the Andean lavas show no strong positive correlation between 87Sr/86Sr ratios and δ18O values, but instead lower 87Sr/86Sr ratios appear to be associated with higher δ18O values. The δ18O and 87Sr/86Sr values of the Peruvian samples are both slightly higher than those of “normal” island arc volcanics.The small proportions of contaminant implied by the O isotope results seem to preclude continental crustal contamination as a primary cause of high 87Sr/86Sr ratios. The most plausible process that can explain both O and Sr isotope results is one in which sediments of continental origin are partially melted in the subduction zone. These melts rise into overlying mantle material and subsequently participate in the formation of calc-alkaline magmas.If the involvement of a sialic component in the genesis of andesitic magma occurs in the subduction zone, melting of that sialic material signifies temperatures of at least 750–800°C at the top of the subducted lithospheric slab at depths of approximately 150 km. The fact that contamination has apparently occurred in the Banda arc samples without producing any simple widespread correlations between Sr and O isotopic compositions on the one hand and major or trace element abundances on the other, shows that isotopic correlations, possibly including pseudo-isochrons, can be produced by mixing without producing trace element mixing correlations. Because O versus Sr isotope correlations are little affected by processes of partial melting of differentiation, they provide a direct means of testing whether Sr isotopic variations in volcanic rocks are of mantle origin or are due instead to mixing with sialic material.  相似文献   

4.
Pb and Sr isotopic ratios have been determined for tholeiitic shield-building, alkalic cap, and post-erosional stage lavas from Haleakala Crater. Pb isotopic compositions of the tholeiites overlap those of the alkalic cap lavas, although87Sr/86Sr ratios of these two suites are distinct. Alkalic cap and post-erosional lavas appear to be indistinguishable on the basis of Sr and Pb isotopic composition.Sr and Pb isotopic ratios of Haleakala post-shield-building lavas are positively correlated. Such a trend is previously undocumented for any suite of Hawaiian lavas and contrasts with the general negative correlation observed for data from Hawaiian tholeiites. These relations are consistent with a three-component petrogenetic mixing model. Specifically, it is proposed that magma batches at individual Hawaiian volcanoes formed by: (1) mixing of melts generated from mantle plumes containing two isotopically distinct mantle components (primitive vs. enriched), and (2) subsequent variable degrees of interaction between these plume melts and a third (MORB signature) mantle reservoir prior to their emplacement in a crustal magma chamber. These observations and inferences provide new constraints on physical models of Hawaiian magmatism. Based on observed temporal isotopic variations of Haleakala lavas, it is suggested that the ratio of enriched: primitive mantle components in the Hawaiian plume source decreases during the waning stages of alkalic volcanism. Over the same time interval, both decreasing melt production and protracted residence of ascending melts within the upper mantle contribute to a systematic increase in the ratio of depleted vs. plume component.  相似文献   

5.
Purico-Chascon is an acid igneous complex less than 1.5 Ma old rising to 5800 m in the North Chilean Andes, and consisting of andesite-dacite cones and dacite domes on an ignimbrite shield. The rocks are subdivided into two groups: those from Chascon appear to exhibit evidence for magma mixing with more basic material now preserved as xenoliths, whereas among those at Purico no xenoliths have been found.87Sr/86Sr=0.7095?0.7081 at Purico, 0.7079?0.7069 at Chascon, and 0.7061-0.7057 in the xenoliths from the Chascon lavas:143Nd/144Nd=0.51222?0.51236 overall. The Purico lavas are characterised by higher SiO2, Rb/Sr,87Sr/86Sr, and REE abundances, and lower Sr/Nd, Sr/Ba and143Nd/144Nd than most Andean igneous suites. There is no indication ofselective crustal contamination of Sr, or any systematic change in isotope ratios during differentiation. Nonetheless the trend of, for example, high Sr/Nd and Sr contents in rocks with low87Sr/86Sr (0.704, Ecuador) to low Sr/Nd and Sr and high SiO2 in rocks with87Sr/86Sr=0.7081?0.7095 at Purico is interpreted as a shift from subduction zone related magmatism to one with greater crustal affinity. The formation of the least evolved Purico lavas (~60%SiO2) is discussed in terms of bulk assimilation of crustal material, mixing between crustal- and mantle-derived magmas, and partial melting of pre-existing crust. Although such models are still extremely primitive, the simplest explanation of the observed chemical variations is that the Purico rocks evolved from parental magmas derived by crustal anatexies. Thermal considerations suggest that such late-stage crustal anatexis is a predictable response to crustal thickening which in the Andes is thought to have taken place during the Cenozoic.  相似文献   

6.
Oxygen isotope data are reported for 27 igneous rocks of Mesozoic to Quaternary age from the Central Andes. 26–29°S. The plutonic rocks, and most of the volcanics, have δ18O values between 6.2 and 8.3‰.The whole-rock δ18O values show a weak correlation with initial87Sr/86Sr data. This O-Sr array differs from documented trends for calc-alkaline plutonic suites from California, Scotland and northern Italy, but overlaps with data for volcanic and plutonic rocks from Ecuador, northern Chile and southern Perú.The oxygen isotope results indicate that the magmas evolved without significant contamination from supracrustal rocks (e.g., rocks that experienced18O enrichment during surficial weathering). The available O, Sr and Pb isotopic data for these rocks are best explained by magma generation in the upper mantle or lower crust. From the Late Mesozoic on, the87Sr/86Sr values were modified at depth by isotopic exchange between the magma and a continually thickening crust of plutonic rocks of Late Precambrian to early Mesozoic age.  相似文献   

7.
Neodymium isotope and REE analyses of recent volcanic rocks and spinel lherzolite nodules from the Afar area are reported. The143Nd/144Nd ratios of the volcanic rocks range from 0.51286 to 0.51304, similar to the range recorded from Iceland. However, the87Sr/86Sr ratios display a distinctly greater range (0.70328–0.70410) than those reported from the primitive rocks of Iceland. Whole rock samples and mineral separates from the spinel lherzolite nodules exhibit uniform143Nd/144Nd ratios (ca. 0.5129) but varied87Sr/86Sr ratios in the range 0.70427–0.70528.The SrNd isotope variations suggest that the volcanic rocks may have been produced by mixing between two reservoirs with distinct isotopic compositions. Two possible magma reservoirs in this area are the source which produced the “MORB-type” volcanics in the Red Sea and Gulf of Aden and the anomalous source represented by the nodule suite. The isotopic composition of the volcanics is compatible with mixing between these two reservoirs.It is shown that the anomalous source with a high87Sr/86Sr ratio cannot have been produced by simple processes of partial melting and mixing within normal mantle. Instead the high87Sr/86Sr is equated with a fluid phase. A primitive cognate fluid, subducted seawater or altered oceanic lithosphere may have been responsible for the generation of the source with a high87Sr/86Sr ratio.  相似文献   

8.
New Pb, Sr and O isotopic analyses of rocks from the Skaergard intrusion indicate the following: (1) initial87Sr/86Sr of the gabbroic magma was less than or equal to 0.7041; (2) limited contamination of magma with crustal Sr and Pb may have occurred in a deep reservoir below the presently exposed parts of the intrusion; (3) marked crustal contamination occurred at high level in marginal border group rocks, but these rocks effectively shielded the main magma body from further interaction with country rock gneisses; (4) subsolidus interaction between Skaergard gabbros and hydrothermal fluids modified δ18O values but had little effect on Sr and perhaps Pb isotopic ratios; (5) late-stage melanogranophyres may be comagmatic with the Skaergard magma, but silicic granophyres are not; (6) silicic granophyres contain large and varied proportions of crustal Sr and Pb; some may be largely anatectic melts derived from the deep crust whereas others may represent mixing of such anatectic melts with late-stage differentiated liquids of the Skaergard intrusion (e.g. Sydtoppen sill).  相似文献   

9.
The Cenozoic volcanic rocks of the southern Andes are characterized by low 87Sr/86Sr ratios (0.7040–0.7045), which are consistent with an origin in the downgoing slab of oceanic lithosphere or the overlying mantle. These values are distinctly lower than those from corresponding rocks of the central Andes.The calc-alkaline rocks of the central Andes exhibit higher Sr isotopic values (0.705–0.713) and variable Rb/Sr ratios. Different explanations are possible for this behaviour as well as for the positive correlation between 87Sr/86Sr and Rb/Sr expressed in an apparent isochron of 380 ± 50 m.y. It is postulated that these magmas result from a mixing process between a primary magma with basaltic affinities and crustal material of relatively young age.A model is proposed for the generation of the “andesitic” magmas of the central Andes by which crustal rocks of the upper part of the crust are added to the base of the crust by an accretionary process at the margin of the continent. Melts from these upper crustal rocks act as contaminants in “andesitic” magmas.The role of crustal material is still more significant in the generation of the ignimbritic magmas; they are considered to result from a two-stage melting process by which igneous rocks, belonging to a former stage of development of the Andes, are engulfed in the subduction zone, where they melt.  相似文献   

10.
Cenozoic volcanism in the Great Basin is characterized by an outward migration of volcanic centers with time from a centrally located core region, a gradational decrease in the initial Sr87/Sr86 ratio with decreasing age and increasing distance from the core, and a progressive change from calc-alkalic core rocks to more alkalic basin margin rocks. Generally each volcanic center erupted copious silicic ignimbrites followed by small amounts of basalt and andesite. The Sr82/Sr86 ratio for old core rocks is about 0.709 and the ratio for young basin margin rocks is about 0.705. Spatially and temporally related silicic and mafic suites have essentially the same Sr87/Sr86 ratios. The locus of older volcanism of the core region was the intersection of a north-south trending axis of crustal extension and high heat flow with the northeast trending relic thermal ridge of the Mesozoic metamorphic hinterland of the Sevier Orogenic Belt. Derivation of the Great Basin magmas directly from mantle with modification by crustal contamination seems unlikely. Initial melting of lower crustal rocks probably occurred as a response to decrease in confining pressure related to crustal extension. Volcanism was probably also a consequence of the regional increase in the geothermal gradient that is now responsible for the high heat flow of the Basin and Range Province. High Sr isotopic ratios of the older core volcanic rocks suggests that conditions suitable for the production of silicic magmas by partial fusion of the crust reached higher levels within the crust during initial volcanism than during production of later magmas with lower isotopic ratios and more alkaline chemistry. As the Great Basin became increasingly attenuated, progressively lower portions of the crust along basin margins were exposed to conditions suitable for magma genesis. The core region became exhausted in low temperature melting components, and volcanism ceased in the core before nearby areas had completed the silicic-mafic eruption cycle leading to their own exhaustion of crustal magma sources.  相似文献   

11.
The Bishop Tuff represents a single eruption of chemically zoned rhyolitic magma. Six whole rock samples spanning the compositional and temperature range yield initial87Sr/86Sr of 0.7060–0.7092 andδ18O of 5.9–10.3‰. Six constituent sanidines yield smaller ranges of initial87Sr/86Sr of 0.7061–0.7069 andδ18O of 6.7–7.9. In contrast143Nd/144Nd ratios for the six whole rocks and two constituent magnetites exhibit negligible variation with a mean of0.51258 ± 1. These data are used to show that the phenocrysts were precipitated from an already chemically zoned liquid, that the zoning process involved negligible assimilation of, or exchange with, country rocks and that the extreme Sr and O isotopic disequilibria are probably the result of post-eruptive interaction with meteoric water. The parent magma had?Nd = ?0.9, ?Sr = +23 andδ18O = 7‰ and was formed from mantle-derived magmas and/or melts of lower crustal rocks isotopically similar to parts of the Sierra Nevada Batholith.  相似文献   

12.
Abstract Rb–Sr and Sm–Nd isochron ages were determined for whole rocks and mineral separates of hornblende‐gabbros and related metadiabases and quartz‐diorite from Shodoshima, Awashima and Kajishima islands in the Ryoke plutono‐metamorphic belt of the Setouchi area, Southwest Japan. The Rb–Sr and Sm–Nd whole‐rock‐mineral isochron ages for six samples range from 75 to 110 Ma and 200–220 Ma, respectively. The former ages are comparable with the Rb–Sr whole‐rock isochron ages reported from neighboring Ryoke granitic rocks and are thus due to thermal metamorphism caused by the granitic intrusions. On the contrary, the older ages suggest the time of formation of the gabbroic and related rocks. The initial 87Sr/86Sr and 143Nd/144Nd ratios of the gabbroic rocks (0.7070–0.7078 and 0.51217–0.51231 at 210 Ma, respectively) are comparable with those of neighboring late Cretaceous granites and lower crustal granulite xenoliths from Cenozoic andesites in this region. Because the gabbroic rocks are considered to be fragments of the lower crustal materials interlayered in the granulitic lower crust, their isotopic signature has been inherited from an enriched mantle source or, less likely, acquired through interaction with the lower crustal materials. The Sr and Nd isotopic and petrologic evidence leads to a plausible conclusion that the gabbroic rocks have formed as cumulates from hydrous mafic magmas of light rare earth element‐rich (Sm/Nd < 0.233) and enriched isotopic (?Sr > 0 and ?Nd < 0) signature, which possibly generated around 220–200 Ma by partial melting of an upper mantle. We further conclude that they are fragments of refractory material from the lower crust caught up as xenoblocks by granitic magmas, the latter having been generated by partial melting of granulitic lower crustal material around 100 Ma.  相似文献   

13.
Equations describing trace element and isotopic evolution in a magma chamber affected simultaneously by fractional crystallization and wallrock assimilation are presented for a model where the mass assimilation rate(?a) is an arbitrary fraction(r) of the fractional crystallization rate(?c). The equations also apply to recharge of a crystallizing magma. Relatively simple analytical expressions are obtained for both radiogenic isotope variations (Nd, Sr, Pb) and stable isotopes (O, H) including the effects of mass-dependent fractionation. Forr = 1 a modified zone refining equation is obtained for trace element concentrations, but forr < 1 behavior is a combination of zone refining and fractional crystallization. Asr → ∞, simple binary mixing is approached. The isotopic and trace element “mixing” trends generated can be much different from binary mixing, especially forr < 1. The model provides the basis for a more general approach to the problem of wallrock assimilation, and shows that binary mixing models are insufficient to rule out crustal assimilation as a cause of some of the isotopic variations observed in igneous rocks, including cases where clustering of isotopic values occurs partway between presumed endmember values. The coupled assimilation-fractional crystallization model provides an explanation for certain trace element and isotopic properties of continental margin orogenic magmas (e.g. Sr concentration versus87Sr/86Sr) which had previously been interpreted as evidence against assimilation. So-called “pseudoisochrons” can be understood as artifacts of contamination using this model. A significant correlation exists between country rock age and low143Nd/144Nd ratios in continental igneous rocks, clearly suggestive that crustal contamination is generally important.  相似文献   

14.
The isotopic compositions of Sr, Nd and Pb together with the abundances of Rb, Sr, U and Pb have been determined for mafic and felsic potassic alkaline rocks from the young Virunga volcanic field in the western branch of the East African rift system.87Sr/86Sr varies from 0.7055 to 0.7082 in the mafic rocks and from 0.7073 to 0.7103 in the felsic rocks. The latter all come from one volcano, Sabinyo. Sabinyo rocks have negative εNdvalues ofεNd = ?10. Nd and Sr isotopic variations in the basic potassic rocks are correlated and plot between Sabinyo and previously reported [1] compositions (εNd = +2.5;87Sr/86Sr≈ 0.7047) for Nyiragongo nephelinites. The Pb isotopic compositions for Sabinyo rocks are nearly uniform and average206Pb/204Pb≈ 19.4,207Pb/204Pb= 15.79–15.84,208Pb/204Pb≈ 41.2. The basic potassic rocks have similar206Pb/204Pb values but range in207Pb/204Pb and208Pb/204Pb from the Sabinyo values to less radiogenic compositions.Excellent correlations of87Sr/86Sr with Rb/Sr, 1/Sr and207Pb/206Pb for Sabinyo rocks suggest these to be members of a hybrid magma series. However, the nearly uniform Pb compositions for this series points to radiogenic growth of87Sr in the magma source region following an event which homogenized the isotopic compositions but not Rb/Sr. The Rb-Sr age derived from the erupted Sabinyo isochron-mixing line is consistent with the ~500 Myr Pb-Pb age from Nyiragongo [1], which suggests that this event affected all Virunga magma sources. The event can again be traced in the Pb-Pb, Pb-Sr and Nd-Sr isotopic correlations for all Virunga rocks, including Nyiragongo, when allowances are made for radiogenic growth subsequent to this mixing or incomplete homogenization event. Inferred parent/daughter element fractionations point to a metasomatic event during which a mantle fluid invaded two lithospheric reservoirs: a +εNd reservoir sampled by the Nyiragongo nephelinites and suggested to be the subcontinental mantle and a ?εNd reservoir sampled by the mafic and felsic potasssic volcanism. Whether this ?εNd reservoir is the crust, continental crustal material in the mantle or anomalous mantle cannot be decided from the data. The simplest answer, that this reservoir is the continental crust, seems to be at variance with experimental evidence suggesting a subcrustal origin for basic potassic magmas. Partial melting of the ancient metasomatised lithospheric domains and ensuing volcanism seems to be entirely a response to decompression and rising geotherms during rifting and thinning of the lithosphere.  相似文献   

15.
16.
87Sr/86Sr ratios of 15 samples of basalt dredged from Loihi Seamount range from 0.70334 to 0.70368. The basalt types range from tholeiite to basanite in composition and can be divided into six groups on the basis of abundances of K2O, Na2O, Rb and Sr and 87Sr/86Sr ratio. The isotopic data require that the various basalt types be derived from source regions differing in Sr isotopic composition. The Loihi basalts may be produced by mixing of isotopically distinct sources, but the tholeiites and alkalic basalts from Loihi do not show a well-developed inverse trend between Rb/Sr and 87Sr/86Sr that is characteristic of the later stages of Hawaiian volcanoes such as Haleakala and Koolau.  相似文献   

17.
The Katla subglacial caldera is one of the most active and hazardous volcanic centres in Iceland as revealed by its historical volcanic activity and recent seismic unrest and magma accumulation. A petrologic and geochemical study was carried out on a suite of mid-Pleistocene to Recent lavas and pyroclastic rocks originated from the caldera. The whole series is characterised by a bimodal composition, including Fe-Ti transitional alkali basalts and mildly alkalic rhyolites. Variations in trace-element composition amongst the basalts and rhyolites show that their chemical differentiation was mainly controlled by fractional crystallisation and possible assimilation. The petrology and chemistry of the few intermediate extrusive rocks show that they were derived from magma mingling or hybridisation. The absence of extrusive rocks of true intermediate magmatic composition and the occurrence of amphibole-bearing felsic xenoliths support the hypothesis of partial melting of the hydrated basalt crust as the main process leading to the generation of rhyolites. The 143Nd/144Nd and 87Sr/86Sr values of Katla volcanic rocks fit the general isotopic array defined by late Quaternary to Recent lavas from Iceland. A few rock specimens are distinguished by low 143Nd/144Nd values suggesting assimilation and mixing of much older crustal material. Despite their similar whole-rock chemical compositions, the postglacial rhyolitic extrusives differ from the felsic xenoliths by their glass composition and the absence of amphibole. This, together with the general chemical trend of volcanic glasses, indicates that the postglacial rhyolitic extrusives were probably derived by a process involving late reheating and partial melting of crustal material by intrusion of basaltic magmas.  相似文献   

18.
Two groups of rhyolites have been recognized at San Vincenzo (Tuscany, Italy). Group A rhyolites are characterized by plagioclase, quartz, biotite, sanidine and cordierite mineral assemblages. They show constant MgO and variable CaO and Na2O contents. Initial87Sr/86Sr ratios in group A samples range between 0.71950 and 0.72535, whereas the Nd isotopic compositions are relatively constant (0.51215–0.51222). Group B rhyolites are characterized by orthopyroxene and clinopyroxene as additional minerals, and show textural, mineralogical and chemical evidence of interaction with more mafic magmas. The Sr and Nd isotopic ratios range between 0.71283–0.71542 and 0.51224–0.51227 respectively. Magmatic inclusions of variable size (1 mm to 10 cm) were found in groups B rhyolites. These inclusions consist mainly of diopsidic clinopyroxene and minor olivine and biotite. They are latitic in composition and represent blobs of hybrid intermediate magmas entrained in the rhyolitic melts. These magmatic inclusions have relatively high Sr contents (996–1529 ppm) and Sr and Nd isotope-ratios of 0.70807–0.70830 and 0.51245–0.51252 respectively.87Sr/87Sr data on minerals separated from both group A and B rhyolites and magmatic inclusions reveal strong isotopic disequilibria due to the presence of both restitic and newly crystallized phases in group A rhyolites and due to interaction of rhyolites with a mantle-de-rived magma in group B rhyolites. Isotopic data on whole rocks and minerals allow us to interpret the group A rhyolites as representative of different degrees of melting of an isotopically fairly homogeneous pelitic source; conversely, group B rhyolites underwent interactions with a mantle-derived magma. The crustal source as inferred from isotopic systematics would be characterized by87Sr/86Sr and143Nd/144Nd ratios close to 0.7194 and 0.51216 respectively. The sub-crustal magma would have Sr isotopic composition close to 0.7077 and a143Nd/144Nd ratio greater than or equal to 0.51252. These isotopic features are different from those reported for the parental magmas postulated for Vulsini and Alban Hills in the nearby Roman Magmatic Province, and are similar to those of the Vesuvius and Ischia magmas.  相似文献   

19.
The Pampean Ranges of northwest Argentina are a basin-and-range tectonic province with a late Precambrian to Paleozoic basement and extensive Miocene-Recent calc-alkaline volcanism. The volcanoes include the large resurgent Cerro Galan caldera, and Recent scoria cones and lava flows. Miocene-Recent volcanic rocks of basalt to dacite composition from the Cerro Galan area exhibit a range of Rb/Sr ratios of 0.043–1.092 and initial87Sr/86Sr ratios of 0.7057–0.7115 with a clear positive correlation between87Sr/86Sr and87Rb/86Sr, indicating an apparent age of ca. 130 Ma. This relationship is interpreted to indicate that the Sr isotope variation in the Cerro Galan volcanic rocks results from mixing of a mantle-derived component with low87Sr/86Sr (<0.7057) and high Sr (>700 ppm) with a crustal component characterized by higher87Sr/86Sr (>0.7115) and lower Sr (<240 ppm). It is concluded that the mixing is best explained as a result of a small degree of selective crustal Sr contamination (ca. 10%) of a range of subsequently erupted magmas produced largely by fractional crystallization within the continental crust. We propose that the mantle-derived end-member is derived by partial melting of sub-Andean mantle with an87Sr/86Sr ratio of ca. 0.704, and that such an Sr isotope ratio characterizes the source region for calc-alkaline volcanic rocks throughout the Andes.  相似文献   

20.
Whole‐rock geochemical and Sr–Nd isotopic data are presented for late Miocene volcanic rocks associated with the Chah Zard epithermal Au–Ag deposit in the Urumieh‐Dokhtar Magmatic Arc (UDMA), Iran, to investigate the magma source, petrogenesis and the geodynamic evolution of the study area. The Chah Zard andesitic to rhyolitic volcanic rocks are characterized by significant Large Ion Lithophile Element (LILE) and Light Rare Earth Element (LREE) enrichment coupled with High Field Strength Element (HFSE) depletion. Our geochemical data indicate an adakitic‐like signature for the volcanic rocks (e.g. SiO2 > 62 wt%, Al2O3 > 15 wt%, MgO < 1.5 wt%, Sr/Y > 70, La/Yb > 35, Yb < 1 ppm, and Y < 18 ppm, and no significant Eu anomalies), distinguishing them from the other volcanic rocks of the UDMA. The Chah Zard volcanic rocks have similar Sr and Nd isotopic compositions; the 87Sr/86Sr(i) ratios range from 0.704 902 to 0.705 093 and the εNd(i) values are from +2.33 to +2.70. However, the rhyolite porphyry represents the final stage of magmatism in the area and has a relatively high 87Sr/86Sr ratio (0.705 811). Our data suggest that the andesitic magmas are from a heterogeneous source and likely to result from partial melting of a metasomatized mantle wedge associated with a mixture of subducted oceanic crust and sediment. These melts subsequently underwent fractional crystallization along with minor amounts of crustal assimilation. Our study is consistent with the model that the volcanic host rocks to epithermal gold mineralization in the UDMA are genetically related to late Miocene Neo‐Tethyan slab break‐off beneath Central Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号