首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Optical and UV Monitor (OM), is a small telescope co-aligned with the main XMM-Newton X-ray telescopes. It can perform imaging with six broad band lenticular filters covering the range 180 nm to 600 nm. In addition, two grisms allow the user to obtain low resolution spectra in the same range. The detector is an intensified CCD. The instrument is fully calibrated in the standard UBV Johnson system and also in absolute flux for both filters and grisms. We describe the instrument and its calibration. We present some results and usage statistics.  相似文献   

2.
3.
The main rings of Saturn were observed with the Planetary Camera of the WFPC2 instrument on the Hubble Space Telescope (HST) from September 1996 to December 2000 as the ring opening angle to Earth and Sun increased from 4° to 24°, with a spread of phase angles between 0.3° and 6° at each opening angle. The rings were routinely observed in the five HST wideband UBVRI filters (F336W, F439W, F555W, F675W, and F814W) and occasionally in the F255W, F785LP, and F1042M filters. The emphasis in this series of papers will be on radial color (implying compositional) variations. In this first paper we describe the analysis technique and calibration procedure, note revisions in a previously published Voyager ring color data analysis, and present new results based on over 100 HST images.In the 300-600 nm spectral range where the rings are red, the 555/336-nm ratio increases by about 14% as the phase angle increases from 0.3° to 6°. This effect, never reported previously for the rings, is significantly larger than the phase reddening which characterizes other icy objects, primarily because of the redness of the rings. However, there is no discernible tendency for color to vary with ring opening angle at a given phase angle, and there is no phase variation of color where the spectrum is flat. We infer from this combination of facts that multiple intraparticle scattering, either in a regolith or between facts of an unusually rough surface, is important in these geometries, but that multiple interparticle scattering in a vertically extended layer is not. Voyager color ratios at a phase angle of 14° are compatible with this trend, but calibration uncertainties prevent their use in quantitative modeling.Overall ring average spectra are compatible with those of earlier work within calibration uncertainties, but ring spectra vary noticeably with region. We refine and subdivide the regions previously defined by others. The variation seen between radial profiles of ratios between different wavelengths suggests the presence of multiple compositional components with different radial distributions. We present new radial profiles of far-UV color ratio (F336W/F255W) showing substantial global variations having a different radial structure than seen between 555 and 336 nm. We constrain radial variation in the strength of a putative 850-nm spectral feature to be at the percent level or less. There seem to be real variations in the shape of regional ring spectra between 800 and 1000 nm.  相似文献   

4.
A. Llebaria  P. Lamy  J.-F. Danjard 《Icarus》2006,182(1):281-296
We present a photometric calibration of the SOHO/LASCO-C2 coronagraph appropriate to Solar System objects based on the extensive analysis of all stars down to magnitude V=8 which transited its field-of-view during the past nine years of operation (1996-2004). An automatic procedure was developed to analyze some 143,000 images, and to detect, locate and measure those stars. Aperture photometry was performed using three different aperture sizes and the zero points of the photometric transformations between the LASCO-C2 magnitudes for its three filters (orange, blue and red) and the standard V magnitudes were determined after introducing a correction for the color of the stars. The calibration coefficients for the surface photometry of extended sources were then derived from the zero points. An analysis of their temporal evolution indicates a slight decrease of the sensitivity of LASCO-C2 at a rate of ∼0.7% per year.  相似文献   

5.
Phillips  K.J.H.  Read  P.D.  Gallagher  P.T.  Keenan  F.P.  Rudawy  P.  Rompolt  B.  Berlicki  A.  Buczylko  A.  Diego  F.  Barnsley  R.  Smartt  R.N.  Pasachoff  J.M.  Babcock  B.A. 《Solar physics》2000,193(1-2):259-271
The Solar Eclipse Coronal Imaging System (SECIS) is an instrument designed to search for short-period modulations in the solar corona seen either during a total eclipse or with a coronagraph. The CCD cameras used in SECIS have the capability of imaging the corona at a rate of up to 70 frames a second, with the intensities in each pixel digitised in 12-bit levels. The data are captured and stored on a modified PC. With suitable optics it is thus possible to search for fast changes or short-period wave motions in the corona that will have important implications for the coronal heating mechanism. The equipment has been successfully tested using the Evans Solar Facility coronagraph at National Solar Observatory/Sacramento Peak and during the 11 August 1999 eclipse at a site in north-eastern Bulgaria. The instrument is described and preliminary results are outlined.  相似文献   

6.
We propose a high-contrast coronagraph for direct imaging of young Jupiter-like planets orbiting nearby bright stars. The coronagraph employs a steptransmission filter in which the intensity is apodized with a finite number of steps with identical transmission in each step. It should be installed on a large ground-based telescope equipped with a state-of-the-art adaptive optics system. In this case, contrast ratios around 10-6 should be accessible within 0.1 arcsec of the central star. In recent progress, a...  相似文献   

7.
The new Two-Channel Focal Reducer of the Max-Planck-Institut für Aeronomie is described. The instrument is primarily designed for astronomical imaging of solar system objects, where, because of changes in time scales of about 10-30 min not only the photon flux but also the total number of photons is limited. Colour dividers allow to split the light of the object into a "blue" and a "red" channel. Both channels are observed simultaneously with two separate CCD cameras. Besides wide-band imaging with filters derived from the Gunn photometric system, the instrument allows simultaneous determination of polarization and colour in a small field and imaging with interference filters and with a tunable Fabry-Perot interferometer. One Fabry-Perot system serves both channels. Proper selection of the interference order allows simultaneous observing in narrow bands of about 3 width for a large number of wavelength pairs. There is also a coronagraph mode with Lyot stops in both channels which allows observations of the torus associated with Jupiter's satellite Io. Long-slit two-channel spectroscopy will be possible as soon as the necessary grating prisms will have been acquired.  相似文献   

8.
Meteor44 is a software system developed at MSFC for the calibration and analysis of video meteor data. The photometric range of the (8 bit) video data is extended from a visual magnitude range of from 8 to 3 to from 8 to −8 for both meteors and stellar images using saturation compensation. Camera and lens specific saturation compensation coefficients are derived from artificial variable star laboratory measurements. Saturation compensation significantly increases the number of meteors with measured intensity and improves the estimation of meteoroid mass distribution. Astrometry is automated to determine each image's plate coefficient using appropriate star catalogs. The images are simultaneously intensity calibrated from the contained stars to determine the photon sensitivity and the saturation level referenced above the atmosphere. The camera's spectral response is used to compensate for stellar color index and typical meteor spectra in order to report meteor light curves in traditional visual magnitude units. Recent efforts include improved camera calibration procedures and long focal length "streak" meteor photometry. Meteor44 has been used to analyze data from the 2001, 2002 and 2003 MSFC Leonid observational campaigns as well as several lesser showers.  相似文献   

9.
Direct observation of exoplanets will make it possible to clarify many principal questions connected both with extrasolar planets and planetary systems and to measure atmospheric spectra of the planets. Obtaining an exoplanet image not distorted by the light from a star is at the cutting edge of present-day optical technologies owing to the combination of tremendous brightness contrasts and small angular distances between the planet and star. To observe the exo-Earth, it is necessary to weaken the brightness of the parent star image by 9–10 orders of magnitude (in the optical and near-IR ranges). To compensate the influence of the atmosphere, ground-based (e.g., 8–10 m) telescopes intended for observing exoplanets are equipped with adaptive optics systems, the spatial and temporal resolutions of which are not yet sufficient. A meter-class space telescope equipped with a star coronagraph will make it possible to observe the nearest exoplanets. In this paper, an improved tool for star coronagraphy is considered, namely, the achromatic interferometric coronagraph with a variable rotational shear. It is fabricated according to the optical scheme of the common path interferometer for studying extrasolar planets by direct observations. Theoretical and experimental estimations for the main characteristics of the scheme were carried out. Laboratory experimental measurements were carried out on a coronagraph model.  相似文献   

10.
We present a detailed review of the calibration of the LASCO C3 coronagraph on the SOHO satellite. Most of the calibration has been in place since early in the mission and has been utilized to varying degrees as required by specific analysis efforts. However, using observational data from the nearly decade-long database of LASCO images, we have re-evaluated and improved many aspects of the calibration. This includes the photometric calibration, vignetting function, geometric distortion, stray light, and exposure and observation times. Using this comprehensive set of corrections we have generated and made available a set of calibrated coronal images along with a set of periodic background images to ease the accessibility and use of the LASCO database. Deceased  相似文献   

11.
12.
13.
SPHERE (which stands for Spectro-Polarimetric High-contrast Exoplanet REsearch) is a second-generation Very Large Telescope (VLT) instrument dedicated to high-contrast direct imaging of exoplanets whose first-light is scheduled for 2011. Within this complex instrument one of the central components is the apodized Lyot coronagraph (ALC). The principal aim of this paper is to report the first laboratory experiment of the ALC designed for the SPHERE instrument. The performance and sensitivity of the optical configuration was first numerically studied with an end-to-end approach (see the results in paper I subtitled ??Detailed numerical study??). Made confident by the results, we then tested a prototype on an infrared coronagraphic bench. We measured the transmission profiles of the apodizer prototype and the coronagraphic performance of the apodized Lyot coronagraph in Y, J, and H bands. The coronagraph sensitivity to lateral and longitudinal misalignments of its three main components (apodizer, coronagraphic mask and Lyot stop) was finally studied in H band. We can conclude that the prototype meets the SPHERE technical requirements for coronagraphy.  相似文献   

14.
COR1 is the innermost coronagraph of the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument suite aboard the twin Solar Terrestrial Relations Observatory (STEREO) spacecraft. The paired COR1 telescopes observe the white-light K-corona from 1.4 to 4 solar radii in a waveband 22.5 nm wide centered on the Hα line at 656 nm. An internal polarizer allows the measurement of both total and polarized brightness. The co-alignment of the two COR1 telescopes is derived from the star λ Aquarii for the Ahead spacecraft, and from an occultation of the Sun by the Moon for Behind. Observations of the planet Jupiter are used to establish absolute photometric calibrations for each telescope. The intercalibration of the two COR1 telescopes are compared using coronal mass ejection observations made early in the mission, when the spacecraft were close together. Comparisons are also made with the Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) C2 and Mauna Loa Solar Observatory Mk4 coronagraphs.  相似文献   

15.
A Stokes polarimeter has been built at the High Altitude Observatory to obtain line profiles in both linear and circular polarization in solar spectral lines. These measurements are interpreted using the theory of radiative transfer in the presence of a magnetic field to obtain vector magnetic fields on the solar disk and using the theory of resonance scattering and the Hanle effect to obtain vector magnetic fields in prominences. The polarimeter operates on the Sacramento Peak Observatory 40 cm coronagraph. It is an extensively modified and improved version of an earlier instrument.Polarization modulation is achieved by two KD*P Pockels cells at the coronagraph prime focus and demodulation is by a microprocessor. The instrument control and data handling is done by a minicomputer. Silicon photodiode 128 element line array detectors have replaced the two photomultipliers used on the earlier instrument. This gives a speed increase of a factor of 50.A polarization scrambler provides a chop to a reference beam of unpolarized light by time scrambling the polarization of the solar beam. This device improves sensitivity to polarizations less than 0.01%. The polarization measurements are photon noise limited in most cases. This noise is 0.1% for a typical three second observation which is about one gauss on the longitudinal field and 10 gauss on the transverse field.The National Center for Atmospheric Research is sponsored by The National Science Foundation.  相似文献   

16.
Spectrally resolved measurements of individual solar active regions (ARs) in the soft X-ray (SXR) range are important for studying dynamic processes in the solar corona and their associated effects on the Earth’s upper atmosphere. They are also a means of evaluating atomic data and elemental abundances used in physics-based solar spectral models. However, very few such measurements are available. We present spectral measurements of two individual ARs in the 0.5 to 2.5 nm range obtained on the NASA 36.290 sounding rocket flight of 21 October 2013 (at about 18:30 UT) using the Solar Aspect Monitor (SAM), a channel of the Extreme Ultaviolet Variability Experiment (EVE) payload designed for underflight calibrations of the orbital EVE on the Solar Dynamics Observatory (SDO). The EVE rocket instrument is a duplicate of the EVE on SDO, except the SAM channel on the rocket version was modified in 2012 to include a freestanding transmission grating to provide spectrally resolved images of the solar disk with the best signal to noise ratio for the brightest features, such as ARs. Calibrations of the EVE sounding rocket instrument at the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility (NIST/SURF) have provided a measurement of the SAM absolute spectral response function and a mapping of wavelength separation in the grating diffraction pattern. We discuss techniques (incorporating the NIST/SURF data) for determining SXR spectra from the dispersed AR images as well as the resulting spectra for NOAA ARs 11877 and 11875 observed on the 2013 rocket flight. In comparisons with physics-based spectral models using the CHIANTI v8 atomic database we find that both AR spectra are in good agreement with isothermal spectra (4 MK), as well as spectra based on an AR differential emission measure (DEM) included with the CHIANTI distribution, with the exception of the relative intensities of strong Fe?xvii lines associated with \(2p^{6}\)\(2p^{5}3{s}\) and \(2p^{6}\)\(2p^{5}3{d}\) transitions at about 1.7 nm and 1.5 nm, respectively. The ratio of the Fe?xvii lines suggests that the AR 11877 is hotter than the AR 11875. This result is confirmed with analysis of the active regions imaged by X-ray Telescope (XRT) onboard Hinode.  相似文献   

17.
The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India’s Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.  相似文献   

18.
Knowledge of the Solar Diameter Imager and Surface Mapper (SODISM) plate scale is a fundamental parameter for obtaining the solar radius. We have determined the plate scale of the telescope on the ground and in flight onboard the Picard spacecraft. The results show significant differences; the main reason is that the conditions of observation are not the same. In addition, the space environment has an impact on the performance of a metrology instrument. Therefore, calibration in space and under the same conditions of observation is crucial. The transit of Venus allowed us to determine the plate scale of the SODISM telescope and hence the absolute value of the solar radius. The transit was observed from space by the Picard spacecraft on 5?–?6 June 2012. We exploited the data recorded by SODISM to determine the plate scale of the instrument, which depends on the characteristics of optical elements (mirrors, filters, or front window). The mean plate scale at 607.1 nm is found to be 1.0643 arcseconds?pixel?1 with 3×10?4 RMS. The solar radius at 607.1 nm from 1 AU is found to be equal to 959.86 arcseconds.  相似文献   

19.
The Astrometric Imaging Telescope (AIT) is a proposed spaceborne observatory whose primary goal is the detection and study of extra-solar planetary systems. It contains two instruments that use complementary techniques to address the goal. The first instrument, the Coronagraphic Imager, takes direct images of nearby stars and Jupiter-size planets. It uses a telescope with scattering-compensated optics and a high-efficiency coronagraph to separate reflected planet light from the central star light. Planet detections take hours; confirmations occur in months. With a program duration of about 2 years, about 50 stars are observed. The second instrument, the Astrometric Photometer, shares the same telescope and focal plane. It uses a Ronchi ruling that is translated across the focal plane to simultaneously measure the positions of each target star and about 25 reference stars with sufficient accuracy to detect Uranus-mass planets around hundreds of stars. Enough stars of several spectral types are observed to obtain a statistically significant measurement of the prevalence of planetary systems. This observing program takes about 10 years to complete. The combination of both instruments in a single telescope system results from a number of innovative solutions that are described in this paper.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

20.
SUNRISE is a balloon‐borne telescope with an aperture of one meter. It is equipped with a filter imager for the UV wavelength range between 214 nm and 400 nm (SUFI), and with a spectro‐polarimeter that measures the magnetic field of the photosphere using the Fe I line at 525.02 nm that has a Landé factor of 3. SUNRISE performed its first science flight from 8 to 14 June 2009. It was launched at the Swedish ESRANGE Space Center and cruised at an altitude of about 36 km and geographic latitudes between 70 and 74 degrees to Somerset Island in northern Canada. There, all data, the telescope and the gondola were successfully recovered. During its flight, Sunrise achieved high pointing stability during 33 hours, and recorded about 1.8 TB of science data. Already at this early stage of data processing it is clear that SUNRISE recorded UV images of the solar photosphere, and spectropolarimetric measurements of the quiet Sun's magnetic field of unprecedented quality (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号