首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper investigates the influence of a flaw on crack initiation, the failure mode, deformation field and energy mechanism of the rock-like material under uniaxial compression. The results of laboratory test and numerical simulation demonstrate the flaw inclination effect can be classified into three groups: 0–30°, 30–60° and 75–90°. The characteristic stresses increase as the flaw angle increases. The tensile cracks initiate from gentle flaws (α  30°) and shear cracks appear at tips of steep flaws (α  45°). The input energy, strain energy and dissipation energy of a specimen show approximate increasing trends as the flaw angle increases.  相似文献   

2.
Cracking and coalescence behavior in a rectangular rock-like specimen containing two parallel (stepped and coplanar) pre-existing open flaws under uniaxial compression load has been numerically studied by a parallel bonded-particle model, which is a type of bonded-particle model. Crack initiation and propagation from two flaws replicate most of the phenomena observed in prior physical experiments, such as the type (tensile/shear) and the initiation stress of the first crack, as well as the coalescence pattern. Eight crack coalescence categories representing different crack types and trajectories are identified. New coalescence categories namely “New 1” and “New 2”, which are first observed in the present simulation, are incorporated into categories 3 and 4, and category 5 previously proposed by the MIT Rock Mechanics Research Group, respectively. The flaw inclination angle (β), the ligament length (L) (spacing between two flaws) and the bridging angle (α) (inclination of a line linking up the inner flaw tips, between two flaws) have different effects on the coalescence patterns, coalescence stresses (before, at or post the peak stress) as well as peak strength of specimens. Some insights on the coalescence processes, such as the initiation of cracks in the intact part of specimens at a distance away from the flaw tips, and coalescence due to the development and linkage of a number of steeply inclined to vertical macro-tensile cracks are revealed by the present numerical study.  相似文献   

3.
Cracking processes have been extensively studied in brittle rock and rock-like materials. Due to the experimental limitations and the complexity of rock texture, details of the cracking processes could not always be observed and assessed comprehensively. To contribute to this field of research, a numerical approach based on the particle element model was used in present study. It would give us insights into what is happening to crack initiation, propagation and coalescence. Parallel bond model, a type of bonded-particle model, was used to numerically simulate the cracking process in rock-like material containing a single flaw under uniaxial vertical compression. The single flaw’s inclinations varied from 0° to 75° measured from the horizontal. As the uniaxial compression load was increased, multiple new microcracks initiated in the rock, which later propagated and eventually coalesced into longer macrocracks. The inclination of the pre-existing flaw was found to have a strong influence on the crack initiation and propagation patterns. The simulations replicated most of the phenomena observed in the physical experiments, such as the type, the initiation location and the initiate angle of the first cracks, as well as the development of hair-line cracks, which later evolved to macrocracks. Analyses of the parallel bond forces and displacement fields revealed some important mechanisms of the cracking processes. The first cracks typically initiated from the tensile stress concentration regions, in which the tensile stress was partially released after their initiation. The tensile stress concentration regions subsequently shifted outwards close to the propagating tips of the first cracks. The initiation and propagation of the first cracks would not significantly influence the compressive stress singularity at the flaw tips, which was the driving force of the initiation of secondary cracks. The initiation of microcracking zone consisting almost exclusively of micro-tensile cracks, and that of microcracking zone consisting of micro-tensile cracks and mixed micro-tensile and shear cracks, were found to be correlated with two distinct types of displacement fields, namely type I (DF_I) and type II (DF_II), respectively.  相似文献   

4.
金爱兵  王树亮  王本鑫  孙浩  赵怡晴 《岩土力学》2020,41(10):3214-3224
为了准确表征不同角度预制节理岩石在单轴压缩下的变形破坏模式,基于3D打印技术制作了节理模型用于模拟岩体中的结构面,通过水泥砂浆的浇筑得到含不同角度预制节理的岩石试件并进行单轴压缩试验,同时采用数字图像相关技术(DIC)观测、分析试验过程中试件裂纹产生、扩展以及贯通过程。结果表明:随着预制节理从0°增加到90°,试件强度与峰值应变均呈现先降低后升高的变化趋势,0°和45°试件弹性模量相对于完整试件有所降低。基于DIC检测结果,0°、30°、45°及60°试件裂纹皆从预制节理尖端部位起裂,各角度试件的起裂应力与试件强度变化规律一致。各角度试样起裂时在剪应力控制下以剪切翼型裂纹形式起裂,0°与45°试件裂纹在扩展过程由剪切发展为张拉型裂纹,30°和60°试件以剪切裂纹形式贯穿始终,90°试件从底部起裂并最终表现为张拉破坏。研究还发现,下翼起裂角θ2和上翼起裂角θ1之间存在明显的线性正相关关系,关系式为θ2 =0.828 6θ1 +12.185,且起裂应力大小变化与峰值应力变化一致,皆随节理角度的增加先减小后增大。  相似文献   

5.
李露露  高永涛  周喻  金爱兵 《岩土力学》2018,39(10):3668-3676
三叉裂隙是自然界普遍存在的一种岩体缺陷形式,其对岩体的力学特性有重要影响。对含预制三叉裂隙的水泥砂浆试样进行室内单轴压缩试验,配合使用摄像机拍摄裂纹的起裂、扩展、贯通过程,通过数字图像技术处理获取试样的应变场云图,并结合PFC2D程序研究不同?、? 条件下试样的强度特征、裂纹模式和裂纹演化扩展规律。研究表明:三叉裂隙对试样单轴抗压强度有明显的削弱作用。当? 恒定为120°时,试样在? = 30°时达到最大抗压强度;当? 恒定为90°时,随?增大,试样抗压强度呈先减小后增大的趋势,且当? = 45°时达到最大抗压强度。试样产生的裂纹可分为3类,分别是张拉型裂纹(Ⅰ型裂纹)、剪切型裂纹(Ⅱ型裂纹)、混合型裂纹(Ⅲ型裂纹)。这3类裂纹通常从裂隙尖端开始产生,并且Ⅰ型裂纹沿加载方向扩展,通常未扩展至试样边界;Ⅱ型和Ⅲ型裂纹通常与加载方向呈一定角度扩展至试样边界。通过对裂纹的几何形态和组成宏观裂纹的微裂纹成分的分析,得知导致含三叉裂隙试样在单轴压缩条件下失效的是张拉破坏。数字图像技术得到的应变云图表明,当载荷达到一定阶段,裂隙尖端出现应力集中,微破裂开始发育并聚集成微破裂区,微破裂区扩大产生宏观裂纹。通过对主应变和剪应变云图分析,发现导致试样失效的是张拉破坏,剪应变在裂纹扩展过程中的影响较小。  相似文献   

6.
Particle flow code (PFC2D) software was adopted to investigate the anchorage behaviour and the characteristics of crack initiation, propagation and coalescence of reinforced specimens containing a single fissure (RSCSF). The microscopic parameters of the specimens in the numerical simulation were first validated by experimental outcomes of intact specimens, while the microscopic parameters of the rock bolts were validated based on the results of the RSCSF tests. Then, the mechanical parameters as well as the failure modes in the physical experiments were compared with those derived by the numerical simulation; the results showed good agreement between the simulated macroscopic mechanical properties and failure modes and those obtained in the laboratory experiments. The peak strength, number of cracks and the failure mode varied considerably as the anchorage angle α and fissure angle β increased. Three types of stress–strain curves, types I to III, were obtained from the RSCSF. Shear cracks were observed for all three categories of curves, but the tensile cracks were dominant. The number of cracks and the rate of bond failures decreased as the curve changed from type II to type I to type III. RSCSF failure can be classified into three failure modes: (1) tip crack propagation mode, (2) midpoint crack propagation mode and (3) rock bolt crack propagation mode. These failure modes are primarily differentiated by relations between α and β, and the ratio UCSS/UCSI between the uniaxial compressive strength (UCS, σ max) of the RSCSF (UCSS) and the uniaxial compressive strength of the intact specimen (UCSI).  相似文献   

7.
Three-dimensional surface crack initiation and propagation in two kinds of heterogeneous rocks were numerically investigated via parallel finite element analysis using a supercomputer. Numerically simulated rock specimens containing a pre-existing flaw were subjected to uniaxial compression until failure. The initiation and propagation of wing cracks, anti-wing cracks, and shell-like cracks were reproduced by numerical simulations. The numerically simulated results demonstrate that the further propagation of wing cracks and shell-like cracks stop due to their wrapping (curving) behavior in three-dimensional spaces, even if the applied loads continue to increase. Furthermore, rock heterogeneity could significantly influence crack propagation patterns and the peak uniaxial compressive strengths of rock specimens. Moreover, anti-wing cracks only appeared in relatively heterogeneous rocks, and the peak uniaxial compressive strengths of the specimens were observed to depend on the inclination of the pre-existing flaw. Finally, the mechanism of surface crack propagation is discussed in the context of numerically simulated anti-plane loading tests, wherein it was identified that Mode III loading (anti-plane loading) does not lead to Mode III fracture in rocks due to their high ratio of uniaxial compressive strength to tensile strength. This finding could explain the lateral growth of an existing flaw in its own plane, which is a phenomenon that has not been observed in laboratory experiments.  相似文献   

8.
X-ray computed tomography (CT) imaging and digital image correlation techniques are applied to study spatial cracking behaviors of sandstone under uniaxial compression, in which the angle between precracks is 45°, 90°, and 135° and the crack depth is 7.5 mm and 10 mm, respectively. Layered anisotropy damages and spatial cracking evolution are quantitatively analyzed by the defined digital layered anisotropy index and digital damage ratio, respectively. Three cases with different array of precracks evidence the depth effects of precracks on spatial crack propagation. Results show that the failure process of samples is first controlled by the coalescence of surface cracks in 2D space and then the samples are failed by the propagation of coalesced cracks (shear cracks with different shapes). The crack types for samples with precrack depth of 7.5 mm are all shear cracks for Cases 1‑3. Nevertheless, the crack types for samples with precrack depth of 10 mm are, respectively, the half X-shape crack for Case 1, X-shape crack for Case 2, and double shell crack for Case 3. The precrack has a significant promotion effect on the failure process when the angle between the two precracks is β = 90°, and the precrack has little to no effect on the failure process when the angle between the two precracks is β = 135°. As the depth of precrack increases to 10 mm, the crack types are changed in this study. The peak strength of sample subjected to uniaxial compression decreases with increasing depth of precracks, implying the decrease of the rock strength by the discontinuity.  相似文献   

9.
李铮  郭德平  周小平  王允腾 《岩土力学》2019,40(12):4711-4721
脆性岩石材料在压应力作用下常出现两类裂纹:翼型张拉裂纹和次生剪切裂纹。近场动力学是一种新型的无网格数值计算方法。在近场动力学理论中,采用积分形式的控制方程代替微分形式的控制方程使得该数值算法在断裂问题上具有独特的优势。将Mohr-Coulomb准则和最大主应力准则引入非普通“态”基近场动力学理论中,分别用于模拟材料常见的压剪和张拉破坏。这种扩展的非普通“态”基近场动力学可以有效地模拟脆性岩石材料在多种受力状态下的裂纹起裂、扩展和连接问题。通过5个不同的数值算例说明该数值算法在处理脆性岩石材料断裂问题的有效性和准确性。首先,通过模拟含圆孔的弹性板拉伸数值试验说明该数值算法的有效性和准确性。其次,数值模拟了简单三点弯曲试验以及不使用其他外部准则条件下动荷载作用下裂纹的分叉试验,所得结果与其他试验结果或数值结果相吻合,从而验证了该理论的有效性。然后,模拟了包含斜裂纹的巴西圆盘试验,裂纹扩展路径和计算所得的断裂韧度同样吻合于试验结果。最后,模拟了单轴压缩状态下,预制裂纹试样的裂纹扩展和连接问题。将该数值算法与试验结果对比表明,所提出的数值方法可以模拟和预测岩石类材料的张拉和压剪裂纹的起裂、扩展和连接行为。  相似文献   

10.
Crack coalescence in rock masses was studied by performing a series of biaxial compresion tests on specimens made of rock-like material. Specimens of size 63.5 × 27.9 × 20.3 cm, made of 72% silica sand, 16% cement (Type I) and 12% water by weight were tested. The joint inclination angle was maintained at 45°, while the offset angle i.e. angle between the plane of the joint and the line that connects the two inner tips of the joints, was changed from 0° to 90° with an increment of 15°. Three levels of lateral stress were used; 0.35 MPa, 0.7 MPa and 1.5 MPa on each sample. HP data acquisition system was used to record the data for each sample. In each sample, four LVDTs were fixed to measure the axial and lateral displacement along the sample. The failure mechanisms were monitored by eye inspection and a magnifier to detect crack initiation and propagation. For each test, the failure surfaces were investigated to determine the characteristics of each surface. Wing cracks initiated at the tip of the joint for the low confining stress applied, while at higher confining stresses wing cracks also initiated at the middle of the joint. Secondary cracks initiated at the tip of the joint due to shear stress. Three modes of failure took place due to coalescence of the secondary and wing cracks. The bridge inclination was the main variable that controlled the mode of failure. For bridge inclination of 0°, the coalescence occured due to shear failure and for bridge inclination of 90° the coalescence occurred due to tensile failure while for the other bridge inclinations coalescence occured due to mixed tensile and shear failure.  相似文献   

11.
Experiments on man-made flawed rock-like materials are applied extensively to study the mechanical behaviour of rock masses as well as crack initiation modes and crack coalescence types. A large number of experiments on specimens containing two or three pre-existing flaws were previously conducted. In the present work, experiments on rock-like materials (formed from a mixture of sand, plaster, limestone and water at mass ratio of 126:9:9:16) containing multiple flaws subjected to uniaxial compression were conducted to further research the effects of the layout of pre-existing flaws on mechanical properties, crack initiation modes and crack coalescence types. Compared with previous experiments in which only three types of cracks were found, the present experiments on specimens containing multiple flaws under uniaxial compression revealed five types of cracks, including wing cracks, quasi-coplanar secondary cracks, oblique secondary cracks, out-of-plane tensile cracks and out-of-plane shear cracks. Ten types of crack coalescence occurred through linkage among wing cracks, quasi-coplanar secondary cracks, oblique secondary cracks, out-of-plane shear cracks and out-of-plane tensile cracks. Moreover, the effects of the non-overlapping length and flaw angle on the complete stress–strain curves, the stress of crack initiation, the peak strength, the peak strain and the elastic modulus were also investigated in detail.  相似文献   

12.
模拟岩石压剪状态下主次裂纹萌生开裂的扩展有限元法   总被引:1,自引:0,他引:1  
师访  高峰  李玺茹  沈晓明 《岩土力学》2014,35(6):1809-1817
压剪应力状态下,岩石类材料中常见两类裂纹:翼型张拉裂纹和次生压剪裂纹。基于扩展有限元方法(XFEM),提出了模拟压剪裂纹面作用机制的扩展有限元位移增强方案,并给出了扩展有限元法分叉裂纹处理方法,分别用最大周向拉应力准则和Mohr-Coulomb准则判断张拉裂纹和压剪裂纹的萌生和扩展。基于Matlab平台编写了数值计算程序Betaxfem 2D,通过两个算例对所提方案进行了验证,所得结果与有限元法(FEM)计算结果吻合很好。模拟了单轴压缩载荷下含预制闭合裂纹试件的裂纹分叉、扩展过程,与试验结果的对比表明,所提方案可以模拟和预测岩石类材料张拉、压剪交互分叉裂纹的萌生和扩展行为。  相似文献   

13.
裂纹扩展方向的确定对分析岩桥破坏机制和岩体抗剪强度参数具有重要意义。首先以断裂力学观点推导了复杂应力条件下裂纹尖端应力分布函数的表达式,以节理岩体尖端的扩展裂纹可分为张拉裂纹和剪切裂纹为前提,基于Griffith破坏判据,提出了张拉裂纹扩展方向(张裂角)的计算公式;基于Mohr-Coulomb判据,提出了剪裂纹扩展方向(剪裂角)的计算公式。通过新判据与试验和其他判据的结果对比表明,该判据能准确判断张拉裂纹扩展方向,而剪裂角的扩展方向有待进一步试验验证。分析表明:在单向拉应力作用下,张裂纹扩展方向均有偏向于最大主应力方向的趋势,张裂纹与最大主应力夹角小于15°;双向拉应力作用下,随着微裂纹倾角变大,张裂纹有远离最大主应力方向的趋势;单轴压缩作用下,张裂角随裂纹倾角的增加而减小,而两者的和为先减小后增加。   相似文献   

14.
为研究不同孔洞-裂隙(简称"孔-隙")赋存条件下的裂纹扩展规律,利用RFPA软件,对不同裂纹倾角及不同非均质系数下的岩体破坏进行数值模拟分析,获得其裂纹扩展过程、声发射规律、应力-应变曲线,同时与原试验结果进行对比验证。结果表明:完整试样裂纹沿着剪切方向产生,含孔-隙试样裂纹沿裂隙尖端及孔口侧边产生;翼裂纹贯穿试件的同时,在预制裂纹尖端或孔口侧边产生水平方向的次生裂纹,并产生分叉,非均质系数影响次生裂纹走向;压载前期试样以拉破坏为主,压载后期以拉-剪组合破坏为主,次生裂纹的产生与剪切破坏有关;声发射累计能量与声发射累计数前期缓慢增大,后期迅速增大,预制裂纹倾角越小,非均质系数越大,声发射累计能量越大;不同裂纹倾角及不同非均质系数试件的应力-应变曲线均经历3个阶段:弹性变形阶段、非线性变形阶段及残余变形阶段,孔-隙的存在降低了试样的峰值强度,影响试件的脆性度。研究结果为进一步认识孔-隙相互作用规律提供了参考。   相似文献   

15.
岩体内部赋存的裂隙很多表现为折线型,为探究这类岩体的断裂机制,制备含折线型裂隙砂岩试件并对其进行单轴压缩试验。采用数字图像相关(DIC)方法计算加载过程中的变形场演化,根据新生裂纹两侧的位移差异识别裂纹类型;运用扩展有限元法(XFEM)模拟断裂过程,根据应力分布特征解释翼型裂纹起裂与扩展机制。DIC计算结果表明,新生裂纹处出现应变局部化带,裂纹两侧发生相对分离;含直线型和折线型裂隙砂岩试件的翼型裂纹分别萌生于预制裂隙端部以及折角处,这是因为裂隙几何形态会改变拉应力集中位置;含折线型裂隙砂岩试件的起裂应力小于含直线型裂隙砂岩试件,这是因为相同加载条件下前者的最大拉应力值更大;这2类试件的裂纹扩展均是由于裂纹尖端集中的拉应力引起的,裂纹依然呈张开状态;裂隙几何形态未改变试件的最终破坏模式,均表现为对角剪切破坏。  相似文献   

16.
17.

Most natural rock masses contain a large number of random joints and fissures, and most of the rock masses at the rock engineering are commonly in both compression and shear stress environment. However, the research on the failure characteristics of complex random jointed rock mass under compressive-shear loading is still limited. To address this gap, this paper uses the particle flow code 2D to establish a discrete fractured rock mass model and carry out a series of numerical tests with different compressive-shear angles (α) and different joint geometric parameters. The effects of compressive-shear angle and joint geometric parameters on the strength and failure characteristics of fractured rock masses are studied. The results indicate that with the increase of α, the peak strength of the specimen decreases gradually, and the failure mode changes from the composite shear failure mode (Mode-I) to a plane shear failure mode (Mode-II) and then to intact shear failure mode (Mode-III). Specifically, the three failure modes occur in the specimens with α?=?15°, 30° or 45°, 60°, respectively. The existence of joints affects stress distribution on rock mass during the loading process. Furthermore, the stress at the joint tip is relatively concentrated, while on both sides of the joint is smaller. Three kinds of crack coalescence patterns are observed: tensile, shear, and tensile-shear mixed coalescence. The inclination angle of the rock bridge between adjacent joints affects the specific type of coalescence.

  相似文献   

18.
不同倾角节理组和锚固效应对岩体特性的影响   总被引:1,自引:0,他引:1  
王文  朱维申  马海萍  张磊 《岩土力学》2013,34(3):887-893
首先采用DDARF(discontinuous deformation analysis for rock failure)分析方法对双裂隙岩块进行单轴和双轴压缩模拟试验,研究了裂隙角度和侧向应力大小对岩块特性的影响,得到了裂隙岩块在这两种加载试验中的破坏过程、应力-应变曲线以及岩块中裂隙的起裂应力和岩块的峰值强度。在双轴压缩模拟试验中绘制了裂隙角度为45°的岩块在不同侧向压力下的强度包络线。其次,采用DDARF分析方法模拟劈裂试验中含裂隙试块的锚固效果,得到了4种不同锚固角度试块的轴向荷载–位移变化曲线和裂隙扩展规律。模拟结果与前人的类似条件下的试验结果相符良好。随后又将双裂隙试块双轴压缩模拟试验中得到的参数运用到一个地下洞室的工程实例中,用等效力学特性的方法分析对比了完整岩体和节理岩体洞室开挖完成后的破损状态的差异。最后运用DDARF分析方法研究了随机生成4组节理岩体的地下洞室的稳定性,得到了洞室节理围岩的裂隙扩展过程。同时通过对关键点位移的监测分析了锚杆的锚固效应。  相似文献   

19.
Rock strengths are directly influenced by the open or closed flaws widely distributed in rock masses. Extensive studies have been conducted on the propagations of open flaws in rocks. However, few concerns are paid on the propagation of closed flaws, the influence of the surface friction on the initiation and propagation of closed flaws should be investigated systematically. In present article, the crack initiation and propagation in rock like material subjected to compressive loads have been investigated. The effects of crack surface friction on crack initiation and propagation have been quantified with the help from extended finite element method which is efficient and accurate. Based on the analysis on stress distribution and propagation patterns, following results are obtained: Firstly, minor effects are exerted by crack surface friction on the stress distribution around the flaws when the flaws inclination angle is 30° and 45°. However, as the inclination angle increases to 60°, the effects are much more significant. Secondly, as the inclination angle ranges from 30° to 60°, the most favorable angle for crack propagation is 45°. Thirdly, the initiation location and angle of the wing cracks will not be influenced by the frictions. However, the propagation length will be greatly influenced by the friction and the inclination angle.  相似文献   

20.
Crack evolution is initiated by the occurrence of tensile wing cracks and is then further promoted due to the crack coalescence caused by the extension of a central tensile crack segment between two relatively adjacent flaws. To understand such progressive failures in rock, a parallelized peridynamics coupled with a finite element method is utilized. Through this method, the initiation position of tensile wing cracks is observed with respect to varying inclination angles of a flaw, and then its corresponding shifting mechanism is investigated. In addition, the phenomenon of the position shifting being sensitive to various flaw shapes is discussed. Moreover, it is observed that the inclination angle of a central flaw affects the initiation position of other flaws; therefore, the initiation positions of tensile wing crack emanating from other neighboring flaws are analyzed with their angles. Following tensile wing cracks, a central tensile crack segment occurs in the bridging region between a central flaw and other neighboring flaws; the developmental patterns caused by the crack segment are discussed as well. Finally, the role a central tensile crack segment plays in the formation of crack coalescence and specimen failure is investigated in detail. The numerical results in this paper demonstrate good fidelity with established physical test results and complement them, thereby expanding the understanding of fracturing morphology in rock specimens with various flaws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号