首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An isogeometric analysis (IGA) is introduced to obtain a head-based solution to Richards equation for unsaturated flow in porous media. IGA uses Non-Uniform Rational B-Spline (NURBS) as shape functions, which provide a higher level of inter-element continuity in comparison with Lagrange shape functions. The semi-discrete nonlinear algebraic equations are solved using a combination of implicit backward-Euler time-integration and Newton-Raphson scheme. The time-step size is adaptively controlled based on the rate of changes in the pore pressure. The results from the proposed formulation are compared and verified against an analytical solution for one-dimensional transient unsaturated flow in a homogenous soil column. The proposed method is then applied to four more complex problems including two-dimensional unsaturated flow in a two-layered soil and a semi-circular furrow. The test cases in two-layered soil system involve sharp variations in the pressure gradient at the intersection of the two media, where the pore water pressure abruptly changes. It is shown that the proposed head-based IGA is able to properly simulate changes in pore pressure at the soils interface using fewer degrees of freedom and higher orders of approximation in comparison with the conventional finite element method.  相似文献   

2.
In this paper a new methodology to simulate saturated soils subjected to dynamic loadings under large deformation regime (locally up to 40% in equivalent plastic strain) is presented. The coupling between solid and fluid phases is solved through the complete formulation of the Biot’s equations. The additional novelty lies in the employment of an explicit time integration scheme of the \(u-w\) (solid displacement–relative fluid displacement) formulation which enables us to take advantage of such explicit schemes. Shape functions based on the principle of maximum entropy implemented in the framework of Optimal Transportation Meshfree schemes are utilized to solve both elastic and plastic problems.  相似文献   

3.
Unsaturated flow problems in porous media often described by Richards’ equation are of great importance in many engineering applications. In this contribution, we propose a new numerical flow approach based on isogeometric analysis (IGA) for modeling the unsaturated flow problems. The non-uniform rational B-spline (NURBS) basis is utilized for spatial discretization whereas the stable implicit backward Euler method for time discretization. The nonlinear Richards’ equation is iteratively solved with the aid of the Newton–Raphson scheme. Owing to some desirable features of an efficient numerical flow approach, major advantages of the present formulation involve: (a) numerical oscillation at the wetting front can be avoided or facilitated, simply by using either an h-refinement or a lumped mass matrix technique; (b) higher-order exactness can be obtained due to the nature of the IGA features; (c) the approach is straightforward to implement and it does not need any transformation, e.g., Kirchhoff transformation or filter algorithm; and (d) in contrast to the Picard iteration scheme, which forms linear convergences, the proposed approach can however yield quadratic convergences by using the Newton–Raphson method for solving resultant nonlinear equations. Numerical model validation is analyzed by solving a three-dimensional unsaturated flow problem in soil, and its derived results are verified against analytical solutions. Numerical applications are then studied by considering three extensive examples with simple and complex configurations to further show the accuracy and applicability of the present IGA.  相似文献   

4.
A thermodynamically consistent extension of the constitutive equations of saturated soils to unsaturated conditions is often worked out through the use of a unique ‘effective’ interstitial pressure, accounting equivalently for the pressures of the saturating fluids acting separately on the internal solid walls of the pore network. The natural candidate for this effective interstitial pressure is the space averaged interstitial pressure. In contrast experimental observations have revealed that, at least, a pair of stress state variables was needed for a suitable framework to describe stress–strain–strength behaviour of unsaturated soils. The thermodynamics analysis presented here shows that the most general approach to the behaviour of unsaturated soils actually requires three stress state variables: the suction, which is required to describe the invasion of the soil by the liquid water phase through the retention curve; two effective stresses, which are required to describe the soil deformation at water saturation held constant. However a simple assumption related to the plastic flow rule leads to the final need of only a Bishop-like effective stress to formulate the stress–strain constitutive equation describing the soil deformation, while the retention properties still involve the suction and possibly the deformation. Commonly accepted models for unsaturated soils, that is the Barcelona Basic Model and any approach based on the use of an effective averaged interstitial pressure, appear as special extreme cases of the thermodynamic formulation proposed here.  相似文献   

5.
An isogeometric analysis (IGA) based numerical model is presented for simulation of thermo-hydro-mechanically (THM) coupled processes in ground freezing. The momentum, mass and energy conservation equations are derived based on porous media theory. The governing equations are supplemented by a saturation curve, a hydraulic conductivity model and constitutive equations. Variational and Galerkin formulation results in a highly nonlinear system of equations, which are solved using Newton-Raphson iteration. Numerical examples on isothermal consolidation in plane strain, one-dimensional freezing and heave due to a chilled pipeline are presented. Reasonably good agreements were observed between the IGA based heave simulations and experimental results.  相似文献   

6.
This paper presents a complete finite‐element treatment for unsaturated soil problems. A new formulation of general constitutive equations for unsaturated soils is first presented. In the incremental stress–strain equations, the suction or the pore water pressure is treated as a strain variable instead of a stress variable. The global governing equations are derived in terms of displacement and pore water pressure. The discretized governing equations are then solved using an adaptive time‐stepping scheme which automatically adjusts the time‐step size so that the integration error in the displacements and pore pressures lies close to a specified tolerance. The non‐linearity caused by suction‐dependent plastic yielding, suction‐dependent degree of saturation, and saturation‐dependent permeability is treated in a similar way to the elastoplasticity. An explicit stress integration scheme is used to solve the constitutive stress–strain equations at the Gauss point level. The elastoplastic stiffness matrix in the Euler solution is evaluated using the suction as well as the stresses and hardening parameters at the start of the subincrement, while the elastoplastic matrix in the modified Euler solution is evaluated using the suction at the end of the subincrement. In addition, when applying subincrementation, the same rate is applied to all strain components including the suction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
In unsaturated soil modelling, collapse is viewed as an ordinary response, whereas swelling upon an increase of moisture is considered as a special class of problems. However, an investigation based on fundamentals of plasticity indicates that the two seemingly opposite responses are unified within the same ordinary elastoplasticity framework. In fact, similar to the well-known contractive and dilative responses in the critical state framework, the collapsive and expansive responses of unsaturated soils differ only in the sign of the dissipative hydrostatic stress. For a soil with a low applied net stress, the dissipative mean normal stress during wetting is likely to be negative, and the plastic volumetric strain is kept negative (swelling) as well, such that the dissipation is always positive, complying with the second law of thermodynamics. When the applied net stress is high, the dissipative mean normal stress may turn to be positive, resulting in a positive plastic volumetric strain (collapse). This paper explains the concept of this ‘ordinary’ modelling framework, and uses a bounding surface triaxial model to demonstrate the concept. The numerical results are compared with experimental observations reported in the literature.  相似文献   

8.
The Barcelona basic model cannot predict the mechanical behaviour of unsaturated expansive soils, whereas the Barcelona expansive model (BExM) can only predict the stress–strain behaviour of unsaturated expansive soils without the water‐retention behaviour being incorporated. Moreover, the micro‐parameters and the coupling function between micro‐structural and macro‐structural strains in the BExM are difficult to determine. Experimental data show that the compression curves for non‐expansive soils under constant suctions are shifted towards higher void ratios with increasing suction, whereas the opposite is true for expansive soils. According to the observed water‐retention behaviour of unsaturated expansive soils, the air‐entry value increases with density, and the relationship between the degree of saturation and void ratio is linear at constant suction. According to the above observation, an elastoplastic constitutive model is developed for predicting the hydraulic and mechanical behaviour of unsaturated expansive soils, based on the existing hydro‐mechanical model for non‐expansive unsaturated soil. The model takes into consideration the effect of degree of saturation on the mechanical behaviour and that of void ratio on the water‐retention behaviour. The concept of equivalent void ratio curve is introduced to distinguish the plastic potential curve from the yield curve. The model predictions are compared with the test results of an unsaturated expansive soil, including swelling tests under constant net stress, isotropic compression tests and triaxial shear tests under constant suction. The comparison indicates that the model offers great potential for quantitatively predicting the hydraulic and mechanical behaviour of unsaturated expansive soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A comprehensive framework to define the constitutive behaviour of unsaturated soils is developed within the theory of mixtures applied to three‐phase porous media. Each of the three phases is endowed with its own strain and stress. Elastic and elastic–plastic constitutive equations are developed. Particular emphasis is laid on the interactions between the phases both in the elastic and plastic regimes. Nevertheless, the clear structure of the constitutive equations requires a minimal number of material parameters. Their identification is provided: in particular, it incorporates directly the soil–water characteristic curve. Crucial to the formulation is an appropriate definition of the effective stress. The coupled influence of this effective stress and of suction makes it possible to describe qualitatively many of the characteristic features observed in experiments, e.g. for normally consolidated soils, a plastic behaviour up to air entry followed by an elastic behaviour at increasing suctions, and, on the way back, an elastic behaviour, unless compression is applied in which case plastic collapse occurs. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
The effective stress principle has been efficiently applied to saturated soils in the soil mechanics and geotechnical engineering practice; however, its applicability to unsaturated soils is still under debate. The appropriate selection of stress state variables is essential for the construction of constitutive models for unsaturated soils. Owing to the complexity of unsaturated soils, it is difficult to determine the deformation and strength behaviors of unsaturated soils uniquely with the previous single‐effective‐stress variable theory and two‐effective‐stress‐variable theory in all the situations. In this paper, based on the porous media theory, the specific expression of work is proposed, and the effective stress of unsaturated soils conjugated with the displacement of the soil skeleton is further derived. In the derived work and energy balance equations, the energy dissipation in unsaturated soils is taken into account. According to the derived work and energy balance equations, all of the three generalized stresses and the conjugated strains have effects on the deformation of unsaturated soils. For considering these effects, a principle of generalized effective stress to describe the behaviors of unsaturated soils is proposed. The proposed principle of generalized effective stress may reduce to the previous effective stress theory of single‐stress variable or the two‐stress variables under certain conditions. This principle provides a helpful reference for the development of constitutive models for unsaturated soils. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A double structure generalized plasticity model for expansive materials   总被引:1,自引:0,他引:1  
The constitutive model presented in this work is built on a conceptual approach for unsaturated expansive soils in which the fundamental characteristic is the explicit consideration of two pore levels. The distinction between the macro‐ and microstructure provides the opportunity to take into account the dominant phenomena that affect the behaviour of each structural level and the main interactions between them. The microstructure is associated with the active clay minerals, while the macrostructure accounts for the larger‐scale structure of the material. The model has been formulated considering concepts of classical and generalized plasticity theories. The generalized stress–strain rate equations are derived within a framework of multidissipative materials, which provides a consistent and formal approach when there are several sources of energy dissipation. The model is formulated in the space of stresses, suction and temperature; and has been implemented in a finite element code. The approach has been applied to explaining and reproducing the behaviour of expansive soils in a variety of problems for which experimental data are available. Three application cases are presented in this paper. Of particular interest is the modelling of an accidental overheating, that took place in a large‐scale heating test. This test allows the capabilities of the model to be checked when a complex thermo‐hydro‐mechanical (THM) path is followed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A simple thermohydromechanical (THM) constitutive model for unsaturated soils is described. The effective stress concept is extended to unsaturated soils with the introduction of a capillary stress. This capillary stress is based on a microstructural model and calculated from attraction forces due to water menisci. The effect of desaturation and the thermal softening phenomenon are modelled with a minimal number of material parameters and based on existing models. THM process is qualitatively and quantitatively modelled by using experimental data and previous work to show the application of the model, including a drying path under mechanical stress with transition between saturated and unsaturated states, a heating path under constant suction and a deviatoric path with imposed suction and temperature. The results show that the present model can simulate the THM behaviour in unsaturated soils in a satisfactory way.  相似文献   

13.
岩石试件端面摩擦效应数值模拟研究   总被引:3,自引:0,他引:3  
试件端面摩擦效应直接影响试件内的塑性等效应变、侧向位移的分布和单元应力应变曲线。本文运用ANSYS中的接触单元模拟了平面应变状态下端面摩擦效应对塑性等效应变、侧向位移和单元应力应变曲线的影响,得到了不同摩擦系数时塑性等效应变及侧向位移的渐进变化形式。当接触面摩擦较小时,塑性等效应变图案为上下两个X形网络,侧向位移上下分布均匀;当接触面摩擦增大时,塑性等效应变网络向中部靠拢并且明显增大,侧向位移上下分布不均匀,中部较上下端面位移大;当试件端面侧向位移被限制,即摩擦力很大时,塑性等效应变网络变为一个X形局部化带,侧向位移分布更加不均匀,中部明显隆起。  相似文献   

14.
A simple thermo‐hydro‐mechanical (THM) constitutive model for unsaturated soils is described. The effective stress concept is extended to unsaturated soils with the introduction of a capillary stress. This capillary stress is based on a microstructural model and calculated from attraction forces due to water menisci. The effect of desaturation and the thermal softening phenomenon are modelled with a minimal number of material parameters and based on existing models. THM process is qualitatively and quantitatively modelled by using experimental data and previous work to show the application of the model, including a drying path under mechanical stress with transition between saturated and unsaturated states, a heating path under constant suction and a deviatoric path with imposed suction and temperature. The results show that the present model can simulate the THM behaviour in unsaturated soils in a satisfactory way. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Unsaturated soils are three‐phase porous media consisting of a solid skeleton, pore liquid, and pore gas. The coupled mathematical equations representing the dynamics of unsaturated soils can be derived based on the theory of mixtures. Solution of these fully coupled governing equations for unsaturated soils requires tremendous computational resources because three individual phases and interactions between them have to be taken into account. The fully coupled equations governing the dynamics of unsaturated soils are first presented and then two finite element formulations of the governing equations are presented and implemented within a finite element framework. The finite element implementation of all the terms in the governing equations results in the complete formulation and is solved for the first time in this paper. A computationally efficient reduced formulation is obtained by neglecting the relative accelerations and velocities of liquid and gas in the governing equations to investigate the effects of fluid flow in the overall behavior. These two formulations are used to simulate the behavior of an unsaturated silty soil embankment subjected to base shaking and compared with the results from another commonly used partially reduced formulation that neglects the relative accelerations, but takes into account the relative velocities. The stress–strain response of the solid skeleton is modeled as both elastic and elastoplastic in all three analyses. In the elastic analyses no permanent deformations are predicted and the displacements of the partially reduced formulation are in between those of the reduced and complete formulations. The frequency of vibration of the complete formulation in the elastic analysis is closer to the predominant frequency of the base motion and smaller than the frequencies of vibration of the other two analyses. Proper consideration of damping due to fluid flows in the complete formulation is the likely reason for this difference. Permanent deformations are predicted by all three formulations for the elastoplastic analyses. The complete formulation, however, predicts reductions in pore fluid pressures following strong shaking resulting in somewhat smaller displacements than the reduced formulation. The results from complete and reduced formulations are otherwise comparable for elastoplastic analyses. For the elastoplastic analysis, the partially reduced formulation leads to stiffer response than the other two formulations. The likely reason for this stiffer response in the elastoplastic analysis is the interpolation scheme (linear displacement and linear pore fluid pressures) used in the finite element implementation of the partially reduced formulation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A coupled elastic–plastic finite element analysis based on simplified consolidation theory for unsaturated soils is used to investigate the coupling processes of water infiltration and deformation. By introducing a reduced suction and an elastic–plastic constitutive equation for the soil skeleton, the simplified consolidation theory for unsaturated soils is incorporated into an in-house finite element code. Using the proposed numerical method, the generation of pore water pressure and development of deformation can be simulated under evaporation or rainfall infiltration conditions. Through a parametric study and comparison with the test results, the proposed method is found to describe well the characteristics during water evaporation/infiltration into unsaturated soils. Finally, an unsaturated soil slope with water infiltration is analyzed in detail to investigate the development of the displacement and generation of pore water pressure.  相似文献   

17.
Rotisciani  G. M.  Desideri  A.  Amorosi  A. 《Acta Geotechnica》2021,16(11):3355-3380

The paper presents a new single-surface elasto-plastic model for unsaturated cemented soils, formulated within the critical state soil mechanics framework, which should be considered as an extension to unsaturated conditions of a recently proposed constitutive law for saturated structured soils. The model has been developed with the main purpose of inspecting the mechanical instabilities induced in natural soils by bond degradation resulting from the accumulation of plastic strains and/or the changes in pore saturation. At this scope, the constitutive equations are used to simulate typical geotechnical testing conditions, whose results are then analysed in light of the controllability theory. The results of triaxial tests on an ideal fully saturated cemented soil and on the corresponding unsaturated uncemented one are first discussed, aiming at detecting the evidence of potentially unstable conditions throughout the numerical simulations. This is followed by similar analyses considering the combined effects of both the above features. For each analysed case, a simple analytical stability criterion is proposed and validated against the numerical results, generalizing the results, and highlighting the crucial role of state variables and model parameters on the possible occurrence of failure conditions.

  相似文献   

18.
This paper describes a thermo-hydro-mechanical framework suitable for modelling the behaviour of unsaturated soils. In particular, this paper focuses on bentonite clay subjected to a thermo-hydro-mechanical load, as in the case of nuclear waste engineering barriers. The paper gives a theoretical derivation of the full set of coupled balance equations governing the material behaviour as well as an extended physical interpretation. Finally, a finite element discretisation of the equations and number of simulations verifying their implementation into a custom finite element code is provided. Some aspects of the formulation are also validated against experimental data.  相似文献   

19.
The (THM) coupling effects on the dynamic wave propagation and strain localization in a fully saturated softening porous medium are analyzed. The characteristic polynomial corresponding to the governing equations of the THM system is derived, and the stability analysis is conducted to determine the necessary conditions for stability in both non‐isothermal and adiabatic cases. The result from the dispersion analysis based on the Abel–Ruffini theorem reveals that the roots of the characteristic polynomial for the THM problem cannot be expressed algebraically. Meanwhile, the dispersion analysis on the adiabatic case leads to a new analytical expression of the internal length scale. Our limit analysis on the phase velocity for the non‐isothermal case indicates that the internal length scale for the non‐isothermal THM system may vanish at the short wavelength limit. This result leads to the conclusion that the rate‐dependence introduced by multiphysical coupling may not regularize the THM governing equations when softening occurs. Numerical experiments are used to verify the results from the stability and dispersion analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents the first application of an advanced meshfree method, ie, the edge-based smoothed point interpolation method (ESPIM), in simulation of the coupled hydro-mechanical behaviour of unsaturated porous media. In the proposed technique, the problem domain is spatially discretised using a triangular background mesh, and the polynomial point interpolation method combined with a simple node selection scheme is adopted for creating nodal shape functions. Smoothing domains are formed on top of the background mesh, and a constant smoothed strain, created by applying the smoothing operation over the smoothing domains, is assigned to each smoothing domain. The deformation and flow models are developed based on the equilibrium equation of the mixture, and linear momentum and mass balance equations of the fluid phases, respectively. The effective stress approach is followed to account for the coupling between the flow and deformation models. Further coupling among the phases is captured through a hysteretic soil water retention model that evolves with changes in void ratio. An advanced elastoplastic constitutive model within the context of the bounding surface plasticity theory is employed for predicting the nonlinear behaviour of soil skeleton. Time discretisation is performed by adopting a three-point discretisation method with growing time steps to avoid temporal instabilities. A modified Newton-Raphson framework is designed for dealing with nonlinearities of the discretised system of equations. The performance of the numerical model is examined through a number of numerical examples. The state-of-the-art computational scheme developed is useful for simulation of geotechnical engineering problems involving unsaturated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号