首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The least equilibrated ordinary chrondrites contain chondrules which have experienced little change since the time of their formation in the early solar system. These chondrules are excellent indicators of the physical and chemical nature of the solar nebula. We separated 36 chondrules from the Chainpur (LL3.4) chondrite and analyzed each for 20 elements and petrographic properties. Sampling biases were minimized as far as possible.Chondrules seem to have formed through the melting of random mixtures of grains comprising a limited number of nebular components. The identity of these components can be deduced from chondrule compositions. The dominant components appear to be: 1) a mixture of metal and sulfide with composition similar to whole-rock metal and sulfide; 2) refractory (Ir-rich) metal; 3) refractory, olivine-rich silicates; 4) low-temperature, pyroxene-rich silicates, and, possibly, 5) a component containing the more volatile lithophiles.Most of the textural types of chondrules formed from the same set of precursor components. In some cases chondrules having different textures are almost identical in composition. A few, unusual chondrule types seem to mainly consist of uncommon nebular components, possibly indicating different modes of formation.Etching experiments confirm that chondrule rims are enriched in metal, troilite and moderately volatile elements relative to the bulk chondrules. However, a large fraction of the volatiles remains in the unetched interior.  相似文献   

2.
The concentrations of Ni, Cu, Zn, Ga, Ge, and Se in five, fine-grained chondrule rims in the highly unequilibrated CO3 chondrite ALH A77307 (3.0) have been determined for the first time by synchrotron X-ray fluorescence (SXRF) microprobe at Brookhaven National Laboratory. These elements are especially useful for tracing the role of condensation and evaporation processes which occurred at moderate temperatures in the solar nebula. Understanding the distribution of moderately volatile elements between matrix and chondrules is extremely important for evaluating the different models for the volatile depletions in chondritic meteorites. The data show that the trace element chemistry of rims on different chondrules is remarkably similar, consistent with data obtained for the major and minor elements by electron microprobe. These results support the idea that rims are not genetically related to individual chondrules, but all sampled the same reservoir of homogeneously mixed dust. Of the trace elements analyzed, Zn and Ga show depletions relative to CI chondrite values, but in comparison with bulk CO chondrites all the elements are enriched by approximately 1.5 to 3.5 x CO. The abundance patterns for moderately volatile elements in ALH A77307 chondrule rims closely mimic those observed in the bulk chondrite, indicating that matrix is the major reservoir for these elements. The close matching of the patterns for the volatile depleted bulk chondrite and enriched matrix is especially striking for Na, which is anomalously depleted in ALH A77307 in comparison with average CO chondrite abundances. The depletion in Na is probably attributable to the effects of leaching in Antarctica. With the exception of Na, the volatile elements show a relatively smooth decrease in abundance as a function of condensation temperature, indicating that their behavior is largely controlled by their volatility.  相似文献   

3.
Chondrite groups (CV, CK, CR) with large average chondrule sizes have low proportions of RP plus C chondrules, high proportions of enveloping compound chondrules, high proportions of chondrules with (thick) igneous rims, and relatively low proportions of type-I chondrules containing sulfide. In contrast, chondrite groups (CM, CO, OC, R, EH, EL) with smaller average chondrule sizes have the opposite properties. Equilibrated CK chondrites have plagioclase with relatively low Na; equilibrated OC, R, EH and EL chondrites have more sodic plagioclase. Enveloping compound chondrules and chondrules with igneous rims formed during a remelting event after the primary chondrule was incorporated into a dustball. Repeated episodes of remelting after chondrules were surrounded by dust would tend to produce large chondrules. RP and C chondrules formed by complete melting of their precursor assemblages; remelting of RP and C chondrules surrounded by dust would tend to produce porphyritic chondrules as small dust particles mixed with the melt, providing nuclei for crystallizing phenocrysts. This process would tend to diminish the numbers of RP and C chondrules. Correlations among these chondrule physical properties suggest that chondrite groups with large chondrules were typically surrounded by thick dust-rich mantles that formed in locally dusty nebular environments. Chondrules that were surrounded by thick dust mantles tended to cool more slowly because heat could not quickly radiate away. Slow cooling led to enhanced migration of sulfide to chondrule surfaces and more extensive sulfide evaporation. These chondrules also lost Na; the plagioclase that formed from equilibrated CK chondrites was thus depleted in Na.  相似文献   

4.
不同球粒陨石群的物理和岩石学性质,包括球粒的平均大小、球粒结构类型、复合球粒、带火成边球粒及含硫化物的比例、化学组成及矿物学特征等可用以划分球粒陨石的化学-岩石类型和小行星类型,这些性质提供了不同球粒陨石群有用的分类参数及其形成环境的信息.由于不同球粒陨石群的△17O与日心距离存在有相关关系,因此,依据不同球粒陨石群形...  相似文献   

5.
We report high precision sulfur isotopic data obtained by sequential extraction from various physically separated phases (bulk, matrix, and chondrules) from chondrites. A significant excess of 33S (up to Δ33S of 0.112‰ for Dhajala Chondrule) has been observed and is most likely carried by chondrule rims, though chondrule interiors cannot be ruled out as a carrier. Stellar nucleosynthesis and spallation are ruled out as a cause for this anomaly. Photochemical irradiation of sulfur gaseous species in the early solar nebula has, most likely, produced this anomaly. Observations of mass independent sulfur of photochemical origin suggest that chondrules and their rims must have formed in an optically thin nebular region. This also suggests that the chondrules were formed near the protoSun when it was active in ultraviolet light emission.  相似文献   

6.
Matrix material in type 3 chondrites forms rims on chondrules, metal-sulfide aggregates, Ca,Al-rich inclusions and chondritic clasts; it also forms lumps up to a millimeter in size, which may contain coarser silicates. Chondrules of all types were found with internal matrix lumps that appear to have entered the chondrules before the latter had crystallized. Mean concentrations of Mg, Na, Al and Ca in matrix occurrences show up to fivefold variations in a single chondrite. Variations between mean matrix compositions of individual type 3 ordinary chondrites are almost as large and partly reflect systematic differences between H, L and LL matrices. Such variations are probably a result of nebular separation of feldspathic material and ferromagnesian silicates.Compositions of chondrules and their matrix rims are normally unrelated, although rim compositions are correlated with those of matrix lumps inside chondrules. A single chondrule was found with a composition nearly identical to that of its internal matrix lump, suggesting that some chondrules may have formed from matrix material. Matrix lumps are as heterogeneous as chondrules, but mean chondrule and matrix compositions differ, even allowing for possible loss of metallic Fe,Ni during chondrule formation. Since bulk compositions of matrix lumps and rims have probably not changed significantly since their formation except for Fe-Mg exchange, our matrix samples cannot represent typical chondrule precursor materials.  相似文献   

7.
The highly unequilibrated LL3 chondrites Krymka and Chainpur preserve a relatively unaltered record of formation in the solar nebula in the texture and chemistry of their opaque mineral assemblages. A moderate degree of diversity among these meteorites and Bishunpur is apparently associated with formation under differing conditions.Spheroidal kamacite, some Cr-bearing, is present in chondrule interiors. Fine-grained metal within the Fe-rich opaque matrix of Krymka consists exclusively of taenite and minor tetrataenite; kamacite occurs inside metal-sulfide nodules. These nodules are surrounded by an inner layer of FeO-rich, fine-grained silicate material (FeO/(FeO + MgO) > 80%) and an outer troilite-rich layer, and contain variable amounts of a hydrated Fe-oxide phase. It appears that the nodules were melted, often incompletely, possibly during the chondrule formation process. Some nodule metal is Si- and Cr-bearing, indicating little reaction with nebular H2O. Nodules are much less common in Chainpur than in Krymka and rare in Bishunpur.Most metal-poor chondrules in Krymka, Bishunpur and Chainpur appear to have formed from precursors that had acquired significant amounts of FeO as a result of reaction with the nebular gas down to low temperatures; metal-rich chondrules seem to have derived from aggregates of coarse, high-temperature Fe-poor silicates. Low Ni concentrations (34–41 mg/g) in chondrule kamacite may largely result from dilution by Fe reduced from the silicates during chondrule formation.The opaque silicate matrix of Krymka is considerably more oxidized than that of Bishunpur and Chainpur, it contains no kamacite and its composition is very uniform. This may either reflect the growth of silicate grains during incipient recrystallization in the matrices of Bishunpur and Chainpur or, more likely, a lower mean grain size of the Krymka matrix components, possibly indicating later formation of the Krymka parent planetesimal.  相似文献   

8.
It appears that the highly unequilibrated Bishunpur ordinary chondrite preserves phase relations acquired during solar nebular processes to a relatively high degree; metamorphic temperatures may not have exceeded 300–350°C. The major categories of metal are: 3 kinds of metal in the metal matrix, three kinds in chondrule interiors and 2 kinds in chondrule rims. The fine-grained matrix metal is highly variable in composition: the kamacite Co content (7.8 ± 2.0 mg/g) is within the L-group range (6.7–8.2 mg/g) but extends well above and below; its Ni content (38 ± 5 mg/g) is considerably lower than in more equilibrated chondrites and taenite is Ni-rich ( > 450 mg/g) and unzoned. These compositions imply equilibration at very low temperatures of about 300–350°C. It seems unlikely that volume diffusion could account for the observed relatively unzoned phases; a better model involves mass transport by grain boundary diffusion and grain growth at the indicated temperatures. We find no evidence that the matrix was ever at higher temperatures. Large (50–650 μm) polycrystalline metal aggregates consisting of individually zoned crystals are also found in the matrix; they probably represent clusters formed in the solar nebula. A few large (50–250 μm) round monocrystalline grains are also present in the matrix.Metal-bearing chondrules tend to be highly reduced; they contain low-Ni metal that occasionally contains Si and/or Cr. Silicates in these chondrules tend to have low FeO(FeO + MgO) ratios. The Si-rich metal grains are never in contact with silicates and are always surrounded by troilite with a poorly characterized Ca, Cr-sulfide at the metal-troilite interface; they appear to be high temperature nebular condensates that avoided oxidation even during the chondrule forming process. Silicon contents drop below our detection limit when the sulfide coating is absent. Much more common in chondrule interiors are Si-free spheroidal metal grains not associated with sulfides. These have Ni and Co contents very similar to the Si-bearing grains, and appear to be oxidized variants of the same material. The third class of chondrule metal is fine ( ~1 μm) dusty grains inside individual olivine grains. These seem to reflect high temperature in situ reduction of FeO from the olivine.The composition of kamacite is different in sulfide-rich and sulfide-poor chondrule rims and in both cases it is dissimilar to the compositions in the chondrule interiors and matrix; this indicates that chondrule rims could not have resulted from reactions with the matrix, but are primary features acquired prior to accretton.  相似文献   

9.
Fourteen siderophile and other non-lithophile elements determined in 31 Semarkona (LL3.0) chondrules by neutron activation analysis are severely fractionated relative to lithophile elements. Their chondrule/whole-rock abundance ratios vary by factors of up to 1000; the mean ratio is ~0.2. Non-refractory siderophile abundance patterns in Ni-rich chondrules are smooth functions of volatility and in Ni-poor chondrules patterns are more irregular. Refractory siderophile elements are often fractionated from Ni; they covary, confirming the presence of a refractory metal component. The chalcophile element Se correlates with Br and siderophile elements. Zinc is uniformly low and uncorrelated with other elements.Most metal and sulfide in chondrules was probably present in the solar nebula before chondrule formation; most siderophile and chalcophile elements were in these materials. Some Fe was also in silicates, as were minor amounts of Ni, Co, Au, Ge and possibly Se. The amount of metal formed by reduction during chondrule melting was minor. The common metal component in chondrules is similar to, and may be the same as the common component involved in the metal/silicate fractionation of the ordinary chondrite groups.Chondrules are depleted in metal chiefly because they sampled metal-poor precursor assemblages. Metal segregation during the molten period and subsequent loss was a minor process that may be responsible for most surface craters on chondrules.  相似文献   

10.
In the Piancaldoli LL3 chondrite, we found a mm-sized clast containing ~100 chondrules 0.2–64 μm in apparent diameter (much smaller than any previously reported) that are all of the same textural type (radial pyroxene; FS1–17). This clast, like other type 3 chondrites, has a fine-grained Ferich opaque silicate matrix, sharply defined chondrules, abundant low-Ca clinopyroxene and minor troilite and Si- and Cr-bearing metallic Fe,Ni. However, the very high modal matrix abundance (63 ± 8 vol. %), unique characteristics of the chondrules, and absence of microscopically-observable olivine indicate that the clast is a new kind of type 3 chondrite. Most chondrules have FeO-rich edges, and chondrule size is inversely correlated with chondrule-core FeO concentration (the first reported correlation of chondrule size and composition). Chondrules acquired Fe by diffusion from Fe-rich matrix material during mild metamorphism, possibly before final consolidation of the rock. Microchondrules (those chondrules ? 100 μm in diameter) are also abundant in another new kind of type 3 chondrite clast in the Rio Negro L chondrite regolith breccia. In other type 3 chondrite groups, microchondrule abundance appears to be anticorrelated with mean chondrule size, viz. 0.02–0.04 vol. % in H and CO chondrites and ?0.006 vol. % in L, LL, and CV chondrites.Microchondrules probably formed by the same process that formed normal-sized droplet chondrules: melting of pre-existing dustballs. Because most compound chondrules in the clast and other type 3 chondrites formed by collisions between chondrules of the same textural type, we suggest that dust grains were mineralogically sorted in the nebula before aggregating into dustballs. The sizes of compound chondrules and chondrule craters, which resulted from collisions of similarly-sized chondrules while they were plastic, indicate that size-sorting (of dustballs) occurred before chondrule formation, probably by aerodynamic processes in the nebula. We predict that other kinds of type 3 chondrites exist which contain chondrule abundances, size-ranges and proportions of textural types different from known chondrite groups.  相似文献   

11.
We present I-Xe analyses of ten chondrules from Chainpur LL3.4 by IR laser-stepped heating. Five chondrules provided isochrons of varying quality, giving a range of ages from 0.5 Ma before Shallowater to 17.8 after Shallowater. This confirms the extended range of Chainpur chondrule ages determined by previous data. We discuss evidence for fluid alteration, shock, and thermal events in explaining the chondrule ages and suggest that chondrule remelting events, presumably from bombardment of the parent body surface, are responsible for resetting the I-Xe chronometer. Previous data show a negative correlation between 132Xe/129Xe of the trapped Xe component and 127I/129I of an initial iodine component. This behaviour that requires the presence of a component with trapped 129Xe/132Xe lower than the planetary value has been cited as evidence for closed system evolution of the I-Xe system. We find no evidence of an unambiguous trapped component lower than planetary and no evidence of a negative correlation in our data. Therefore we suggest that open system behaviour more suitably explains the I-Xe systematics of Chainpur chondrules.  相似文献   

12.
A petrographic and electron microscopic study of the Mokoia CV3 carbonaceous chondrite shows that all of the chondrules and inclusions (>400 μm in diameter) and most of their fine-grained rims studied (referred to as chondrules/rims) contain various amounts of hydrous phyllosilicates (mostly saponite) formed by aqueous alteration of anhydrous silicates. The rims mainly consist of fine-grained olivine and saponite in varying proportions and contain crosscutting veins of Fe-rich olivine. The boundaries between the chondrules and their rims are irregular and show abundant evidence of aqueous alteration interactions between them. In contrast, the host matrix contains very minor amounts of saponite and shows no evidence of such extensive aqueous alteration. The boundaries between the chondrules/rims and the matrix are sharp and show no traces of the matrix having been involved in the alteration of the chondrules/rims. These observations indicate that the aqueous alteration in the chondrules/rims did not occur in the present setting.We suggest that the chondrules/rims are actually clasts transported from a location on the meteorite parent body different from where the Mokoia meteorite was from. The aqueous alteration of the chondrules/rims probably occurred there. The veins in the rims were originally fractures produced in an interchondrule matrix by impacts; these were later filled by Fe-rich olivine during aqueous activity. This location was then involved in impact brecciation, and individual chondrules were ejected as clasts with remnants of the matrix surrounding them. During the continuing brecciation, those chondrule/rim clasts were transported, mixed with anhydrous matrix grains, and finally lithified to the present meteorite. Therefore, the rims are fragmented remnants of a former matrix.Textures characterized by fine-grained rims surrounding chondrules in chondrites have been widely thought to have formed in the solar nebula before they accreted into their parent bodies. However, our results suggest that some textures may not be explained by such an accretionary model; instead, the multi-stage parent-body process modeled for the Mokoia rim formation may be a more plausible explanation.  相似文献   

13.
Sequential non-destructive neutron activation analysis was used to determine the bulk abundance of Fe, Al, Na, Mn, Or, Sc, Co and Ir in approximately 300 individual chondrules from 16 chondrites representing the H (3–5), L4 and LL(3–6) compositional and petrologic classes. For some of the chondrules, Si, Ni, Ca and V were also determined. The histograms indicate that the most probable abundances for lithophilic elements, except Cr, are enriched in the chondrules, while the siderophilic elements are depleted in the chondrules compared to the whole chondrite. Some of the abundance populations, such as Al and Fe, appear to be multimodal. Systematic variations in the composition of the chondrules with increasing petrologic type were observed; most consistent are an increasing Na-Al and Cr-Al correlation, a decreasing Na-Mn correlation, increasing Na abundance and decreasing Na and Mn dispersions among chondrules. The systematic compositional variations with increasing petrologic type are consistent with an increasing approach to equilibrium between chondrules and matrix.Observed elemental correlations are generally consistent with mineralogical controls expected on the basis of geochemical affinities suggested by the mineral assemblages present in the chondrules. However, a prevalent Al-Ir correlation was observed, and is most pronounced for a group of chondrules belonging to a population high in Al. A Sc-Ir correlation was observed. Also, an anti-correlation between chondrule masses and Al (and Ir for some chondrules) content of the chondrules was observed. These correlations are attributed to a fractionation during condensation or chondrule formation and cannot be attributed to classical geochemical similarities i.e. these correlations result from a cosmochemical fractionation. From the compositional evidence, it is suggested that there may be two mechanisms for chondrule production. Some high Al chondrules which exhibit the Al-Ir correlation are believed to be remelted primitive high-temperature aggregates. The elemental composition of the chondrules from the lower Al abundance population is consistent with a preferential remelting of pre-existing silicates.  相似文献   

14.
A set of troilite-silicate-metal (TSM) inclusions and chondrule rims in the Bishunpur (LL3.1) chondrite provide information regarding impact brecciation of small bodies in the early solar system. The TSM inclusions and chondrule rims consist of numerous angular to subrounded silicate grains that are individually enclosed by fine networks of troilite. FeNi metal also occurs in the troilite matrix. The silicates include olivine (Fo55-98), low-Ca pyroxene (En78-98), and high-Ca pyroxene (En48-68Wo11-32). Al- and Si-rich glass coexists with the silicates. Relatively coarse silicate grains are apparently fragments of chondrules typical of petrologic type-3 chondrites. Troilite fills all available cracks and pores in the silicate grains. Some of the TSM inclusions and rims are themselves surrounded by fine-grained silicate-rich rims (FGR).The TSM inclusions and rims texturally resemble the troilite-rich regions in the Smyer H-chondrite breccia. They probably formed by shock-induced mobilization of troilite during an impact event on a primitive asteroidal body. Because silicates in the TSM inclusions and rims have highly unequilibrated compositions, their precursor was presumably type-3 chondritic material like Bishunpur itself. The TSM inclusions and the chondrules with the TSM rims were fragmented and dispersed after the impact-induced compaction, then reaccreted onto the Bishunpur parent body. FGR probably formed around the TSM inclusions and rims, as well as around some chondrules, during the reaccumulation process. Components of most type-2 and 3 chondrites probably experienced similar processing, i.e., dispersal of unconsolidated materials and subsequent reaccumulation.  相似文献   

15.
Chondrules in E3 chondrites differ from those in other chondrite groups. Many contain near-pure endmember enstatite (Fs<1). Some contain Si-bearing FeNi metal, Cr-bearing troilite, and, in some cases Mg, Mn- and Ca-sulfides. Olivine and more FeO-rich pyroxene grains are present but much less common than in ordinary or carbonaceous chondrite chondrules. In some cases, the FeO-rich grains contain dusty inclusions of metal. The oxygen three-isotope ratios (δ18O, δ17O) of olivine and pyroxene in chondrules from E3 chondrites, which are measured using a multi-collection SIMS, show a wide range of values. Most enstatite data plots on the terrestrial fractionation (TF) line near whole rock values and some plot near the ordinary chondrite region on the 3-isotope diagram. Pyroxene with higher FeO contents (∼2-10 wt.% FeO) generally plots on the TF line similar to enstatite, suggesting it formed locally in the EC (enstatite chondrite) region and that oxidation/reduction conditions varied within the E3 chondrite chondrule-forming region. Olivine shows a wide range of correlated δ18O and δ17O values and data from two olivine-bearing chondrules form a slope ∼1 mixing line, which is approximately parallel to but distinct from the CCAM (carbonaceous chondrite anhydrous mixing) line. We refer to this as the ECM (enstatite chondrite mixing) line but it also may coincide with a line defined by chondrules from Acfer 094 referred to as the PCM (Primitive Chondrite Mineral) line (Ushikubo et al., 2011). The range of O isotope compositions and mixing behavior in E3 chondrules is similar to that in O and C chondrite groups, indicating similar chondrule-forming processes, solid-gas mixing and possibly similar 16O-rich precursors solids. However, E3 chondrules formed in a distinct oxygen reservoir.Internal oxygen isotope heterogeneity was found among minerals from some of the chondrules in E3 chondrites suggesting incomplete melting of the chondrules, survival of minerals from previous generations of chondrules, and chondrule recycling. Olivine, possibly a relict grain, in one chondrule has an R chondrite-like oxygen isotope composition and may indicate limited mixing of materials from other reservoirs. Calcium-aluminum-rich inclusions (CAIs) in E3 chondrites have petrologic characteristics and oxygen isotope ratios similar to those in other chondrite groups. However, chondrules from E3 chondrites differ markedly from those in other chondrite groups. From this we conclude that chondrule formation was a local event but CAIs may have all formed in one distinct place and time and were later redistributed to the various chondrule-forming and parent body accretion regions. This also implies that transport mechanisms were less active at the time of and following chondrule formation.  相似文献   

16.
Fifty-eight chondrules were separated from the Dhajala H3.8 chondrite and their thermoluminescence properties were measured. Chips from 30 of the chondrules were examined petrographically and with electron-microprobe techniques; the bulk compositions of 30 chondrules were determined by the fused bead technique. Porphyritic chondrules, especially 5 which have particularly high contents of mesostasis, tend to have higher TL (mass-normalized) than non-porphyritic chondrules. Significant correlations between log(TL) and the bulk CaO, Al2O3 and MnO content of the chondrules, and between log(TL) and the CaO, Al2O3, SiO2 and normative anorthite content of the chondrule glass, indicate an association between TL and the abundance and composition of mesostasis. Unequilibrated chondrules ( i.e. those whose olivine is compositionally heterogeneous and high in Ca) have low TL, whereas equilibrated chondrules have a wide range of TL, depending on their chemical and petrographic properties.We suggest that the TL level in a given chondrule is governed by its bulk composition (which largely determined the abundance and composition of constituent glass) and by metamorphism (which devitrfied the glass in those chondrules with high Ca glass to produce the TL phosphor). We also suggest that one reason why certain chondrules in type 3 ordinary chondrites are unequilibrated, while others are equilibrated, is that the mesostasis of the unequilibrated chondrules resisted the devitrification. This devitrification is necessary for the diffusive communication between chondrule grains and matrix that enables equilibration.  相似文献   

17.
Chondrules from the Semarkona (LL3.0) chondrite show refractory and common lithophile fractionation trends similar to those observed among the chondrite groups. It appears that chondrules are mixtures of a small number of pre-existing solid components, and we infer that chondrule precursor materials were related to the nebular components involved in the lithophile element fractionations recognized in ordinary chondrites. Compositional trends among the chondrules can be used to deduce the compositions of these components.We use instrumental neutron activation analysis to measure many (~20) of the lithophile elements in 30 chondrules. The amounts of oxidized iron were calculated from other compositional parameters; concentrations of Si were estimated using mass-balance considerations. The data were corrected for the diluting effects of non-lithophile constituents. Plots of lithophile elements versus a reference refractory element such as Al show that there were two major chondrule silicate precursor components: a refractory, olivine-rich, FeO-free one, and a non-refractory, SiO2-, FeO-rich one.The refractory component probably forms from olivine-enriched condensates formed above the condensation temperature of enstatite. The non-refractory component must have formed from fine-grained materials that were able to equilibrate down to lower nebular temperatures. Chondrite matrix may have had an origin similar to that of the non-refractory material, and constitutes a third lithophile-bearing component that took part in chondrite fractionation processes. The low abundance of refractories and Mg in ordinary and enstatite chondrites was produced by the loss of materials having a higher refractory-element/Mg ratio than that in the refractory component of chondrules.  相似文献   

18.
19.
Chondrules and isolated forsterites in five low-subtype ordinary chondrites [NWA 3127 (LL3.1), Sahara 97210 (LL3.2), Wells (LL3.3), Chainpur (LL3.4), and Sahara 98175 (LL3.5)] were studied using petrographic, EMPA, and SIMS techniques to better constrain the origin of chondrules and the olivine grains within them. Our results imply that igneous crystallization, vapor fractionation, redox effects, and open-system behavior were important processes. All olivine grains, including normal, relict, and isolated forsterite grains, show evidence for igneous fractionation under disequilibrium conditions, with olivine crystallizing during rapid cooling (closer to 2000 °C/h than to 100 °C/h). Vapor fractionation is manifested by anti-correlated abundances between refractory elements (Al, Sc, Y, Ti, Ca, V) and volatile elements (Cr, Mn, P, Rb, Fe) in olivine. Redox effects are evidenced in various ways, and imply that Fe, Co, Ni, and P were partitioned more into metal, and V was partitioned more into olivine, under reducing conditions in the most FeO-poor melts. There is no obvious evidence for systematic variations in olivine composition according to meteorite subtype, but shock melting in Sahara 97210 resulted in the injection of glass-derived melt into olivine, resulting in artificially high abundances of Ba, Sr, Na, Ti, and some other incompatible elements in olivine. Terrestrial weathering in a hot desert environment may have mobilized Ba and Sr in some glasses.Our data suggest that chondrules in ordinary chondrites experienced repeated thermal, chemical, and mechanical processing during a “recycling” process over an extended time period, which involved multiple episodes of melting under fluctuating redox and heating conditions, and multiple episodes of chondrule break-up in some cases. Forsterite grains, including normal grains in forsterite-bearing type I chondrules, the cores of isolated forsterites, and relict forsterite in type II chondrules, all crystallized from similar, refractory melts under reducing conditions; relict Mg-olivine and isolated forsterite grains were thus derived from type I chondrules. Olivine in type II chondrules, including normal grains and ferroan overgrowths on relict Mg-olivine, crystallized from more volatile-rich, oxidized, and relatively unfractionated melts. Relict dusty olivine grains in type I chondrules were derived from type II chondrules during incomplete melting episodes involving reduction and some vaporization, with clear (non-dusty) grains in dusty olivine-bearing chondrules crystallizing from the reduced and partly vaporized melts. Melt compositions parental to normal olivine grains in type I and II chondrules are systematically enriched in refractory elements compared to bulk chondrule compositions, implying that chondrules often experienced open-system exchange with more volatile-rich surroundings after some olivine had crystallized, possibly while the chondrules were still partly molten. Type II chondrules could have been derived from type I chondrules by the addition of relatively volatile-rich material, followed by re-melting and little evaporation under oxidizing conditions. In contrast, type I chondrules could have been derived from type II chondrules by re-melting involving more-or-less evaporation under reducing conditions. Chemical, oxygen isotope, and petrographic data are best accommodated by a model in which there were several (>2-3, sometimes ?4-5) melting episodes for most chondrules in ordinary chondrites.  相似文献   

20.
We report a study of the oxygen isotope ratios of chondrules and their constituent mineral grains from the Mokoia, oxidized CV3 chondrite. Bulk oxygen isotope ratios of 23 individual chondrules were determined by laser ablation fluorination, and oxygen isotope ratios of individual grains, mostly olivine, were obtained in situ on polished mounts using secondary ion mass spectrometry (SIMS). Our results can be compared with data obtained previously for the oxidized CV3 chondrite, Allende. Bulk oxygen isotope ratios of Mokoia chondrules form an array on an oxygen three-isotope plot that is subparallel to, and slightly displaced from, the CCAM (carbonaceous chondrite anhydrous minerals) line. The best-fit line for all CV3 chondrite chondrules has a slope of 0.99, and is displaced significantly (by δ17O ∼ −2.5‰) from the Young and Russell slope-one line for unaltered calcium-aluminum-rich inclusion (CAI) minerals. Oxygen isotope ratios of many bulk CAIs also lie on the CV-chondrule line, which is the most relevant oxygen isotope array for most CV chondrite components. Bulk oxygen isotope ratios of most chondrules in Mokoia have δ18O values around 0‰, and olivine grains in these chondrules have similar oxygen isotope ratios to their bulk values. In general, it appears that chondrule mesostases have higher δ18O values than olivines in the same chondrules. Our bulk chondrule data spread to lower δ18O values than any ferromagnesian chondrules that have been measured previously. Two chondrules with the lowest bulk δ18O values (−7.5‰ and −11.7‰) contain olivine grains that display an extremely wide range of oxygen isotope ratios, down to δ17O, δ18O around -50‰ in one chondrule. In these chondrules, there are no apparent relict grains, and essentially no relationships between olivine compositions, which are homogeneous, and oxygen isotopic compositions of individual grains. Heterogeneity of oxygen isotope ratios within these chondrules may be the result of incorporation of relict grains from objects such as amoeboid olivine aggregates, followed by solid-state chemical diffusion without concomitant oxygen equilibration. Alternatively, oxygen isotope exchange between an 16O-rich precursor and an 16O-poor gas may have taken place during chondrule formation, and these chondrules may represent partially equilibrated systems in which isotopic heterogeneities became frozen into the crystallizing olivine grains. If this is the case, we can infer that the earliest nebular solids from which chondrules formed had δ17O and δ18O values around -50‰, similar to those observed in refractory inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号