首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Ultramafic portions of ophiolitic fragments in the Arabian–Nubian Shield (ANS) show pervasive carbonate alteration forming various degrees of carbonated serpentinites and listvenitic rocks. Notwithstanding the extent of the alteration, little is known about the processes that caused it, the source of the CO2 or the conditions of alteration. This study investigates the mineralogy, stable (O, C) and radiogenic (Sr) isotope composition, and geochemistry of suites of variably carbonate altered ultramafics from the Meatiq area of the Central Eastern Desert (CED) of Egypt. The samples investigated include least-altered lizardite (Lz) serpentinites, antigorite (Atg) serpentinites and listvenitic rocks with associated carbonate and quartz veins. The C, O and Sr isotopes of the vein samples cluster between ?8.1‰ and ?6.8‰ for δ13C, +6.4‰ and +10.5‰ for δ18O, and 87Sr/86Sr of 0.7028–0.70344, and plot within the depleted mantle compositional field. The serpentinites isotopic compositions plot on a mixing trend between the depleted-mantle and sedimentary carbonate fields. The carbonate veins contain abundant carbonic (CO2±CH4±N2) and aqueous-carbonic (H2O-NaCl-CO2±CH4±N2) low salinity fluid, with trapping conditions of 270–300°C and 0.7–1.1 kbar. The serpentinites are enriched in Au, As, S and other fluid-mobile elements relative to primitive and depleted mantle. The extensively carbonated Atg-serpentinites contain significantly lower concentrations of these elements than the Lz-serpentinites suggesting that they were depleted during carbonate alteration. Fluid inclusion and stable isotope compositions of Au deposits in the CED are similar to those from the carbonate veins investigated in the study and we suggest that carbonation of ANS ophiolitic rocks due to influx of mantle-derived CO2-bearing fluids caused break down of Au-bearing minerals such as pentlandite, releasing Au and S to the hydrothermal fluids that later formed the Au-deposits. This is the first time that gold has been observed to be remobilized from rocks during the lizardite–antigorite transition.  相似文献   

2.
Integrated zircon–olivine O–Hf isotope data have been successfully used to unravel the nature of the source mantle for the early Permian post-collisional mafic–ultramafic intrusive rocks in the southern margin of the Central Asian Orogenic Belt in NW China. Olivine crystals with forsterite (Fo) contents varying from 91 to 87 mol% from the Permian Pobei mafic–ultramafic complex in the region yield highly elevated δ18O from 6.0 to 7.2‰. These values are much higher than typical mantle values (~?5.3‰) and are apparently at odds with the mantle-like εNd(t) values of whole rocks (4.9–5.4). Magmatic zircon crystals from troctolite and gabbroic rocks show divergent oxygen and hafnium isotopic compositions: mantle-like εHf(t) values from 5.1 to 11.9 and crust-like δ18O values from 7.6 to 10.1‰. The observed increase of δ18O values from olivine (an early crystallizing phase) to zircon (a late crystallizing phase) in the mafic–ultramafic rocks is generally consistent with an AFC process. However, this process cannot fully explain the highly elevated δ18O values (6–7‰) for the most primitive olivine containing Fo as high as mantle olivine (>?90 mol%) and the mantle-like Hf isotope composition of zircon. Mixing calculation indicates that such highly unusual isotope compositions can be explained by the previous source mantle contamination with subducted sediment-derived melts and slab-derived fluids. Our results show that the combination of zircon O–Hf isotopes and olivine oxygen isotopes is more effective than the data of zircon or olivine alone to distinguish the effect of AFC process from source contamination. The results from this study provide a new line of evidence that the sub-arc mantle is not homogeneous in oxygen isotopes.  相似文献   

3.
DH and 18O16O ratios have been measured for whole-rock samples and mineral separates from the mafic and ultramatic rocks of the Cambro-Ordovician Highland Border Suite. The H- and O- isotopic compositions of these rocks record individual stages in a relatively complex 500 Myr old hydrothermal/metamorphic history. Lizardite serpentinites (δD ~ ? 105‰; δ18O ~ + 6.2‰) record a premetamorphic history and indicate that parent harzburgites, dunites, and pyroxenites were serpentinized through low-temperature interaction with meteoric waters during cooling. The other rocks of the Highland Border Suite record subsequent interaction with metamorphic fluids. Amphibolite facies hornblende schists were produced through thrust-related (dynamothermal) metamorphism of spilitic pillow lavas. During dehydration, D-enriched fluids were driven off from the spilites thus leaving the hornblende schists to equilibrate with a relatively D-depleted internal fluid reservoir (δD ~ ? 45‰). The expelled D-enriched fluids may have mixed with more typical Dalradian metamorphic waters which then exchanged with the remaining mafic rocks and lizardite serpentinites during greenschist facies regional metamorphism to produce antigorite serpentinites (δD ~ ? 62‰; δ18O ~ + 8‰) and greenschist metaspilites (δD ~ ? 57‰; δ18O ~ + 7.3‰) with similar H- and O-isotopic compositions. Serpentinites which have been only partially metamorphosed show intermediate H-isotopic compositions between that of metamorphic antigorite (δD ~ ? 62‰) and non-metamorphic lizardite δD ~ ? 105‰) end members.  相似文献   

4.
This paper provides the first measurements of the nitrogen (N) concentrations and isotopic compositions of high- and ultrahigh-pressure mafic eclogites, aimed at characterizing the subduction input flux of N in deeply subducting altered oceanic crust (AOC). The samples that were studied are from the Raspas Complex (Ecuador), Lago di Cignana (Italy), the Zambezi Belt (Zambia) and Cabo Ortegal (Spain), together representing subduction to 50-90 km depths. The eclogites contain 2-20 ppm N with δ15Nair values ranging from −1 to +8‰. These values overlap those of altered oceanic crust, but are distinct from values for fresh MORB (for the latter, ∼1.1 ppm N and δ15Nair ∼ −4‰). Based on N data in combination with other trace element data, the eclogite suites can be subdivided into those that are indistinguishable from their likely protolith, AOC, with or without superimposed effects of devolatilization (Lago di Cignana, Cabo Ortegal), and those that have experienced metasomatic additions during subduction-zone metamorphism (Zambezi Belt, Raspas). For the former group, the lack of a detectable loss of N in the eclogites, compared to various altered MORB compositions, suggests the retention of N in deeply subducted oceanic crust. The metasomatic effects affecting the latter group can be best explained by mixing with a (meta)sedimentary component, resulting in correlated enrichments of N and other trace elements (in particular, Ba and Pb) thought to be mobilized during HP/UHP metamorphism. Serpentinized and high-pressure metamorphosed peridotites, associated with the eclogites at Raspas and Cabo Ortegal, contain 3-15 ppm N with δ15Nair values ranging from +3 to +6‰, significantly higher than the generally accepted values for the MORB mantle (δ15Nair ∼ −5‰). Based on their relatively high N contents and their homogeneous and positive δ15N values, admixing of sedimentary N is also indicated for the serpentinized peridotites.One possible pathway for the addition of sediment-derived N into eclogites and peridotites involves mixing with fluids along the slab-mantle wedge interface. Alternatively, sedimentary N could be incorporated into peridotites during serpentinization at bending-related faults at the outer rise and, during later deserpentinization, released into fluids that then infiltrate overlying rocks. Deep retention of N in subducting oceanic crust should be considered in any attempt to balance subduction inputs with outputs in the form of arc volcanic gases. If materials such as these eclogites and serpentinized peridotites are eventually subducted to beyond sub-arc depths into the deeper mantle, containing some fraction of their forearc-subarc N inventory (documented here), they could deliver isotopically heavy N into the mantle to potentially be sampled by plume-related magmas.  相似文献   

5.
The northern margin of the North China Craton (NCC) was an active convergent margin during Palaeozoic and preserves important imprints of magmatic and metasomatic processes associated with oceanic plate subduction. Here, we investigate the mafic–ultramafic rocks in the Xiahabaqin–Sandaogou complexes from the northern NCC including pyroxenite, hornblendites, hornblende gabbro, and their rodingitized counterparts within a serpentinite domain. We present petrological, zircon U–Pb geochronological, and geochemical data to constrain the nature and timing of the magmatic and metasomatic processes in the subduction zone mantle wedge. The rock suites investigated in this study are characterized by low contents of SiO2, Na2O, and K2O, with high CaO, FeO, Fe2O3, and MgO. The rodingitized rocks show markedly high CaO and lower MgO compared to their ultramafic protolith, suggesting extensive post-magmatic infiltration of Ca-rich, Si-poor fluids derived by serpentinization of mantle peridotite. The enrichment of large ion lithophile and light rare earth elements such as Ba, Sr, K, La, and Ce with relative depletion of high field strength elements like Nb, Ta, Zr, and Hf in the ultramafic rocks collectively suggest metasomatism of a fore-arc mantle wedge by fluids released through dehydration of subducted oceanic slab and subduction-derived sediments. Dehydration and decarbonation leading to metasomatic fluid influx and serpentinization of mantle wedge peridotite account for the enriched geochemical signatures for the rodingitized rocks. The zircon grains in these rocks show textures indicating magmatic crystallization followed by fluid-controlled dissolution–precipitation. Magmatic zircons from altered pyroxenite, hornblendite, and rodingitized pyroxenite in Xiahabaqin yield protolith crystallization ages peaks at 396 Ma and 392 Ma and metasomatic grains show ages of 386 Ma, 378 Ma, and 348 Ma. The zircons from hornblendite and basaltic trachyandesite indicate protolith emplacement during 402–388 Ma. Metasomatic zircon grains from rodingitized hornblende gabbro in Sandaogou complex show a wide range of ages as 412 Ma, 398 Ma, 383 Ma, and 380 Ma. The common magmatic zircon ages peaks at 398–388 Ma in most of the rocks suggest a similar time for magma crystallization in the Xiahabaqin and Baiqi during Middle Devonian. Subsequently, repeated pulses fluids and melts resulted in metasomatic reactions in mantle wedge until early Permian. The Lu–Hf analysis of the zircon grains from these rocks display markedly negative εHf(t) values ranging from ?22.4 to ?7.7, suggesting magma derivation from an enriched, hydrated lithospheric mantle through fluid–rock interaction and mantle wedge metasomatism. Rodingitization processes are associated with exhumation of ultramafic mantle wedge rocks within a serpentinized subduction channel close to the subducted slab in response to slab roll back in a long-lasting subduction regime. This study offers insights into magmatic and metasomatic processes of ultramafic rocks in the fore-arc mantle wedge which were exhumed and accreted to an active continental margin during the southward subduction of the Palaeo-Asian oceanic lithosphere beneath the NCC.  相似文献   

6.
Serpentinites (massive and schistose) and listvenite occur as tectonic sheets and lenses within a calcareous metasedimentary mélange of the Tulu Dimtu, western Ethiopia. The massive serpentinite contains high-magnesian metamorphic olivine (forsterite [fo] ~96 mol%) and rare relict primary mantle olivine (Fo90–93). Both massive and schistose serpentinites contain zoned chromian spinel; the cores with the ferritchromite rims preserve a pristine Cr/(Cr+Al) atomic ratio (Cr# = 0.79–0.87), suggesting a highly depleted residual mantle peridotite, likely formed in a suprasubduction zone setting. Listvenite associated with serpentinites of smaller ultramafic lenses also contain relict chromian spinel having identical Cr# to those observed in serpentinites. However, the relict chromian spinel in listvenite has significantly higher Mg/(Mg+Fe2+) atomic ratios. This suggests that a nearly complete metasomatic replacement of ultramafic rocks by magnesite, talc, and quartz to prevent Mg–Fe2+ redistribution between relict chromian spinel and the host, that is, listvenite formation, took place prior to re-equilibration between chromian spinel and the surrounding mafic minerals in serpentinites. Considering together with the regional geological context, low-temperature CO2-rich hydrothermal fluids would have infiltrated into ultramafic rocks from host calcareous sedimentary rocks at a shallow level of accretionary prism before a continental collision to form the East African Orogen (EAO).  相似文献   

7.
Serpentinites are widespread in the Arabian-Nubian Shield (ANS) of the Eastern Desert of Egypt and usually enclose a tremendous carbonate alteration. Combined investigation of the stable isotope compositions of both O-H in serpentines and O-C in the whole-rock and the chemistry of the fluid-mobile elements (FMEs) in whole-rock serpentinites from Wadi (W.) Alam, Gabal (G.) El-Maiyit, and W. Atalla (Eastern Desert of Egypt) allowed to better understand the subsequent fluid sources of serpentinization and carbonation, as well as impact of these processes on the geochemistry of protolith ultramafic rocks. δ 18O values of W. Alam and W. Atalla serpentine minerals are close to the unaltered mantle and propose a lower temperature serpentinization if compared with those of G. El-Maiyit rocks. Moreover, δD values of W. Alam and W. Atalla serpentines (? 94 to ? 65‰) correspond to an igneous source that might be hydrothermal solutions mixed with the seawater in the mid-ocean ridge-arc transition setting. On the other hand, G. El-Maiyit serpentine is more depleted in 18O (with lower δ 18O values = 4.08–4.85‰), and its δD values (? 73 to 56 ‰) are most probably caused by an interaction with metamorphic fluids, acquired during on-land emplacement of oceanic peridotites or during burial in fore-arc setting. In addition, the oceanic oxygen isotope composition of most studied ophiolitic serpentinites points to the preservation of the pre-obduction δ 18O signatures and thus local-scale fluid flow at low water/rock ratios. Serpentinization fluids were CO2-poor and the carbonation of the serpentinites resulted from infiltration of externally derived fluids. δ 18OVSMOW values of carbonates in the studied serpentinites vary between heavier oxygen isotope composition in G. El-Maiyit samples (av. = 25.32‰) to lighter composition in W. Alam samples (av. = 19.43‰). However, δ 13C values of all serpentinites point mantle source of carbon. This source might have been evolved in mid-ocean ridge (W. Atalla) and subduction zone (W. Alam and G. El-Maiyit) settings. The studied serpentinites are usually enriched in FMEs, particularly Pb, Sr, Cs, and U. These enrichments were most probably the result of serpentinization and/or carbonation.  相似文献   

8.
The oxygen isotope compositions of eclogite and amphibolite garnets from Franciscan Complex high-grade blocks and actinolite rinds encasing the blocks were determined to place constraints on their fluid histories. SIMS oxygen isotope analysis of single garnets from five eclogite blocks from three localities (Ring Mountain, Mount Hamilton, and Jenner Beach) shows an abrupt decrease in the δ18O value by ~1–3 ‰ from core to rim at a distance of ~120 ± 50 μm from the rim in nine out of the 12 garnets analyzed. In contrast, amphibolite garnets from one block (Ring Mountain) analyzed show a gradual increase in δ18O value from core to rim, implying a different history from that of the eclogite blocks. Values of δ18O in eclogite garnet cores range from 5.7 to 11.6 ‰, preserving the composition of the eclogite protolith. The abrupt decrease in the δ18O values of the garnet rims to values ranging from 3.2 to 11.2 ‰ suggests interaction with a lower δ18O fluid during the final stages of growth during eclogite facies metamorphism (450–600 °C). We hypothesize that this fluid is sourced from the serpentinized mantle wedge. High Mg, Ni, and Cr contents of actinolite rinds encasing the blocks also support interaction with ultramafic rock. Oxygen isotope thermometry using chlorite and phengite versus actinolite of rinds suggests temperatures of 185–240 °C at Ring Mountain and Mount Hamilton. Rind formation temperatures together with the lower δ18O garnet rims suggest that the blocks were in contact with ultramafic rock from the end of garnet growth through low-temperature retrogression. We suggest a tectonic model in which oceanic crust is subducted at the initiation of subduction and becomes embedded in the overlying mantle wedge. As subduction continues, metasomatic exchange between high-grade blocks and surrounding ultramafic rock is recorded in low δ18O garnet rims, and later as temperatures decrease, with rind formation.  相似文献   

9.
ABSTRACT

In order to determine the effects of fluid–rock interaction on nitrogen elemental and isotopic systematics in high-pressure metamorphic rocks, we investigated three different profiles representing three distinct scenarios of metasomatic overprinting. A profile from the Chinese Tianshan (ultra)high-pressure–low-temperature metamorphic belt represents a prograde, fluid-induced blueschist–eclogite transformation. This profile shows a systematic decrease in N concentrations from the host blueschist (~26 μg/g) via a blueschist–eclogite transition zone (19–23 μg/g) and an eclogitic selvage (12–16 μg/g) towards the former fluid pathway. Eclogites and blueschists show only a small variation in δ15Nair (+2.1 ± 0.3‰), but the systematic trend with distance is consistent with a batch devolatilization process. A second profile from the Tianshan represents a retrograde eclogite–blueschist transition. It shows increasing, but more scattered, N concentrations from the eclogite towards the blueschist and an unsystematic variation in δ15N values (δ15N = + 1.0 to +5.4‰). A third profile from the high-P/T metamorphic basement complex of the Southern Armorican Massif (Vendée, France) comprises a sequence from an eclogite lens via retrogressed eclogite and amphibolite into metasedimentary country rock gneisses. Metasedimentary gneisses have high N contents (14–52 μg/g) and positive δ15N values (+2.9 to +5.8‰), and N concentrations become lower away from the contact with 11–24 μg/g for the amphibolites, 10–14 μg/g for the retrogressed eclogite, and 2.1–3.6 μg/g for the pristine eclogite, which also has the lightest N isotopic compositions (δ15N = + 2.1 to +3.6‰).

Overall, geochemical correlations demonstrate that phengitic white mica is the major host of N in metamorphosed mafic rocks. During fluid-induced metamorphic overprint, both abundances and isotopic composition of N are controlled by the stability and presence of white mica. Phengite breakdown in high-P/T metamorphic rocks can liberate significant amounts of N into the fluid. Due to the sensitivity of the N isotope system to a sedimentary signature, it can be used to trace the extent of N transport during metasomatic processes. The Vendée profile demonstrates that this process occurs over several tens of metres and affects both N concentrations and N isotopic compositions.  相似文献   

10.
Characterisation of mass transfer during subduction is fundamental to understand the origin of compositional heterogeneities in the upper mantle. Fe isotopes were measured in high-pressure/low-temperature metabasites (blueschists, eclogites and retrograde greenschists) from the Ile de Groix (France), a Variscan high-pressure terrane, to determine if the subducted oceanic crust contributes to mantle Fe isotope heterogeneities. The metabasites have δ56Fe values of +0.16 to +0.33‰, which are heavier than typical values of MORB and OIB, indicating that their basaltic protolith derives from a heavy-Fe mantle source. The δ56Fe correlates well with Y/Nb and (La/Sm)PM ratios, which commonly fractionate during magmatic processes, highlighting variations in the magmatic protolith composition. In addition, the shift of δ56Fe by +0.06 to 0.10‰ compared to basalts may reflect hydrothermal alteration prior to subduction. The δ56Fe decrease from blueschists (+0.19 ± 0.03 to +0.33 ± 0.01‰) to eclogites (+0.16 ± 0.02 to +0.18 ± 0.03‰) reflects small variations in the protolith composition, rather than Fe fractionation during metamorphism: newly-formed Fe-rich minerals allowed preserving bulk rock Fe compositions during metamorphic reactions and hampered any Fe isotope fractionation. Greenschists have δ56Fe values (+0.17 ± 0.01 to +0.27 ± 0.02‰) similar to high-pressure rocks. Hence, metasomatism related to fluids derived from the subducted hydrothermally altered metabasites might only have a limited effect on mantle Fe isotope composition under subsolidus conditions, owing to the large stability of Fe-rich minerals and low mobility of Fe. Subsequent melting of the heavy-Fe metabasites at deeper levels is expected to generate mantle Fe isotope heterogeneities.  相似文献   

11.
Summary N and O isotope systematics of a suite of high-pressure (HP) and ultrahigh-pressure (UHP) metasediments of the Schistes Lustrés nappe and metaperidotites of the Erro Tobbio Massif from the Alpine-Appennine system are compared with their unmetamorphosed or hydrothermally-altered equivalent from the same localities and from the South West Indian Ridge (SWIR). The HP and UHP rocks studied represent a sequence of pelagic sediments and altered ultramafic rocks subducted to different depths of down to 90 km along a cold geothermal gradient (8 °C/km). Unmetamorphosed and HP metasediments show the same range in δ15N values irrespective of their metamorphic grade and bulk nitrogen concentrations. Together with several other geochemical features (K, Rb and Cs contents, δD), this indicates that δ15N values were unaffected by metamorphism and N was not released during subduction. N isotope analysis of serpentinites coupled with δ18O systematics suggests the involvement of a mafic (crustal) component during partial deserpentinization of the subducted oceanic mantle at the depth locus of island arc magmatism. This does not imply large-scale fluxes as the metagabbros are spatially associated with the analyzed serpentinites. It rather indicates preservation of presubduction chemical and isotopic heterogeneities on a local scale as documented for the metasediments.  相似文献   

12.
Slow–ultraslow spreading oceans are mostly floored by mantle peridotites and are typified by rifted continental margins, where subcontinental lithospheric mantle is preserved. Structural and petrologic investigations of the high-pressure (HP) Alpine Voltri Massif ophiolites, which were derived from the Late Jurassic Ligurian Tethys fossil slow–ultraslow spreading ocean, reveal the fate of the oceanic peridotites/serpentinites during subduction to depths involving eclogite-facies conditions, followed by exhumation.

The Ligurian Tethys was formed by continental extension within the Europe–Adria lithosphere and consisted of sea-floor exposed mantle peridotites with an uppermost layer of oceanic serpentinites and of subcontinental lithospheric mantle at the rifted continental margins. Plate convergence caused eastward subduction of the oceanic lithosphere of the Europe plate and the uppermost serpentinite layer of the subducting slab formed an antigorite serpentinite-subduction channel. Sectors of the rather unaltered mantle lithosphere of the Adria extended margin underwent ablative subduction and were detached, embedded, and buried to eclogite-facies conditions within the serpentinite-subduction channel. At such P–T conditions, antigorite serpentinites from the oceanic slab underwent partial HP dehydration (antigorite dewatering and growth of new olivine). Water fluxing from partial dehydration of host serpentinites caused partial HP hydration (growth of Ti-clinohumite and antigorite) of the subducted Adria margin peridotites. The serpentinite-subduction channel (future Beigua serpentinites), acting as a low-viscosity carrier for high-density subducted rocks, allowed rapid exhumation of the almost unaltered Adria peridotites (future Erro–Tobbio peridotites) and their emplacement into the Voltri Massif orogenic edifice. Over in the past 35 years, this unique geologic architecture has allowed us to investigate the pristine structural and compositional mantle features of the subcontinental Erro–Tobbio peridotites and to clarify the main steps of the pre-oceanic extensional, tectonic–magmatic history of the Europe–Adria asthenosphere–lithosphere system, which led to the formation of the Ligurian Tethys.

Our present knowledge of the Voltri Massif provides fundamental information for enhanced understanding, from a mantle perspective, of formation, subduction, and exhumation of oceanic and marginal lithosphere of slow–ultraslow spreading oceans.  相似文献   

13.
ABSTRACT

The La Tinta mélange is a small but singular ultramafic mélange sheet that crops out in eastern Cuba. It is composed of dolerite-derived amphibolite blocks embedded in a serpentinite matrix. The amphibolite blocks have mid-ocean ridge basalt (MORB)-like composition showing little if any imprint of subduction zone component, similar to most forearc and MOR basalts worldwide. Relict Cr-spinel and olivine mineral chemistry of the serpentinized ultramafic matrix suggest a forearc position for these rocks. These characteristics, together with a hornblende 40Ar/39Ar age of 123.2 ± 2.2 Ma from one of the amphibolite blocks, suggest that the protoliths of the amphibolite blocks correspond to forearc basalt (FAB)-related rocks that formed during the earlier stage of subduction initiation of the Early Cretaceous Caribbean arc. We propose that the La Tinta amphibolites correspond to fragments of sills and dikes of hypoabyssal rocks formed in the earlier stages of a subduction initiation scenario in the Pacific realm (ca. 136 Ma). The forearc dolerite-derived amphibolites formed by partial melting of upwelling fertile asthenosphere at the beginning of subduction of the Proto-Caribbean (Atlantic) slab, with no interaction with slab-derived fluids/melts. This magmatic episode probably correlates with Early Cretaceous basic rocks described in Hispaniola (Gaspar Hernandez serpentinized peridotite-tectonite). The dikes and sills cooled and metamorphosed due to hydration at low pressure (ca. 3.8 kbar) and medium to high temperature (up to 720ºC) and reached ca. 500ºC at ca. 123 Ma. At this cooling stage, serpentinite formed after hydration of the ultramafic upper mantle. This process might have been favoured by faulting during extension of the forearc, indicating an early stage of dike and sill fragmentation and serpentinite mélanges formation; however, full development of the mélange likely took place during tectonic emplacement (obduction) onto the thrust belt of eastern Cuba during the latest Cretaceous.  相似文献   

14.
With the aim to better understand the cause of the iron isotope heterogeneity of mantle-derived bulk peridotites, we compared the petrological, geochemical and iron isotope composition of four xenolith suites from different geodynamic settings; sub-arc mantle (Patagonia); subcontinental lithospheric mantle (Cameroon), oceanic mantle (Kerguelen) and cratonic mantle (South Africa). Although correlations were not easy to obtain and remain scattered because these rocks record successive geological events, those found between δ57Fe, Mg#, some major and trace element contents of rocks and minerals highlight the processes responsible for the Fe isotope heterogeneity. While partial melting processes only account for moderate Fe isotope variations in the mantle (<0.2 ‰, with bulk rock values yielding a range of δ57Fe ± 0.1 ‰ relative to IRMM-14), the main cause of Fe isotope heterogeneity is metasomatism (>0.9 ‰). The kinetic nature of rapid metasomatic exchanges between low viscosity melts/fluids and their wall-rocks peridotite in the mantle is the likely explanation for this large range. There are a variety of responses of Fe isotope signatures depending on the nature of the metasomatic processes, allowing for a more detailed study of metasomatism in the mantle with Fe isotopes. The current database on the iron isotope composition of peridotite xenoliths and mafic eruptive rocks highlights that most basalts have their main source deeper than the lithospheric mantle. Finally, it is concluded that due to a complex geological history, Fe isotope compositions of mantle xenoliths are too scattered to define a mean isotopic composition with enough accuracy to assess whether the bulk silicate Earth has a mean δ57Fe that is chondritic, or if it is ~0.1 ‰ above chondrites as initially proposed.  相似文献   

15.
Fawakhir serpentinites are the most western ophiolitic ultramafics relative to the Pan-African collision suture at the Qift-Quseir road in the Central Eastern Desert of Egypt. Their location is the basis for their selection in examining the possible contribution of the westerly dipping subducted oceanic slab-related melt/fluid with the intraplate granitic intrusion-related melt/fluid in the metasomatism of the Neoproterozoic ophiolitic serpentinites in the Eastern Desert. Non-residual mineralogy and geochemistry of serpentinites (SF1) far from the post-collision A2-type Fawakhir granitoids and those of serpentinites (SF2) in the vicinity of the granitoid pluton were investigated. The Fawakhir serpentinites are harzburgitic in composition and the Cr# (0.66–0.80) and Mg# (0.32–0.50) of their unaltered spinel cores are indicators for their forearc setting, where they were formed in the oceanic mantle wedge. Based on the spinel Cr# and the whole rock Yb–V bivariate, the melt extraction from the primitive mantle is in excess of 18% up to 24%. The HREE pattern of the SF1 serpentinites refers to the fractional type of melting. The formation of non-residual mineral phases particularly in SF2 samples (amphibole, biotite, apatite thorite, and monazite) and the enrichment of all serpentinites in trace incompatible elements refer to these two serpentinite groups having underwent modal metasomatism. It is suggested that viscous fluid/melt related to the Fawakhir granitoid emplacement metasomatized the SF2 serpentinites, causing a strong enrichment in LREE (display concave LREE; LaN/SmN?=?3.32–6.25 and U-type HREE; GdN/YbN?=?1.14–2.69) and a slight enrichment in Zr (12–16.62 ppm). All serpentinites are enriched in fluid-mobile elements by aqueous fluids, but the SF2 are more enriched in these elements. The spiked B compared to the other fluid-mobile elements (16.97–24.61 and 42.94–60.66?×?PM in SF1 and SF2 samples, respectively) suggests that these elements were added to the obducted ophiolitic Fawakhir serpentinites by the percolation of subduction-related fluids at shallow depths. The contribution of B from shallow continental crust-related fluids is debated. Hosting the Fawakhir serpentinites for the gold deposit at Fawakhir Mine implies a possible genetic relation between gold mineralizations hosted in the ultramafic rocks of the ANS and the processes of recycling of the subducted oceanic slab and the interaction with the mantle. Detailed stable and radiogenic isotopic analyses of the mineralization zones are required to address this question.  相似文献   

16.
Noncarbonate (combustion) and carbonate (acid decomposition) carbon were separately analyzed in 18 granitic rocks from a group of related Tertiary intrusions near Crested Butte, Colorado, and 14 mafic and ultramafic rocks from various localities in the western United States. Among the granites, carbonate carbon ranges from nil to 0.76 per cent with δC13-values from ?5.6 to ? 9.0‰ (vs PDB); noncarbonate carbon varies from 32–360 ppm with δC13-values from ?19.7 to ?26.6‰, The mafic and ultramafic rocks have carbonate carbon contents ranging from 53 ppm to about 2 per cent with δC13-values from + 2.9 to ?10.3‰; noncarbonate carbon varies from 26 to 150 ppm with δC13-values of ?22.2 to ? 27.l‰ For these samples, carbonate carbon ranges from 12.0 to 29.4‰ heavier than coexisting noncarbonate carbon. This consistent difference between δC13 of carbonate and noncarbonate carbon may be an isotopic fractionation effect. Because the specific indigenous form of noncarbonate (combustion) carbon is in doubt, conclusive interpretations regarding isotopic equilibration and fractionation cannot be made.These results have bearing on the assessment of the isotopic composition of mantle carbon and consequently are germane to the question of the origin (source) and history of crustal carbon. If mantle carbon is isotopically similar to noncarbonate (combustion) carbon, i.e. δC13-values from ?19.7 to ? 27.1‰, then a simple mantle degassing source for crustal carbon is improbable. Such a result would indicate an additional source of crustal carbon such as from a primitive atmosphere or extra-terrestrial accretion.  相似文献   

17.
The studied serpentinites occur as isolated masses, imbricate slices of variable thicknesses and as small blocks or lenses incorporated in the sedimentary matrix of the mélange. They are thrusted over the associated island arc calc-alkaline metavolcanics and replaced by talc-carbonates along shear zones. Lack of thermal effect of the serpentinites upon the enveloping country rocks, as well as their association with thrust faults indicates their tectonic emplacement as solid bodies. Petrographically, they are composed essentially of antigorite, chrysotile and lizardite with subordinate amounts of carbonates, chromite, magnetite, magnesite, talc, tremolite and chlorite. Chrysotile occurs as cross-fiber veinlets traversing the antigorite matrix, which indicate a late crystallization under static conditions. The predominance of antigorite over other serpentine minerals indicates that the serpentinites have undergone prograde metamorphism or the parent ultramafic rocks were serpentinized under higher pressure. The parent rocks of the studied serpentinites are mainly harzburgite and less commonly dunite and wehrlite due to the prevalence of mesh and bastite textures. The serpentinites have suffered regional metamorphism up to the greenschist facies, which occurred during the collisional stage or back-arc basin closure, followed by thrusting over a continental margin. The microprobe analyses of the serpentine minerals show wide variation in SiO2, MgO, Al2O3, FeO and Cr2O3 due to different generations of serpentinization. The clinopyroxene relicts, from the partly serpentinized peridotite, are augite and similar to clinopyroxene in mantle-derived peridotites. The chromitite lenses associated with the serpentinites show common textures and structures typical of magmatic crystallization and podiform chromitites. The present data suggest that the serpentinites and associated chromitite lenses represent an ophiolitic mantle sequence from a supra-subduction zone, which were thrust over the continental margins during the collisional stage of back-arc basin.  相似文献   

18.
马雪盈  刘庆  闫方超  何苗  张宏远 《岩石学报》2021,37(8):2562-2578
强亲铁元素与亲石元素具有不同的地球化学行为,因此能够从不同的角度为造山带中超镁铁岩的成因及演化提供重要信息。位于苏鲁造山带东北端的胶东海阳所超镁铁岩主要由橄榄岩和辉石岩组成,它们常以团块状赋存于花岗质片麻岩中。虽然前人对这些超镁铁岩已经开展大量岩石学研究,但关于其成因及构造属性仍存在较大争议。本文开展了海阳所超镁铁岩的全岩主微量元素、强亲铁元素及Re-Os同位素的分析工作,结果显示蛇纹石化橄榄岩具有较高的MgO和Fe2O3T含量,较低的Al2O3、TiO2和CaO含量,明显富集流体迁移元素(U、Pb),亏损高场强元素(Zr、Hf),强亲铁元素没有发生明显分异,但Ru显示正异常,表明海阳所蛇纹石化橄榄岩是经历了低-中等程度部分熔融及熔/流体交代作用影响的残余地幔橄榄岩。海阳所辉石岩的主量元素表现出明显的结晶分异特征,稀土元素较原始地幔富集,铂族元素(PGEs)含量较低且发生了明显的分异,表明辉石岩的地幔源区经历过高程度的部分熔融和硫化物的分离。海阳所蛇纹石化橄榄岩的Os同位素地球化学特征表现出大洋亲和性,与辉石岩不具有熔体-残留体的关系。由于该地区发育较深层次的韧性剪切带,蛇纹石化橄榄岩中的橄榄石与辉石表现出韧性变形的特征,同时有辉石岩侵入到橄榄岩的现象,表明该地区的蛇纹石化地幔橄榄岩与辉石岩既不同时,也不同源,因此,暗示了该套岩石组合可能形成于大洋核杂岩(OCC)与洋脊型蛇绿岩(MOR)堆晶岩交互发育环境。  相似文献   

19.
In-situ uplifted portions of oceanic crust at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) were drilled during Expeditions 304 and 305 of the Integrated Ocean Drilling Program (IODP) and a 1.4 km section of predominantly gabbroic rocks with minor intercalated ultramafic rocks were recovered. Here we characterize variations in sulfur mineralogy and geochemistry of selected samples of serpentinized peridotites, olivine-rich troctolites and diverse gabbroic rocks recovered from Hole 1309D. These data are used to constrain alteration processes and redox conditions and are compared with the basement rocks of the southern wall of the Atlantis Massif, which hosts the Lost City Hydrothermal Field, 5 km to the south. The oceanic crust at the central dome is characterized by Ni-rich sulfides reflecting reducing conditions and limited seawater circulation. During uplift and exhumation, seawater interaction in gabbroic-dominated domains was limited, as indicated by homogeneous mantle-like sulfur contents and isotope compositions of gabbroic rocks and olivine-rich troctolites. Local variations from mantle compositions are related to magmatic variability or to interaction with seawater-derived fluids channeled along fault zones. The concomitant occurrence of mackinawite in olivine-rich troctolites and an anhydrite vein in a gabbro provide temperature constraints of 150-200 °C for late circulating fluids along local brittle faults below 700 m depth. In contrast, the ultramafic lithologies at the central dome represent domains with higher seawater fluxes and higher degrees of alteration and show distinct changes in sulfur geochemistry. The serpentinites in the upper part of the hole are characterized by high total sulfide contents, high δ34Ssulfide values and low δ34Ssulfate values, which reflect a multistage history primarily controlled by seawater-gabbro interaction and subsequent serpentinization. The basement rocks at the central dome record lower oxygen fugacities and more limited fluid fluxes compared with the serpentinites and gabbros of the Lost City hydrothermal system. Our studies are consistent with previous results and indicate that sulfur speciation and sulfur isotope compositions of altered oceanic mantle sequences commonly evolve over time. Heterogeneities in sulfur geochemistry reflect the fact that serpentinites are highly sensitive to local variations in fluid fluxes, temperature, oxygen and sulfur fugacities, and microbial activity.  相似文献   

20.
The studied serpentinites occur as isolated masses, imbricate slices of variable thicknesses and as small blocks or lenses incorporated in the sedimentary matrix of the mélange. They are thrusted over the associated island arc calc-alkaline metavolcanics and replaced by talc-carbonates along shear zones. Lack of thermal effect of the serpentinites upon the enveloping country rocks, as well as their association with thrust faults indicates their tectonic emplacement as solid bodies. Petrographically, they are composed essentially of antigorite, chrysotile and lizardite with subordinate amounts of carbonates, chromite, magnetite, magnesite, talc, tremolite and chlorite. Chrysotile occurs as cross-fiber veinlets traversing the antigorite matrix, which indicate a late crystallization under static conditions. The predominance of antigorite over other serpentine minerals indicates that the serpentinites have undergone prograde metamorphism or the parent ultramafic rocks were serpentinized under higher pressure. The parent rocks of the studied serpentinites are mainly harzburgite and less commonly dunite and wehrlite due to the prevalence of mesh and bastite textures. The serpentinites have suffered regional metamorphism up to the greenschist facies, which occurred during the collisional stage or back-arc basin closure, followed by thrusting over a continental margin. The microprobe analyses of the serpentine minerals show wide variation in SiO2, MgO, Al2O3, FeO and Cr2O3 due to different generations of serpentinization. The clinopyroxene relicts, from the partly serpentinized peridotite, are augite and similar to clinopyroxene in mantle-derived peridotites. The chromitite lenses associated with the serpentinites show common textures and structures typical of magmatic crystallization and podiform chromitites. The present data suggest that the serpentinites and associated chromitite lenses represent an ophiolitic mantle sequence from a supra-subduction zone, which were thrust over the continental margins during the collisional stage of back-arc basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号