首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previous studies suggest that spring SST anomalies over the northern tropical Atlantic(NTA) affect the tropical cyclone(TC) activity over the western North Pacific(WNP) in the following summer and fall. The present study reveals that the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is not stationary. The influence of spring NTA SST on following summer–fall WNP TC genesis frequency is weak and insignificant before, but strong and significant after, the late 1980 s. Before the late 1980 s, the NTA SST anomaly-induced SST anomalies in the tropical central Pacific are weak, and the response of atmospheric circulation over the WNP is not strong. As a result, the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is insignificant in the former period. In contrast,after the late 1980 s, NTA SST anomalies induce pronounced tropical central Pacific SST anomalies through an Atlantic–Pacific teleconnection. Tropical central Pacific SST anomalies further induce favorable conditions for WNP TC genesis,including vertical motion, mid-level relative humidity, and vertical zonal wind shear. Hence, the connection between NTA SST and WNP TC genesis frequency is significant in the recent period. Further analysis shows that the interdecadal change in the connection between spring NTA SST and following summer–fall WNP TC genesis frequency may be related to the climatological SST change over the NTA region.  相似文献   

2.
利用1979—2012年西北太平洋热带气旋最佳路径资料,Hadley中心的海温资料和NCEP/NCAR再分析资料等,研究了夏季(6—10月)热带北大西洋海温异常与西北太平洋热带气旋(Tropical Cyclone,TC)生成的关系及其可能机制。结果表明,夏季热带北大西洋海温异常与同期西北太平洋TC生成频次之间存在显著的负相关关系。热带北大西洋海温的异常增暖可产生一对东—西向分布的偶极型低层异常环流,其中气旋性异常环流位于北大西洋/东太平洋地区,反气旋异常环流位于西北太平洋地区。该反气旋环流异常使得TC主要生成区的对流活动受到抑制、低层涡度正异常、中低层相对湿度负异常、中层下沉气流异常,这些动力/热力条件均不利于TC生成。此外,西北太平洋地区低层涡旋动能负异常,同时来自大尺度环流的涡旋动能的正压转换也受到抑制,不能为TC的生成和发展提供额外能量源。反之亦然。  相似文献   

3.
The present study discovered a strong negative correlation between Korea-landfalling tropical cyclone (TC) frequency and Pacific Decadal Oscillation (PDO) in the summer. Thus, the present study selected years that had the highest PDO index (positive PDO years) and years that had the lowest PDO index (negative PDO years) to analyze a mean difference between the two phases in order to determine the reason for the strong negative correlation between the two variables. In the positive PDO years, TCs were mainly generated in the southeastern part of the western North Pacific, and lower TC passage frequency was found in most regions in the mid-latitude in East Asia. Moreover, a slightly weaker TC intensity than that in the negative PDO years was revealed. In order to determine the cause of the TC activity revealed in the positive PDO years, 850 hPa and 500 hPa stream flows were analyzed first. In the mid-latitude region in East Asia, anomalous huge cyclonic circulations were strengthened, while anomalous anticyclonic circulations were strengthened in the low-latitude region. Accordingly, Korea was being influenced by anomalous northwesterlies, which played a role in blocking TCs from moving northward to Korea. The results of analysis on 850 hPa air temperature, precipitation, 600 hPa relative humidity, and sea surface temperature (SST) showed that negative anomalies were strengthened in the northwest region in the western North Pacific while positive anomalies were strengthened in the southeast region. The atmospheric and oceanic environments were related to frequent occurrences of TCs in the southeast region in the western North Pacific during the positive PDO years. All factors of air temperature, precipitation, 600 hPa relative humidity, and SST revealed negative (positive for vertical wind shear) anomalies near Korea, so that atmospheric and oceanic environments were formed that could rapidly weaken TC intensity, even if the TCs moved northward to Korea in the positive PDO years.  相似文献   

4.
The present study investigates the interdecadal change in the relationship between southern China (SC) summer rainfall and tropical Indo-Pacific sea surface temperature (SST). It is found that the pattern of tropical Indo-Pacific SST anomalies associated with SC summer rainfall variability tends to be opposite between the 1950–1960s and the 1980-1990s. Above-normal SC rainfall corresponds to warmer SST in the tropical southeastern Indian Ocean (SEIO) and cooler SST in the equatorial central Pacific (ECP) during the 1950–1960s but opposite SST anomalies in these regions during the 1980–1990s. A pronounced difference is also found in anomalous atmospheric circulation linking SEIO SST and SC rainfall between the two periods. In the 1950–1960s, two anomalous vertical circulations are present between ascent over SEIO and ascent over SC, with a common branch of descent over the South China Sea that is accompanied by an anomalous low-level anticyclone. In the 1980–1990s, however, a single anomalous vertical circulation directly connects ascent over SC to descent over SEIO. The change in the rainfall–SST relationship is likely related to a change in the magnitude of SEIO SST forcing and a change in the atmospheric response to the SST forcing due to different mean states. A larger SEIO SST forcing coupled with a stronger and more extensive western North Pacific subtropical high in recent decades induce circulation anomalies reaching higher latitudes, influencing SC directly. Present analysis shows that the SEIO and ECP SST anomalies can contribute to SC summer rainfall variability both independently and in concert. In comparison, there are more cases of concerted contributions due to the co-variability between the Indian and Pacific Ocean SSTs.  相似文献   

5.
This study examines the impact of atmospheric and oceanic conditions during May–August of 2004 and 2010 on the frequency and genesis location of tropical cyclones over the western North Pacific. Using the WRF model, four numerical experiments were carried out based on different atmospheric conditions and SST forcing. The numerical experiments indicated that changes in atmospheric and oceanic conditions greatly affect tropical cyclone activity, and the roles of atmospheric conditions are slightly greater than oceanic conditions. Specifically, the total number of tropical cyclones was found to be mostly affected by atmospheric conditions, while the distribution of tropical cyclone genesis locations was mainly related to oceanic conditions, especially the distribution of SST. In 2010, a warmer SST occurred west of 140°E, with a colder SST east of 140°E. On the one hand, the easterly flow was enhanced through the effect of the increase in the zonal SST gradient.The strengthened easterly flow led to an anomalous boundary layer divergence over the region to the east of 140°E, which suppressed the formation of tropical cyclones over this region. On the other hand, the colder SST over the region to the east of 140°E led to a colder low-level air temperature, which resulted in decreased CAPE and static instability energy. The decrease in thermodynamic energy restricted the generation of tropical cyclones over the same region.  相似文献   

6.
Based on the CMA tropical cyclone(TC) best track data as well as the reanalysis datasets from the NCEP/NCAR and NOAA, the variation characteristics of TC number from 1949 to 2013 over the western North Pacific(including the South China Sea) are examined. Notably, the time series of TC number exhibits a significant abrupt change from more to less around 1995. Comparative analysis indicates that the environmental factors necessary to TC formation also change significantly around the mid-1990 s. After 1995, accompanying with anomalous warm sea surface temperature(SST) in western equatorial Pacific, a La Nia-like pattern in tropical Pacific appears obviously. However,compared with the period before 1995, the vertical upward movement decreases, vertical shear of tropospheric zonal wind increases, and sea level pressure(SLP) rises, all of which are unfavorable to TC formation and work together to make TC number reduce markedly after 1995. Furthermore, when the typical interannual more and less TCs years are selected in the two separate stages before and after 1995, the relative importance of oceanic and atmospheric environments in interannual TC generation is also investigated respectively. The results imply that the SST over the tropical Pacific exerts relatively important influence on TC formation before 1995 whereas the atmospheric circulation plays a more prominent role in the generation of TC after 1995.  相似文献   

7.
The present paper uses an atmospheric general circulation model to explore large-scale atmospheric response to various El Niño-Southern Oscillation events associated with tropical cyclone (TC) activity in the western North Pacific. The simulated response is basically consistent with and confirms the observed results. For eastern Pacific warm (EPW) event, anomalously wet ascent occurs over the tropical central/eastern Pacific and dry descent is over the western Pacific. This Walker circulation is associated with anomalous low-level convergence, reduced vertical wind shear (VWS), and enhanced genesis potential index (GPI) in the southeast sub-region. These are consistent with the observed increase of the TC formation in the southeast sub-region but decrease in the northwest sub-region during July–September (JAS) and the increase in the southwest and northwest sub-regions during October–December (OND). In addition, the strong westerly anomalies of the TC steering flow prevail in the East Asian coast, suppressing the TC northwestward or westward tracks. For eastern Pacific cold (EPC) event, all of the simulated variables show almost a mirror image of EPW. For central Pacific warm event, the anomalous Walker circulation shifts westward because of the westward shift of the maximum SST anomaly forcing. The anomalous subsidence associated with the western branch of the Walker circulation during OND shifts northward to the South China Seas, resulting in a decrease of the TC genesis there. The TC steering flow patterns during JAS are favorable for TCs to make landfall over Japan and Korea. Compared with EPC, the descending motion in the central/eastern Pacific is much stronger for central Pacific cold (CPC) event, accompanied by more enhanced VWS and reduced GPI in the southeast sub-region. Therefore, CPC provides a more adverse environment to the TC formation there during JAS and OND, consistent with the observed decrease of TC formation there. Moreover, the easterly anomalies of the TC steering flow dominate the tropics during JAS, enhancing TC activity in the east coast of China. Additionally, the convection over the western Pacific moves to the South China Sea during OND, favoring the TC genesis there.  相似文献   

8.
自20世纪70年代末期以来,西北太平洋的热带气旋在全球变暖的背景下主要发生了两种宏观的气候变化:一个是热带气旋生成频数呈现年代际减少,尤其是在东南部海域;另一个则是其生成与活动位置等总体特征有向西北偏移的趋势。本文对这两个方面的研究进展进行了概述。近些年的研究表明,垂直风切变的增强可能是夏秋季热带气旋频数减少的最主要原因,这与太平洋-印度洋海面温度变化导致的大尺度环境变化有密切联系。同样有研究认为北大西洋海面温度的多年代际振荡对近期西北太平洋热带气旋生成频数的减少也非常重要。但西北太平洋西部强热带气旋的频数呈现出增加的趋势,这可能与东亚近海海面温度的显著升高有关,尽管这种变化是否可信仍有争议。近20年来,西北太平洋热带气旋活动普遍出现西北移倾向,包括生成位置和路径位置,这种变化可能受到了ENSO变异及20世纪90年代末期太平洋气候突变的调控。同时,热带环流的极向扩张又导致了热带气旋的有利环境向北扩张,因此西北太平洋热带气旋活动也出现极向迁移的趋势。  相似文献   

9.
This study documents a weakening of the relationship between the spring Arctic Oscillation (AO) and the following summer tropical cyclone (TC) formation frequency over the eastern part (150°-180°E) of the western North Pacific (WNP). The relationship is strong and statistically significant during 1968-1986, but becomes weak during 1989-2007. The spring AO-related SST, atmospheric dynamic, and thermodynamic conditions are compared between the two epochs to understand the possible reasons for the change in the relationship. Results indicate that the spring AO leads to an El Niño-like SST anomaly, lower-level anomalous cyclonic circulation, upper-level anomalous anticyclonic circulation, enhanced ascending motion, and a positive midlevel relative humidity anomaly in the tropical western-central Pacific during 1968-1986, whereas the AO-related anomalies in the above quantities are weak during 1989-2007. Hence, the large-scale dynamic and thermodynamic anomalies are more favorable for TC formation over the eastern WNP during 1968-1986 than during 1989-2007.  相似文献   

10.
Tropical Cyclone (TC) tracks over the western North Pacific (WNP) during 1949–2007, obtained from China Meteorological Administration/Shanghai Typhoon institute, are classified into three track types. These types are the main pathways by which TCs influence the coast of East Asia. The relationships between local sea surface temperature (SST) in WNP and TC tracks are revealed. Results show that the local SST plays an important role in TC tracks, though the relationships between local SST and the frequencies ...  相似文献   

11.
Sea surface temperature (SST) variations include negative feedbacks from the atmosphere, whereas SST anomalies are specified in stand-alone atmospheric general circulation simulations. Is the SST forced response the same as the coupled response? In this study, the importance of air–sea coupling in the Indian and Pacific Oceans for tropical atmospheric variability is investigated through numerical experiments with a coupled atmosphere-ocean general circulation model. The local and remote impacts of the Indian and Pacific Ocean coupling are obtained by comparing a coupled simulation with an experiment in which the SST forcing from the coupled simulation is specified in either the Indian or the Pacific Ocean. It is found that the Indian Ocean coupling is critical for atmospheric variability over the Pacific Ocean. Without the Indian Ocean coupling, the rainfall and SST variations are completely different throughout most of the Pacific Ocean basin. Without the Pacific Ocean coupling, part of the rainfall and SST variations in the Indian Ocean are reproduced in the forced run. In regions of large mean rainfall where the atmospheric negative feedback is strong, such as the North Indian Ocean and the western North Pacific in boreal summer, the atmospheric variability is significantly enhanced when air–sea coupling is replaced by specified SST forcing. This enhancement is due to the lack of the negative feedback in the forced SST simulation. In these regions, erroneous atmospheric anomalies could be induced by specified SST anomalies derived from the coupled model. The ENSO variability is reduced by about 20% when the Indian Ocean air–sea coupling is replaced by specified SST forcing. This change is attributed to the interfering roles of the Indian Ocean SST and Indian monsoon in western and central equatorial Pacific surface wind variations.  相似文献   

12.
Interactions between the tropical and subtropical northern Pacific at decadal time scales are examined using uncoupled oceanic and atmospheric simulations. An atmospheric model is forced with observed Pacific sea surface temperatures (SST) decadal anomalies, computed as the difference between the 2000–2009 and the 1990–1999 period. The resulting pattern has negative SST anomalies at the equator, with a global pattern reminiscent of the Pacific decadal oscillation. The tropical SST anomalies are responsible for driving a weakening of the Hadley cell and atmospheric meridional heat transport. The atmosphere is then shown to produce a significant response in the subtropics, with wind-stress-curl anomalies having the opposite sign from the climatological mean, consistent with a weakening of the oceanic subtropical gyre (STG). A global ocean model is then forced with the decadal anomalies from the atmospheric model. In the North Pacific, the shallow subtropical cell (STC) spins down and the meridional heat transport is reduced, resulting in positive tropical SST anomalies. The final tropical response is reached after the first 10 years of the experiment, consistent with the Rossby-wave adjustment time for both the STG and the STC. The STC provides the connection between subtropical wind stress anomalies and tropical SSTs. In fact, targeted simulations show the importance of off-equatorial wind stress anomalies in driving the oceanic response, whereas anomalous tropical winds have no role in the SST signal reversal. We further explore the connection between STG, STC and tropical SST with the help of an idealized model. We argue that, in our models, tropical SST decadal variability stems from the forcing of the Pacific subtropical gyre through the atmospheric response to ENSO. The resulting Ekman pumping anomaly alters the STC and oceanic heat transport, providing a negative feedback on the SST. We thus suggest that extratropical atmospheric responses to tropical forcing have feedbacks onto the ocean dynamics that lead to a time-delayed response of the tropical oceans, giving rise to a possible mechanism for multidecadal ocean-atmosphere coupled variability.  相似文献   

13.
Tropical cyclone (TC) activity in the western North Pacific (WNP) has changed interdecadally with an approximately 20-year period between 1951 and 1999. The cause and mechanism of interdecadal variability of TC frequency in the WNP is investigated using NCEP/NCAR reanalysis and the result obtained from a high-resolution coupled general circulation model (CGCM). The interdecadal variability of TC activity in the WNP correlates with long-term variations in sea surface temperatures (SSTs) in the tropical central Pacific and with those of westerly wind anomalies associated with the monsoon trough that appears over the tropical WNP during the typhoon season of July to October. The westerly wind anomalies at near 10°N show positive feedback with the SST anomalies in the central Pacific. Therefore, the interdecadal variability of TC frequency is related to long-term variations in atmosphere–ocean coupling phenomena in the tropical North Pacific. A 50-year long-run simulation using the high-resolution CGCM showed the robustness of interdecadal variability of TC frequency.  相似文献   

14.
An analysis on the physical process of the influence of AO on ENSO   总被引:4,自引:1,他引:3  
The influence of the spring AO on ENSO has been demonstrated in several recent studies. This analysis further explores the physical process of the influence of AO on ENSO using the NCEP/NCAR reanalysis data over the period 1958–2010. We focus on the formation of the westerly wind burst in the tropical western Pacific, and examine the evolution and formation of the atmospheric circulation, atmospheric heating, and SST anomalies in association with the spring AO variability. The spring AO variability is found to be independent from the East Asian winter monsoon activity. The spring AO associated circulation anomalies are supported by the interaction between synoptic-scale eddies and the mean-flow and its associated vorticity transportation. Surface wind changes may affect surface heat fluxes and the oceanic heat transport, resulting in the SST change. The AO associated warming in the equatorial SSTs results primarily from the ocean heat transport in the face of net surface heat flux damping. The tropical SST warming is accompanied by anomalous atmospheric heating in the subtropical north and south Pacific, which sustains the anomalous westerly wind in the equatorial western Pacific through a Gill-like atmospheric response from spring to summer. The anomalous westerly excites an eastward propagating and downwelling equatorial Kelvin wave, leading to SST warming in the tropical central-eastern Pacific in summer-fall. The tropical SST, atmospheric heating, and atmospheric circulation anomalies sustain and develop through the Bjerknes feedback mechanism, which eventually result in an El Niño-like warming in the tropical eastern Pacific in winter.  相似文献   

15.
The North Pacific Oscillation (NPO) recently (re-)emerged in the literature as a key atmospheric mode in Northern Hemisphere climate variability, especially in the Pacific sector. Defined as a dipole of sea level pressure (SLP) between, roughly, Alaska and Hawaii, the NPO is connected with downstream weather conditions over North America, serves as the atmospheric forcing pattern of the North Pacific Gyre Oscillation (NPGO), and is a potential mechanism linking extratropical atmospheric variability to El Ni?o events in the tropical Pacific. This paper explores further the forcing dynamics of the NPO and, in particular, that of its individual poles. Using observational data and experiments with a simple atmospheric general circulation model (AGCM), we illustrate that the southern pole of the NPO (i.e., the one near Hawaii) contains significant power at low frequencies (7–10?years), while the northern pole (i.e., the one near Alaska) has no dominant frequencies. When examining the low-frequency content of the NPO and its poles separately, we discover that low-frequency variations (periods >7?years) of the NPO (particularly its subtropical node) are intimately tied to variability in central equatorial Pacific sea surface temperatures (SSTs) associated with the El Ni?o-Modoki/Central Pacific Warming (CPW) phenomenon. This result suggests that fluctuations in subtropical North Pacific SLP are important to monitor for Pacific low-frequency climate change. Using the simple AGCM, we also illustrate that variability in central tropical Pacific SSTs drives a significant fraction of variability of the southern node of the NPO. Taken together, the results highlight important links between secondary modes (i.e., CPW-NPO-NPGO) in Pacific decadal variability, akin to already established relationships between the primary modes of Pacific climate variability (i.e., canonical El Ni?o, the Aleutian Low, and the Pacific Decadal Oscillation).  相似文献   

16.
In the present study the links between spring Arctic Oscillation (AO) and East Asian summer monsoon (EASM) was investigated with focus on the importance of the North Pacific atmospheric circulation and sea surface temperature (SST). To reduce the statistical uncertainty, we analyzed high-pass filtered data with the inter-annual time scales, and excluded the El Ni?o/Southern Oscillation signals in the climate fields using a linear fitting method. The significant relationship between spring AO and EASM are supported by the changes of multi-monsoon components, including monsoon indices, precipitation, and three-dimensional atmospheric circulations. Following a stronger positive spring AO, an anomalous cyclonic circulation at 850?hPa appears in southeastern Asia and the western North Pacific in summer, with the easterly anomalies spanning from the Pacific to Asian continent along 25°N?C30°N and the westerly anomalies south of 15°N. At the same time, the summer western North Pacific subtropical high becomes weaker. Consistently, the positive precipitation anomalies are developed over a broad region south of 30°N stretching from southern China to the western Pacific and the negative precipitation anomalies appear in the lower valley of the Yangtze River and southern Japan. The anomalous cyclone in the western North Pacific persisting from spring to summer plays a key role in modulating EASM and monsoon precipitation by a positive air-sea feedback mechanism. During spring the AO-associated atmospheric circulation change produces warmer SSTs between 150°E?C180° near the equator. The anomalous sensible and latent heating, in turn, intensifies the cyclone through a Gill-type response of the atmosphere. Through this positive feedback, the tropical atmosphere and SST patterns sustain their strength from spring to summer, that consequently modifies the monsoon trough and the western North Pacific subtropical high and eventually the EASM precipitation. Moreover, the SST response to AO-circulation is supported by the numerical simulations of an ocean model, and the anomalous atmospheric circulation over the western North Pacific is also reproduced by the dedicated numerical simulations using the coupled atmosphere?Cocean model. The observation evidence and numerical simulations suggest the spring AO can impact the EASM via triggering tropical air-sea feedback over the western North Pacific.  相似文献   

17.
The potential role of tropical Pacific forcing in driving the seasonal variability of the Arctic Oscillation (AO) is explored using both observational data and a simple general circulation model (SGCM). A lead–lag regression technique is first applied to the monthly averaged sea surface temperature (SST) and the AO index. The AO maximum is found to be related to a negative SST anomaly over the tropical Pacific three months earlier. A singular value decomposition (SVD) analysis is then performed on the tropical Pacific SST and the sea level pressure (SLP) over the Northern Hemisphere. An AO-like atmospheric pattern and its associated SST appear as the second pair of SVD modes. Ensemble integrations are carried out with the SGCM to test the atmospheric response to different tropical Pacific forcings. The atmospheric response to the linear fit of the model’s empirical forcing associated with the SST variability in the second SVD modes strongly projects onto the AO. Idealized thermal forcings are then designed based on the regression of the seasonally averaged tropical Pacific precipitation against the AO index. Results indicate that forcing anomalies over the western tropical Pacific are more effective in generating an AO-like response while those over the eastern tropical Pacific tend to produce a Pacific-North American (PNA)-like response. The physical mechanisms responsible for the energy transport from the tropical Pacific to the extratropical North Atlantic are investigated using wave activity flux and vorticity forcing formalisms. The energy from the western tropical Pacific forcing tends to propagate zonally to the North Atlantic because of the jet stream waveguide effect while the transport of the energy from the eastern tropical Pacific forcing mostly concentrates over the PNA area. The linearized SGCM results show that nonlinear processes are involved in the generation of the forced AO-like pattern.  相似文献   

18.
西北太平洋热带气旋频数的年际、年代际变化及预测   总被引:4,自引:0,他引:4  
利用1950-2009年60 a的热带气旋资料、NOAA海温、NCEP再分析资料及74项环流指数等资料,研究了西北太平洋热带气旋频数的年际、年代际变化特征,结果表明,西北太平洋热带气旋生成频数既有显著的年际变化,同时也存在明显的年代际变化。自1950年以来,西北太平洋热带气旋频数经历了一个先增加再减少的过程,其中转折点在20世纪70年代中后期,与之相对应,热带气旋路径频数也呈现明显年代际变化。在此基础上,通过分析前期春季海温场、大气环流异常及环流指数与夏季(6-10月)热带气旋生成频数的相关关系,选取了影响夏季西北太平洋热带气旋活动频数的预测因子,建立了一个夏季西北太平洋热带气旋生成频数的多元回归预测模型。检验结果表明,该模型能较好地拟合1951-2003年夏季西北太平洋热带气旋生成频数的年际变化,拟合率为0.6。对2004-2009年夏季热带气旋生成频数的独立样本预测试验表明,该模型对夏季西北太平洋热带气旋活动频数具有较好的预测能力,可以为热带气旋业务预报提供一定参考。  相似文献   

19.
Zhuoqi He  Renguang Wu 《Climate Dynamics》2014,42(9-10):2323-2337
This study investigates summer rainfall variability in the South China Sea (SCS) region and the roles of remote sea surface temperature (SST) forcing in the tropical Indian and Pacific Ocean regions. The SCS summer rainfall displays a positive and negative relationship with simultaneous SST in the equatorial central Pacific (ECP) and the North Indian Ocean (NIO), respectively. Positive ECP SST anomalies induce an anomalous low-level cyclone over the SCS-western North Pacific as a Rossby-wave type response, leading to above-normal precipitation over northern SCS. Negative NIO SST anomalies contribute to anomalous cyclonic winds over the western North Pacific by an anomalous east–west vertical circulation north of the equator, favoring more rainfall over northern SCS. These NIO SST anomalies are closely related to preceding La Niña and El Niño events through the “atmospheric bridge”. Thus, the NIO SST anomalies serve as a medium for an indirect impact of preceding ECP SST anomalies on the SCS summer rainfall variability. The ECP SST influence is identified to be dominant after 1990 and the NIO SST impact is relatively more important during 1980s. These Indo-Pacific SST effects are further investigated by conducting numerical experiments with an atmospheric general circulation model. The consistency between the numerical experiments and the observations enhances the credibility of the Indo-Pacific SST influence on the SCS summer rainfall variability.  相似文献   

20.
In this study, a statistical model is developed to predict the frequency of tropical cyclones (TCs) that influence Taiwan in boreal summer. Predictors are derived from large-scale environments from February to May in six regions, including four atmospheric circulation predictors over the western sea and eastern sea of Australia, the subtropical western North Pacific (SWNP), and the eastern sea of North America, and two sea surface temperature predictors in the Southeast Indian Ocean and the North Atlantic. The statistical model is verified based on statistical cross-validation tests and by contrasting the differences in the large-scale environments between high and low TC frequency years hindcasted by the model. The results show the relationships of two atmospheric circulation predictors and one SST predictor around Australia with Antarctic Oscillation (AAO) pattern, as well as the relationships of those in the SWNP and around eastern sea of North America with Pacific/North American teleconnection (PNA) pattern. When the anomalous anticyclone around Australia (positive AAO pattern) and the one over the region from eastern sea of North America and the Aleutian Islands to the SWNP (negative PNA pattern) are both strengthened from February, the trade wind in the equatorial Pacific is intensified and consequently plays an important role in steering TCs towards Taiwan during boreal summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号