首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents semi-analytical solutions to Fredlund and Hasan’s one-dimensional consolidation for unsaturated soils under symmetric semi-permeable drainage boundary conditions. Two variables are introduced to transform two coupled governing equations of pore-air and pore-water pressures into an equivalent set of partial differential equations, which are easily solved by the Laplace transform. Then, the pore-air and pore-water pressures, and soil settlement are obtained in the Laplace domain. Crump’s method is adopted to perform the inverse Laplace transform in order to obtain semi-analytical solutions in time domain. It is shown that the present solution is more applicable to various types of drainage boundary conditions, and in a good agreement with existing solutions from the literature. Furthermore, several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with traditional drainage boundary (single or double), and single-sided and double-sided semi-permeable drainage boundaries. Finally, it illustrates the changes in pore-air and pore-water pressures and soil settlement with time at different values of symmetric semi-permeable drainage boundary conditions parameters. In addition, parametric studies are conducted by the variations of pore-air and pore-water pressures at different ratios of air-water permeability coefficient and the depth.  相似文献   

2.
汪磊  李林忠  徐永福  夏小和  孙德安 《岩土力学》2018,39(11):4142-4148
为描述饱和土体的流变特性,引入分数阶导数Kelvin-Voigt黏弹性模型,采用解析方法对半透水边界下的分数阶黏弹性饱和土一维固结特性进行了研究。分别对骤加恒载下饱和土一维固结微分方程和分数阶Kelvin-Voigt黏弹性本构方程进行Laplace变换,并联立求解得到了双边半透水边界条件下分数阶黏弹性饱和土在Laplace变换域内的解析表达式。通过Crump方法实现Laplace数值反演,得到时间域内的半解析解。将所得到的解分别退化为分数阶黏弹性饱和土一维固结半解析解和双边半透水黏弹性饱和土一维固结半解析解,结果与已有文献半解析解相同,验证了提出的双边半透水边界条件下分数阶黏弹性饱和土一维固结解的可靠性。通过算例考察了半透水边界条件和分数阶黏弹性饱和土参数对一维固结特性的影响。研究表明,双边半透水边界下分数阶黏弹性饱和土一维固结发展过程与半透水边界条件、分数阶次和黏滞系数有关,且土体的压缩模量对饱和土一维固结最终沉降量有显著影响。  相似文献   

3.
以往的非饱和土砂井地基研究中未考虑砂井的涂抹作用,均按理想砂井进行研究。然而在实际工程中,施工的扰动会导致砂井内壁附近的土体渗透性减弱,从而影响地基的固结。针对这种情况,本文以均布荷载作用下非饱和土砂井地基为模型,考虑涂抹作用,并将其形成的边界假设为半渗透边界;引入Bessel函数,根据超孔隙压力的耦合控制方程推导了半渗透边界条件下非饱和土砂井地基在Laplace变换域内的固结半解析解,并且采用Crump方法进行Laplace逆变换,得到了时间域内的解;将该砂井地基模型退化为理想砂井模型,与现有文献结果对比,验证了本文研究方法的可靠性。最后通过算例来考察半渗透系数对非饱和土砂井地基固结特性的影响。研究表明,半渗透系数对砂井地基的固结有着重要的影响,且半渗透系数越大,超孔隙压力消散越快。  相似文献   

4.
基于Terzaghi一维固结理论,分析了考虑半透水边界条件的分数阶导数黏弹性饱和土层在随时间变化的任意荷载作用下一维固结问题。首先,应用Laplace变换联立求解饱和土层一维固结微分方程和分数阶Kelvin-Voigt黏弹性本构方程,推导出有效应力和沉降在Laplace变换域内的解析解,采用Crump方法进行Laplace逆变换,得到了时间域内的半解析解。然后将本文得到的半解析解分别退化为半透水边界条件下基于黏弹性假设的一维固结半解析解和双面透水边界条件下基于分数阶黏弹性假设的一维固结半解析解,结果与已有文献的半解析解相同,验证了本研究所提出解的可靠性。最后通过算例分别考察了半透水边界参数、分数阶黏弹性模型参数和荷载参数对饱和土层固结沉降的影响。研究表明,半透水边界条件参数、分数阶次与黏滞系数主要影响饱和土层固结的发展快慢,而饱和土层的最终沉降量主要受到土层压缩模量的影响;另外,饱和土层的固结规律与外荷载变化规律一致。  相似文献   

5.
The study presents semi-analytical solutions of two-dimensional plane strain consolidation problem in unsaturated soils incorporating the lateral semipermeable drainage boundary by adopting Fourier sine series and Laplace transform. The two-dimensional plane strain consolidation equations in the form of two-order partial differential equations with three variables are firstly converted to two-order partial differential equations with two variables, which are similar to those of one-dimensional consolidation problem. The four-order ordinary differential equations about excess pore-air and excess pore-water pressures are got by applying Laplace transform and the substitution method. Then, the solutions of excess pore pressures and settlement are achieved in the Laplace transform domain. Afterwards, on the basis of Crump's method, the inverse Laplace transform is conducted to obtain the analytical solutions in time domain. The comparison is conducted to verify the exactness of the obtained solutions, and the two-dimensional plane strain consolidation property with the lateral semipermeable drainage boundary is illustrated and discussed. Parametric studies are demonstrated for the excess pore pressures and normalized settlement with the change of the boundary parameters, air-water and lateral-vertical permeability coefficients, and the distance and depth. It can be found that the lateral semipermeable drainage boundary impedes the consolidation rate obviously, and when different investigated parameters are adopted, the consolidation property is similar to each other under the later permeable and semipermeable drainage boundary conditions.  相似文献   

6.
This paper introduces an exact analytical solution for governing flow equations for one‐dimensional consolidation in unsaturated soil stratum using the techniques of eigenfunction expansion and Laplace transformation. The homogeneous boundary conditions adopted in this study are as follows: (i) a one‐way drainage system of homogenous soils, in which the top surface is considered as permeable to air and water, whereas the base is an impervious bedrock; and (ii) a two‐way drainage system where both soil ends allow free dissipation of pore‐air and pore‐water pressures. In addition, the analytical development adopts initial conditions capturing both uniform and linear distributions of the initial excess pore pressures within the soil stratum. Eigenfunctions and eigenvalues are parts of the general solution and can be obtained based on the proposed boundary conditions. Besides, the Laplace transform method is adopted to solve the first‐order differential equations. Once equations with transformed domain are all obtained, the final solutions, which are proposed to be functions of time and depth, can be achieved by taking an inverse Laplace transform. To verify the proposed solution, two worked examples are provided to present the consolidation characteristics of unsaturated soils based on the proposed method. The validation of the recent results against other existing analytical solutions is graphically demonstrated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Based on Fredlund’s one-dimensional consolidation equation for unsaturated soil, Darcy’s law and Fick’s law, a semi-analytical solution was presented to the free drainage well with a finite thickness under application of uniform vertical loading and the boundary of the top and bottom surfaces impermeable to water and air. According to the polar governing equations of water and air phases and the boundary and initial conditions, the excess pore-air and pore-water pressures and the soil layer settlement in the Laplace transformed domain are obtained by performing the Laplace transform and utilizing the Bessel functions. Crump’s method is used to perform the inversion of Laplace transform in order to obtain numerical solutions in the real time domain. Finally, a typical example is given to illustrate the changes in the excess pore-air and pore-water pressures and soil layer settlement with time factor at different ratios of air–water permeability coefficient and/or different distances from the well.  相似文献   

8.
Based on the Fredlund consolidation theory of unsaturated soil, exact solutions of the governing equations for one‐dimensional consolidation of single‐layer unsaturated soil are presented, in which the water permeability and air transmission are assumed to be constants. The general solution of two coupled homogeneous governing equations is first obtained. This general solution is expressed in terms of two functions psi1 and ψ2, where ψ1 and ψ2, respectively, satisfy two second‐order partial differential equations, which are in the same form. Using the method of separation of variables, the two partial differential equations are solved and exact solutions for three typical homogeneous boundary conditions are obtained. To obtain exact solutions of nonhomogeneous governing equations with three typical nonhomogeneous boundary conditions, the nonhomogeneous boundary conditions are first transformed into homogeneous boundary conditions. Then according to the method of undetermined coefficients and exact solutions of homogenous governing equations, the series form exact solutions are put forward. The validity of the proposed exact solutions is verified against other analytical solutions in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a simple analytical solution to Fredlund and Hasan's one‐dimensional (1‐D) consolidation theory for unsaturated soils. The coefficients of permeability and volume change for unsaturated soils are assumed to remain constant throughout the consolidation process. The mathematical expression of the present solution is much simpler compared with the previous available solutions in the literature. Two new variables are introduced to transform the two coupled governing equations of pore‐water and pore‐air pressures into an equivalent set of partial differential equations, which are easily solved with standard mathematical formulas. It is shown that the present analytical solution can be degenerated into that of Terzaghi consolidation for fully saturated condition. The analytical solutions to 1‐D consolidation of an unsaturated soil subjected to instantaneous loading, ramp loading, and exponential loading, for different drainage conditions and initial pore pressure conditions, are summarized in tables for ease of use by practical engineers. In the case studies, the analytical results show good agreement with the available analytical solution in the literature. The consolidation behaviors of unsaturated soils are investigated. The average degree of consolidation at different loading patterns and drainage conditions is presented. The pore‐water pressure isochrones for two different drainage conditions and three initial pore pressure distributions are presented and discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a semi-analytical solution to one-dimensional consolidation of viscoelastic unsaturated soils with a finite thickness under oedometric conditions and subjected to a sudden loading. The solution is obtained by using Lee’s correspondence principle based on the semi-analytical solution to one-dimensional consolidation of elastic unsaturated soils. The boundary contains the top surface permeable to water and air and the bottom impermeable to water and air. A typical example is given to show the evolution of excess pore-air and pore-water pressures as well as the total degree of consolidation of the soil layer with time for different ratios of air–water permeability coefficient, elastic modulus and viscoelastic coefficient. The one-dimensional consolidation behavior of viscoelastic unsaturated soil is discussed according to the semi-analytical solution. These results contribute to a better understanding of the consolidation behavior of viscoelastic unsaturated soils.  相似文献   

11.
李赞  雷国辉  付崔伟 《岩土力学》2016,37(6):1613-1622
将含竖向排水体地基的三维固结变形问题等效为平面应变问题进行数值分析时,砂墙地基二维固结解析解答是合理确定其等效固结计算参数的重要依据。为辨析现有砂墙地基等应变固结近似解答的适用性,针对微单元土体严格的二维固结微分方程,考虑对地基固结有重要影响的井阻作用,以及涵盖完全透水和不完全透水的更一般边界面排水条件,推求得到了其自由应变解答。并与现有解答进行对比分析,同时,分析了泊松比效应以及水平和竖向排水对地基固结的影响。结果表明,现有砂墙地基的等应变固结解答虽然近似,但已有足够精确;砂墙地基以水平向固结为主,竖向固结几乎可以忽略不计;地基固结速率随着泊松比的增大而增大,在将竖向排水体等效为砂墙时,应考虑其作用影响。  相似文献   

12.
This paper presents semi‐analytical solutions to Fredlund and Hasan's one‐dimensional consolidation of unsaturated soils with semi‐permeable drainage boundary under time‐dependent loadings. Two variables are introduced to transform two coupled governing equations of pore‐water and pore‐air pressures into an equivalent set of partial differential equations, which are easily solved by the Laplace transform. The pore‐water pressure, pore‐air pressure and settlement are obtained in the Laplace domain. Crump's method is adopted to perform the inverse Laplace transform in order to obtain semi‐analytical solutions in time domain. It is shown that the present solutions are more general and have a good agreement with the existing solutions from literatures. Furthermore, the current solutions can also be degenerated into conventional solutions to one‐dimensional consolidation of unsaturated soils with homogeneous boundaries. Finally, several numerical examples are provided to illustrate consolidation behavior of unsaturated soils under four types of time‐dependent loadings, including instantaneous loading, ramp loading, exponential loading and sinusoidal loading. Parametric studies are illustrated by variations of pore‐air pressure, pore‐water pressure and settlement at different values of the ratio of air–water permeability coefficient, depth and loading parameters. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
The 1D consolidation of unsaturated multi-layered soil is studied based on the theory proposed by Fredlund and Hasan, and an analytical solution for a typical boundary condition is obtained by assuming all material parameters remain constant during consolidation. In the derivation of the analytical solution, the eigenfunction and eigenvalue for the multi-layered problem are first derived through the transfer matrix method. Then, by using the method of undetermined coefficients and the orthogonal relation of the eigenfunction, the analytical solution is obtained. The present method is applicable to various types of boundary conditions. Finally, numerical examples are provided to investigate the consolidation behavior of unsaturated multi-layered soil.  相似文献   

14.
石北啸  杨燕伟  谢荣星  吴辛 《岩土力学》2013,34(10):2835-2840
考虑了混凝土芯砂石桩复合地基中砂石桩的环形排水通道、砂石桩体内的径、竖向渗流和土体施工扰动,并采用桩土共同分担荷载的初始条件,得到了混凝土芯砂石桩复合地基固结问题的控制方程,给出了控制方程的解答;并分别给出了复合地基按应力和按变形定义的总平均固结度,分析了砂石桩桩体渗透系数、芯桩与砂石桩直径比对地基固结性状的影响。结果表明:对于混凝土芯砂石桩复合地基按应力定义的固结度与按变形定义的固结度表达式不同;地基的固结随着砂石桩桩体渗透系数增加而加快;砂石桩直径一定的情况下,固结速率随芯桩直径增大先增大后减小。最后对本文解和以往的两种解做了比较,与以往解相比本文解能够同时考虑环形通道和桩土荷载分担,给出的固结度介于以往的两种解之间。  相似文献   

15.
基于Zienkiewicz提出的非饱和多孔介质波动理论,考虑两相流体和固体颗粒的压缩性以及惯性、黏滞和机械耦合作用,采用半解析的方法获得了一类典型边界条件下单层非饱和多孔介质一维瞬态响应解。首先推导出无量纲化后以位移表示的控制方程,并将其写成矩阵形式;然后,将边界条件齐次化,求解控制方程所对应的特征值问题,得到了满足齐次边界条件的特征值和相对应的特征函数。根据变异系数法并利用特征函数的正交性,得到了一系列仅黏滞耦合的关于时间的二阶常微分方程及相应的初始条件。在此基础上,运用精细时程积分法给出了常微分方程组的数值解。最后,通过若干算例验证了结果的正确性并探讨了单层非饱和多孔介质一维瞬态动力响应的特点。该方法可推广应用于其他典型的边界条件。  相似文献   

16.
以结构性较强的天然饱和软黏土为研究对象,考虑了沉积作用对其自重应力的影响,以及压缩性和渗透性的非线性变化,推导了任意加载条件下结构性土一维大应变固结控制方程,并采用半解析的方法对方程进行求解计算。再将其退化为无结构性的饱和软黏土固结解,与已有的大应变固结解进行了对比,验证了该解的正确性。最后将该半解析解计算结果与小应变固结理论解、不考虑结构性的固结理论解计算结果进行对比分析。结果表明:大应变固结理论的沉降计算值大于小应变固结理论的计算值,且二者的差值随着荷载的增加而增加;当考虑土体的结构性时,地表沉降计算值小于不考虑土体结构性的沉降计算值。  相似文献   

17.
江文豪  李江山  黄啸  程鑫  万勇 《岩土力学》2022,43(10):2744-2756
温度的变化会导致土体的物理力学性质改变,且在一些实际工程中,饱和黏土会处于非等温分布状态。为此,针对非等温分布条件下饱和黏土的一维固结问题,考虑了更具普遍性的半透水边界,通过某些假定推导了单级线性加荷形式下饱和黏土一维固结控制方程,并利用分离变量法求解得到了控制方程的解析解。通过将所提解析解分别与已有解析解和有限差分解展开对比分析,验证了所提解答的正确性。基于所提解析解,利用某一算例分析了温度梯度、半透水边界参数及加荷时间对固结性状的影响。结果表明:温度梯度 M 越大,土体的渗透性越大,土体的固结速率越快;半透水边界参数 R1和 R2越大,相同时间内土体的超孔隙水压力越小,土体的平均固结度越大;土体的平均固结度随加荷时间 tc 的增大而减小,这主要是由于加荷阶段所施加的外荷载小于最终荷载,但加荷时间tc的延长可一定程度减小土体中产生的最大超孔隙水压力。  相似文献   

18.
An analytical solution is presented in this paper to study the time‐dependent settlement behaviour of a rigid foundation resting on a transversely isotropic saturated soil layer. The governing equations for a transversely isotropic saturated soil, within Biot's poroelasticity framework, are solved by means of Laplace and Hankel transforms. The problem is subsequently formulated in the Laplace transform domain in terms of a set of dual integral equations that are further reduced to a Fredholm integral equation of the second kind and solved numerically. The developed analytical solution is validated via comparison with the existing analytical solution for an isotropic saturated soil case, and adopted as a benchmark to examine the sensitivities of the mesh refinement and the locations of truncation boundaries in the finite element simulations using ABAQUS. Particular attention is paid to the influences of the degree of soil anisotropy, boundary drainage condition, and the soil layer thickness on the consolidation settlement and contact stress of the rigid foundation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The governing differential equations of unsaturated soils considering the thermo‐poro‐mechanical behaviour consist of equilibrium, moisture air and heat transfer equations. In this paper at first, following some necessary simplifications, the thermal three‐dimensional fundamental solution for an unsaturated deformable porous medium with linear elastic behaviour in Laplace transform domain is presented. Subsequently, the closed‐form time domain fundamental solutions are derived by analytical inversion of the Laplace transform domain solutions. Then a set of numerical results are presented, which demonstrate the accuracies and some salient features of the derived analytical transient fundamental solutions. Finally, the closed‐form time domain fundamental solution will be verified mathematically by comparison with the previously introduced corresponding fundamental solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
李传勋  谢康和 《岩土力学》2013,34(10):2991-2996
考虑土中指数形式渗流定律以及土体的非线性固结特性,以超静孔隙水压力为变量在拉格朗日坐标系内建立了软土一维大变形固结问题的控制方程及其求解条件,并运用有限差分法获取其数值解答。在指数形式渗流定律退化为达西定律下,通过将差分解与已有的半解析解进行对比,验证了数值计算的可靠性。最后对指数形式渗流定律下软土一维非线性大变形固结性状进行计算分析,结果表明: 1时,软土的非线性大变形固结速率会随外载增大而减慢; 1时,软土的非线性大变形固结速率会随着外荷载的增加而加快;软土非线性大变形固结速率要比非线性小变形固结速率快,且差别会随荷载增大而加剧;此外,大变形固结理论的最终沉降值要小于小变形固结理论,且差别会随着荷载的增大而加剧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号