首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The exact origin of fast radio bursts (FRBs) remains a mystery. The repeating fast radio burst source, FRB20200120E, was discovered in a globular cluster containing old stellar populations. Yang (2021) suggested that this FRB might be in close binaries with low-mass main-sequence (MS) stars. They analytically investigated the observational consequences caused by the heating of FRB radio radiation onto the low-mass MS companion star in a close binary, suggesting that the radio radiation emitted by FRB could make the MS companion star more luminous and detectable in future multi-wavelength follow-up observations for a Galactic FRB. We revisited the study of Yang (2021) by numerically modeling the detailed process of FRB heating onto an MS companion with 1D stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA). Our results are consistent with the trends derived from the analytical model of Yang (2021), except that the typical re-emission luminosities of our main sequence (MS) models, caused by the heating from FRBs, are generally dimmer by about two orders of magnitude compared to his findings, and our models have a longer re-emission timescale. This may indicate that the searches of the optical transients caused by the radio radiation heating companion star are more likely to be successful within a distance of 0.3 Mpc.  相似文献   

2.
The possibility of radio emission is considered within a model which produces the beam-plasma system near the pulsar. A longitudinal instability develops near the light cylinder for a particular choice of parameters adopted in the paper. The excited wave strongly oscillates the beam particles perpendicular to its average velocity on one hand, and forms bunches of them on the other hand. Consequently, coherent radiation is expected. The frequency of the emission falls within the radio band, but the intensity turns out to be too low to explain observations. An appreciable enhancement of the beam number density over the Goldreich-Julian value (n bB/2ec) is needed if the mechanism discussed in the present paper is responsible for the pulsar radio emission.  相似文献   

3.
4.
The search for fast radio bursts(FRBs) is a hot topic in current radio astronomy studies. In this work, we carry out a single pulse search with a very long baseline interferometry(VLBI) pulsar observation data set using both auto spectrum and cross spectrum search methods. The cross spectrum method,first proposed in Liu et al., maximizes the signal power by fully utilizing the fringe phase information of the baseline cross spectrum. The auto spectrum search method is based on the popular pulsar software package PRESTO, which extracts single pulses from the auto spectrum of each station. According to our comparison, the cross spectrum method is able to enhance the signal power and therefore extract single pulses from data contaminated by high levels of radio frequency interference(RFI), which makes it possible to carry out a search for FRBs in regular VLBI observations when RFI is present.  相似文献   

5.
We present a calculation of a three-dimensional pulsar magnetosphere model to explain high-energy emission from the Geminga pulsar with a thick outer gap. High-energy γ -rays are produced by primary accelerated particles with a power-law energy distribution through curvature radiation inside the outer gap. We also calculate the emission pattern, pulse profile and phase-resolved spectra of high-energy γ -rays of the Geminga pulsar, and find that its pulse profile is consistent with the observed one if the magnetic inclination and viewing angle are ∼50° and ∼86° respectively. We describe the relative phases among soft (thermal) X-rays, hard (non-thermal) X-rays, and γ -rays. Our results indicate that X-ray and γ -ray emission from the Geminga pulsar may be explained by the single thick outer gap model. Finally, we discuss the implications of the radio and optical emission of the Geminga pulsar.  相似文献   

6.
Fast Radio Bursts (FRBs) last for \(\sim \) few milli-seconds and, hence, are likely to arise from the gravitational collapse of supra-massive, spinning neutron stars after they lose the centrifugal support (Falcke & Rezzolla 2014). In this paper, we provide arguments to show that the repeating burst, FRB 121102, can also be modeled in the collapse framework provided the supra-massive object implodes either into a Kerr black hole surrounded by highly magnetized plasma or into a strange quark star. Since the estimated rates of FRBs and SN Ib/c are comparable, we put forward a common progenitor scenario for FRBs and long GRBs in which only those compact remnants entail prompt \(\gamma \)-emission whose kick velocities are almost aligned or anti-aligned with the stellar spin axes. In such a scenario, emission of detectable gravitational radiation and, possibly, of neutrinos are expected to occur during the SN Ib/c explosion as well as, later, at the time of magnetar implosion.  相似文献   

7.
Fast radio bursts(FRBs) are bright radio pulses from the sky with millisecond durations and Jansky-level flux densities. Their origins are still largely uncertain. Here we suggest a new model for FRBs. We argue that the collision of a white dwarf with a black hole can generate a transient accretion disk, from which powerful episodic magnetic blobs will be launched. The collision between two consecutive magnetic blobs can result in a catastrophic magnetic reconnection, which releases a large amount of free magnetic energy and forms a forward shock. The shock propagates through the cold magnetized plasma within the blob in the collision region, radiating through the synchrotron maser mechanism,which is responsible for a non-repeating FRB signal. Our calculations show that the theoretical energetics, radiation frequency, duration timescale and event rate can be very consistent with the observational characteristics of FRBs.  相似文献   

8.
PSR B1259−63 is a 48-ms radio pulsar in a highly eccentric 3.4-yr orbit with a Be star SS 2883. Unpulsed γ-ray, X-ray and radio emission components are observed from the binary system. It is likely that the collision of the pulsar wind with the anisotropic wind of the Be star plays a crucial role in the generation of the observed non-thermal emission. The 2007 periastron passage was observed in unprecedented details with Suzaku , Swift , XMM–Newton and Chandra missions. We present here the results of this campaign and compare them with previous observations. With these data we are able, for the first time, to study the details of the spectral evolution of the source over a 2-month period of the passage of the pulsar close to the Be star. New data confirm the pre-periastron spectral hardening, with the photon index reaching a value smaller than 1.5, observed during a local flux minimum. If the observed X-ray emission is due to the inverse Compton (IC) losses of the 10-MeV electrons, then such a hard spectrum can be a result of Coulomb losses, or can be related to the existence of the low-energy cut-off in the electron spectrum. Alternatively, if the X-ray emission is a synchrotron emission of very high-energy electrons, the observed hard spectrum can be explained if the high-energy electrons are cooled by IC emission in Klein–Nishina regime. Unfortunately, the lack of simultaneous data in the TeV energy band prevents us from making a definite conclusion on the nature of the observed spectral hardening and, therefore, on the origin of the X-ray emission.  相似文献   

9.
It is assumed that pulsar radiation originates in a polar cap region and that the emission mechanism is curvature radiation. It is further assumed the radiation reaching an observer at any one time may represent contributions from several particle bunches moving relativistically along different magnetic field lines and radiating mutually incoherently. These assumptions are used to explanation of the minimum of linear polarization appearing near the profile centre of some pulsars.The National Radio Astronomy Observatory is operated by the Associated Universities Inc., under contract with the National Science Foundation.  相似文献   

10.
为了研究脉冲星本质与磁层动力学过程,如何从观测限定脉冲星辐射区域的部位和几何结构是其中一个基本且关键的问题.介绍了目前各种脉冲星辐射区几何限定方法的主要思想和结果,并对其异同和各自的优势作了比较和评述;根据已有的限定结果总结了其对辐射束结构、加速区模型和射电辐射机制等理论问题研究的帮助和启示;从各种方法的发展过程来看,完善能够限定脉冲星多波段辐射区域三维结构的方法,并与辐射区和加速区等理论问题的研究更紧密地结合是该领域的重要发展方向.  相似文献   

11.
The theory of pulsar radio emission is reviewed critically, emphasizing reasons why there is no single, widely-accepted emission mechanism. The uncertainties in our understanding of how the magnetosphere is populated with plasma preclude predicting the properties of the emission from first principles. Some important observational features are incorporated into virtually all the proposed emission mechanisms, and other observational features are either controversial or fail to provide criteria that clearly favor one mechanism over others. It is suggested that the criterion that the emission mechanism apply to millisecond, fast young, and slow pulsars implies that it is insensitive to the magnetic field strength. It is argued that coherent emission processes in all astrophysical and space plasmas consist of emission from many localized, transient subsources, that any theory requires both an emission mechanism and a statistical theory for the subsource, and, that this aspect of coherent emission has been largely ignored in treatments of pulsar radio emission. Several specific proposed emission mechanisms are discussed critically: coherent curvature emission by bunches, relativistic plasma emission, maser curvature emission, cyclotron instability and free electron maser emission. It is suggested that some form of relativistic plasma emission is the most plausible candidate although one form of maser curvature emission and free electron maser emission are not ruled out. Propagation effects are discussed, emphasizing the interpretation of jumps between orthogonal polarizations.  相似文献   

12.
By appealing to a quark nova(QN;the explosive transition of a neutron star to a quark star) in the wake of a core-collapse supernova(CCSN) explosion of a massive star,we develop a unified model for long duration gamma-ray bursts(LGRBs) and fast radio bursts(FRBs).The time delay(years to decades)between the SN and the QN,and the fragmented nature(i.e.,millions of chunks) of the relativistic QN ejecta are key to yielding a robust LGRB engine.In our model,an LGRB light curve exhibits the interaction of the fragmented QN ejecta with turbulent(i.e.,filamentary and magnetically saturated) SN ejecta which is shaped by its interaction with an underlying pulsar wind nebula(PWN).The afterglow is due to the interaction of the QN chunks,exiting the SN ejecta,with the surrounding medium.Our model can fit BAT/XRT prompt and afterglow light curves simultaneously with their spectra,thus yielding the observed properties of LGRBs(e.g.,the Band function and the X-ray flares).We find that the peak luminositypeak photon energy relationship(i.e.,the Yonetoku law),and the isotropic energy-peak photon energy relationship(i.e.,the Amati law) are not fundamental but phenomenological.FRB-like emission in our model results from coherent synchrotron emission(CSE) when the QN chunks interact with non-turbulent weakly magnetized PWN-SN ejecta,where conditions are prone to the Weibel instability.Magnetic field amplification induced by the Weibel instability in the shocked chunk frame sets the bunching length for electrons and pairs to radiate coherently.The resulting emission frequency,luminosity and duration in our model are consistent with FRB data.We find a natural unification of high-energy burst phenomena from FRBs(i.e.,those connected to CCSNe) to LGRBs including X-ray flashes(XRFs) and X-ray rich GRBs(XRR-GRBs) as well as superluminous SNe(SLSNe).We find a possible connection between ultra-high energy cosmic rays and FRBs and propose that a QN following a binary neutron star merger can yield a short duration GRB(SGRB) with fits to BAT/XRT light curves.  相似文献   

13.
We present X-ray data of the middle-aged radio pulsar PSR B0355+54. The XMM-Newton and Chandra observations show not only emission from the pulsar itself, but also compact diffuse emission extending ∼50″ in the opposite direction to the pulsar’s proper motion. Our analysis also indicates the presence of fainter diffuse emission extending ∼5′ from the point source. The morphology of the diffuse component is similar to the ram-pressure confined pulsar wind nebulae detected for other sources. We find that the compact diffuse component is well-fitted with a power-law, with an index that is consistent with the values found for other pulsar wind nebulae. The core emission from the pulsar can be characterized with a thermal plus power-law fit, with the thermal emission most likely originating in a hot polar cap.  相似文献   

14.
We present the results of modelling of the radio spectrum evolution and dispersion measure variations of PSR B1259–63, a pulsar in a binary system with Be star LS 2883.We base our model on a hypothesis that the observed variations of the spectrum are caused by thermal free-free absorption occurring in the pulsar surroundings. We reproduce the observed pulsar spectral shapes in order to examine the influence of the stellar wind of LS 2883 and the equatorial disc on the pulsar’s radiation.The simulations of the pulsar’s radio emission and its consequent free-free absorption give us an insight into the impact of stellar wind and equatorial disc of LS 2883 has on the shapes of PSR B1259–63 radio spectra, providing an evidence for the connection between gigahertz-peaked spectra phenomenon and the close environment of the pulsar. Additionally, we supplement our model with an external absorbing medium, which results in a good agreement between simulated and observational data.  相似文献   

15.
The analysis of observations of pulsar B1931+24 shows that the mechanism of the spin-down of a rotating magnetized neutron star is due to the plasma generation in its magnetosphere and, consequently, the radio emission generation. The unique observation of the switch on and switch off of this pulsar allows us to distinguish between the energy loss in the absence of radio emission (the magnetodipole radiation) and the current loss due to the rotation energy expenditure to the relativistic plasma generation and acceleration in the pulsar magnetosphere. The inclination angle χ, the angle between the rotation axis and the magnetic dipole axis, can be stationary for this pulsar,  χ=χst  . From observations and theory it follows that  χst= 59°  .  相似文献   

16.
脉冲星的射电辐射与其他天体物理辐射源有很大的不同 ,因为它们有着极高的亮温度和高度的线或圆偏振。极高的亮温度意味着起作用的发射机制一定是相干的。至今尚无对这种辐射普遍接受的模型。本文讨论了关于脉冲星的射电辐射产生和传播研究中的新进展。  相似文献   

17.
PSR B1259-63 is the only known binary system with a radio pulsar from which the non-pulsed radio and X-ray emission was detected. The companion star in this system is a Be star SS 2883. A rapidly rotating radio pulsar is expected to produce a wind of relativistic particles. Be stars are known to produce highly asymmetric mass loss. Due to the interaction of the pulsar wind and the Be star wind the system of two shocks between the pulsar and the Be star forms. In this paper we show that the observed non-pulsed radio emission from the system is a result of the synchrotron emission of the relativistic particles in the outflow beyond the shock wave and that the non-pulsed X-ray emission is due to the inverse Compton scattering of the Be star photons on this particles. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We report on a sensitive survey for radio pulsar wind nebulae (PWN) towards 27 energetic and/or high-velocity pulsars. Observations were carried out at 1.4 GHz using the Very Large Array and the Australia Telescope Compact Array and utilized pulsar-gating to search for off-pulse emission. These observing parameters resulted in a considerably more sensitive search than previous surveys and could detect PWN over a much wider range of spatial scales (and hence ambient densities and pulsar velocities). However, no emission clearly corresponding to a PWN was discovered. Based on these non-detections we argue that the young and energetic pulsars in our sample have winds which are typical of young pulsars, but produce unobservable PWN because they reside in low-density ( n ∼0.003 cm−3) regions of the interstellar medium. However, non-detection of PWN around older and less energetic pulsars can only be explained if the radio luminosity of their winds is less than 10−5 of their spin-down luminosity, implying an efficiency at least an order of magnitude smaller than that seen for young pulsars.  相似文献   

19.
We propose a unified picture of high magnetic field radio pulsars and magnetars by arguing that they are all rotating high-field neutron stars but that their magnetic axes have different orientations with respect to their rotation axes. In strong magnetic fields where photon splitting suppresses pair creation near the surface, the high-field pulsars can have active inner accelerators while the anomalous X-ray pulsars cannot. This can account for the very different observed emission characteristics of the anomalous X-ray pulsar 1E 2259+586 and the high-field radio pulsar PSR J1814-1744. A predicted consequence of this picture is that radio pulsars having surface magnetic fields greater than about 2x1014 G should not exist.  相似文献   

20.
We investigate the close analogy between the solar radio emission with a quasi-harmonic spectrum structure and one of the microwave emission components of the Crab pulsar in the form of the so-called zebra pattern. The radio emission mechanism of this component can be provided by instability at double plasma resonance and can be realized in extraordinary (for a radio pulsar) conditions, namely in a nonrelativistic plasma with a relatively weak magnetic field. We point out possible models of the emission source in the form of a magnetic trap or a neutral current sheet with a transverse magnetic field localized in the corotating region of the pulsar magnetosphere far from the neutron star surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号