首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Lagrangian and Eulerian statistics are obtained from a water-channel experiment of an idealized two-dimensional urban canopy flow in neutral conditions. The objective is to quantify the Eulerian \((T^{\mathrm{E}})\) and Lagrangian \((T^{\mathrm{L}})\) time scales of the turbulence above the canopy layer as well as to investigate their dependence on the aspect ratio of the canopy, AR, as the latter is the ratio of the width (W) to the height (H) of the canyon. Experiments are also conducted for the case of flat terrain, which can be thought of as equivalent to a classical one-directional shear flow. The values found for the Eulerian time scales on flat terrain are in agreement with previous numerical results found in the literature. It is found that both the streamwise and vertical components of the Lagrangian time scale, \(T_\mathrm{u}^\mathrm{L} \) and \(T_\mathrm{w}^\mathrm{L} \), follow Raupach’s linear law within the constant-flux layer. The same holds true for \(T_\mathrm{w}^\mathrm{L} \) in both the canopies analyzed \((AR= 1\) and \(AR= 2\)) and also for \(T_\mathrm{u}^\mathrm{L} \) when \(AR = 1\). In contrast, for \(AR = 2\), \(T_\mathrm{u}^\mathrm{L} \) follows Raupach’s law only above \(z=2H\). Below that level, \(T_\mathrm{u}^\mathrm{L} \) is nearly constant with height, showing at \(z=H\) a value approximately one order of magnitude greater than that found for \(AR = 1\). It is shown that the assumption usually adopted for flat terrain, that \(\beta =T^{\mathrm{L}}/T^{\mathrm{E}}\) is proportional to the inverse of the turbulence intensity, also holds true even for the canopy flow in the constant-flux layer. In particular, \(\gamma /i_\mathrm{u} \) fits well \(\beta _\mathrm{u} =T_\mathrm{u}^\mathrm{L} /T_\mathrm{u}^\mathrm{E} \) in both the configurations by choosing \(\gamma \) to be 0.35 (here, \(i_\mathrm{u} =\sigma _\mathrm{u} / \bar{u} \), where \(\bar{u} \) and \(\sigma _\mathrm{u} \) are the mean and the root-mean-square of the streamwise velocity component, respectively). On the other hand, \(\beta _\mathrm{w} =T_\mathrm{w}^\mathrm{L} /T_\mathrm{w}^\mathrm{E} \) follows approximately \(\gamma /i_\mathrm{w} =0.65/\left( {\sigma _\mathrm{w} /\bar{u} } \right) \) for \(z > 2H\), irrespective of the AR value. The second main objective is to estimate other parameters of interest in dispersion studies, such as the eddy diffusivity of momentum \((K_\mathrm{{T}})\) and the Kolmogorov constant \((C_0)\). It is found that \(C_0\) depends appreciably on the velocity component both for the flat terrain and canopy flow, even though for the latter case it is insensitive to AR values. In all the three experimental configurations analyzed here, \(K_\mathrm{{T}}\) shows an overall linear growth with height in agreement with the linear trend predicted by Prandtl’s theory.  相似文献   

2.
Large-eddy simulation (LES) is used to investigate the effects of building-height variability on turbulent flows over an actual urban area, the city of Kyoto, which is reproduced using a 2-m resolution digital surface dataset. Comparison of the morphological characteristics of Kyoto with those of European, North American, and other Japanese cities indicates a similarity to European cities but with more variable building heights. The performance of the LES model is validated and found to be consistent with turbulence observations obtained from a meteorological tower and from Doppler lidar. We conducted the following two numerical experiments: a control experiment using Kyoto buildings, and a sensitivity experiment in which all the building heights are set to the average height over the computational region \(h_{all}\). The difference of Reynolds stress at height \(z=2.5h_{all}\) between the control and sensitivity experiments is found to increase with the increase in the plan-area index (\(\lambda _p\)) for \(\lambda _p > 0.32\). Thus, values of \(\lambda _p\approx 0.3\) can be regarded as a threshold for distinguishing the effects of building-height variability. The quadrant analysis reveals that sweeps contribute to the increase in the Reynolds stress in the control experiment at a height \(z= 2.5h_{all}\). The exuberance in the control experiment at height \(z=0.5h_{all}\) is found to decrease with increase in the building-height variability. Although the extreme momentum flux at height \(z=2.5h_{all}\) in the control experiment appears around buildings, it contributes little to the total Reynolds stress and is not associated with coherent motions.  相似文献   

3.
An extensive meteorological observational dataset at Dome C, East Antarctic Plateau, enabled estimation of the sensitivity of surface momentum and sensible heat fluxes to aerodynamic roughness length and atmospheric stability in this region. Our study reveals that (1) because of the preferential orientation of snow micro-reliefs (sastrugi), the aerodynamic roughness length \(z_{0}\) varies by more than two orders of magnitude depending on the wind direction; consequently, estimating the turbulent fluxes with a realistic but constant \(z_{0}\) of 1 mm leads to a mean friction velocity bias of \(24\,\%\) in near-neutral conditions; (2) the dependence of the ratio of the roughness length for heat \(z_{0t}\) to \(z_{0}\) on the roughness Reynolds number is shown to be in reasonable agreement with previous models; (3) the wide range of atmospheric stability at Dome C makes the flux very sensitive to the choice of the stability functions; stability function models presumed to be suitable for stable conditions were evaluated and shown to generally underestimate the dimensionless vertical temperature gradient; as these models differ increasingly with increases in the stability parameter z / L, heat flux and friction velocity relative differences reached \(100\,\%\) when \(z/L > 1\); (4) the shallowness of the stable boundary layer is responsible for significant sensitivity to the height of the observed temperature and wind data used to estimate the fluxes. Consistent flux results were obtained with atmospheric measurements at heights up to 2 m. Our sensitivity study revealed the need to include a dynamical parametrization of roughness length over Antarctica in climate models and to develop new parametrizations of the surface fluxes in very stable conditions, accounting, for instance, for the divergence in both radiative and turbulent fluxes in the first few metres of the boundary layer.  相似文献   

4.
A method is proposed for estimating the surface-layer depth \((z_s)\) and the friction velocity \((u_*)\) as a function of stability (here quantified by the Obukhov length, L) over the complete range of unstable flow regimes. This method extends that developed previously for stable conditions by Argaín et al. (Boundary-Layer Meteorol 130:15–28, 2009), but uses a qualitatively different approach. The method is specifically used to calculate the fractional speed-up \((\varDelta S)\) in flow over a ridge, although it is suitable for more general boundary-layer applications. The behaviour of \(z_s \left( L\right) \) and \(u_*\left( L\right) \) as a function of L is indirectly assessed via calculation of \(\varDelta S\left( L\right) \) using the linear model of Hunt et al. (Q J R Meteorol Soc 29:16–26, 1988) and its comparison with the field measurements reported in Coppin et al. (Boundary-Layer Meteorol 69:173–199, 1994) and with numerical simulations carried out using a non-linear numerical model, FLEX. The behaviour of \(\varDelta S\) estimated from the linear model is clearly improved when \(u_*\) is calculated using the method proposed here, confirming the importance of accounting for the dependences of \(z_s\left( L \right) \) and \(u_*\left( L \right) \) on L to better represent processes in the unstable boundary layer.  相似文献   

5.
The effects on the convective boundary layer (CBL) of shading due to shallow cumulus clouds are investigated. The main question is to see whether clouds are able to produce secondary circulations by shading of the surface (dynamic heterogeneities) and how these dynamic heterogeneities interact with static heterogeneities in terms of the production of secondary circulations. Also the effects of cloud shadows on cloud-field characteristics are analyzed. The effects are studied using large-eddy simulations of a cloud-topped CBL with an idealized surface. Over a homogeneous surface, shadows trigger secondary circulations with different strengths depending on the solar zenith angle \(\vartheta \), with large \(\vartheta \) favouring the development of secondary circulations. Over a static heterogeneous surface with a simple striped pattern, the strength of secondary circulations is effectively reduced by dynamic heterogeneities at small \(\vartheta \). At large \(\vartheta \), however, the effect on secondary circulations depends on the orientation of the striped static heterogeneities to the shadow-casting direction of the clouds. The influence of shadows is only small if they are cast perpendicular to the striped heterogeneity, but if stripes and the shadow-casting direction are parallel, secondary circulations are reduced in strength also for large \(\vartheta \). Shadow effects on the cloud-field characteristics vary with \(\vartheta \) as well. The results show that small \(\vartheta \) favours the development of small clouds with a reduced lifetime while large \(\vartheta \) promotes the development of larger clouds with an extended lifetime compared to non-shading clouds.  相似文献   

6.
For a horizontally homogeneous, neutrally stratified atmospheric boundary layer (ABL), aerodynamic roughness length, \(z_0\), is the effective elevation at which the streamwise component of mean velocity is zero. A priori prediction of \(z_0\) based on topographic attributes remains an open line of inquiry in planetary boundary-layer research. Urban topographies – the topic of this study – exhibit spatial heterogeneities associated with variability of building height, width, and proximity with adjacent buildings; such variability renders a priori, prognostic \(z_0\) models appealing. Here, large-eddy simulation (LES) has been used in an extensive parametric study to characterize the ABL response (and \(z_0\)) to a range of synthetic, urban-like topographies wherein statistical moments of the topography have been systematically varied. Using LES results, we determined the hierarchical influence of topographic moments relevant to setting \(z_0\). We demonstrate that standard deviation and skewness are important, while kurtosis is negligible. This finding is reconciled with a model recently proposed by Flack and Schultz (J Fluids Eng 132:041203-1–041203-10, 2010), who demonstrate that \(z_0\) can be modelled with standard deviation and skewness, and two empirical coefficients (one for each moment). We find that the empirical coefficient related to skewness is not constant, but exhibits a dependence on standard deviation over certain ranges. For idealized, quasi-uniform cubic topographies and for complex, fully random urban-like topographies, we demonstrate strong performance of the generalized Flack and Schultz model against contemporary roughness correlations.  相似文献   

7.
The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where \(C = 3d_{3}\,+\,1 (d_{3}\) is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when \(C \approx 1\), and anisotropic when \(C \ll 1\). Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability \(\xi = (z-z_{\mathrm{d}})/L_{{\textit{MO}}}\), where z is the measurement height, \(z_{\mathrm{d}}\) is the displacement height, and \(L_{{\textit{MO}}}\) is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., \(\xi < 0\)) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.  相似文献   

8.
We examine cases of a regional elevated mixed layer (EML) observed during the Hudson Valley Ambient Meteorology Study (HVAMS) conducted in New York State, USA in 2003. Previously observed EMLs referred to topographic domains on scales of 10\(^{5}\)–10\(^{6}\) km\(^{2}\). Here, we present observational evidence of the mechanisms responsible for the development and maintenance of regional EMLs overlying a valley-based convective boundary layer (CBL) on much smaller spatial scales (<5000 km\(^{2})\). Using observations from aircraft-based, balloon-based, and surface-based platforms deployed during the HVAMS, we show that cross-valley horizontal advection, along-valley channelling, and fog-induced cold-air pooling are responsible for the formation and maintenance of the EML and valley-CBL coupling over New York State’s Hudson Valley. The upper layer stability of the overlying EML constrains growth of the valley CBL, and this has important implications for air dispersion, aviation interests, and fog forecasting.  相似文献   

9.
We examine the effect of varying roughness-element aspect ratio on the mean velocity distributions of turbulent flow over arrays of rectangular-prism-shaped elements. Large-eddy simulations (LES) in conjunction with a sharp-interface immersed boundary method are used to simulate spatially-growing turbulent boundary layers over these rough surfaces. Arrays of aligned and staggered rectangular roughness elements with aspect ratio >1 are considered. First the temporally- and spatially-averaged velocity profiles are used to illustrate the aspect-ratio effects. For aligned prisms, the roughness length (\(z_\mathrm{o}\)) and the friction velocity (\(u_*\)) increase initially with an increase in the roughness-element aspect ratio, until the values reach a plateau at a particular aspect ratio. The exact value of this aspect ratio depends on the coverage density. Further increase in the aspect ratio changes neither \(z_\mathrm{o}\), \(u_*\) nor the bulk flow above the roughness elements. For the staggered cases, \(z_\mathrm{o}\) and \(u_*\) continue to increase for the surface coverage density and the aspect ratios investigated. To model the flow response to variations in roughness aspect ratio, we turn to a previously developed phenomenological volumetric sheltering model (Yang et al., in J Fluid Mech 789:127–165, 2016), which was intended for low to moderate aspect-ratio roughness elements. Here, we extend this model to account for high aspect-ratio roughness elements. We find that for aligned cases, the model predicts strong mutual sheltering among the roughness elements, while the effect is much weaker for staggered cases. The model-predicted \(z_\mathrm{o}\) and \(u_*\) agree well with the LES results. Results show that the model, which takes explicit account of the mutual sheltering effects, provides a rapid and reliable prediction method of roughness effects in turbulent boundary-layer flows over arrays of rectangular-prism roughness elements.  相似文献   

10.
The surface of windy Antarctic snowfields is subject to drifting snow, which leads to the formation of sastrugi. In turn, sastrugi contribute to the drag exerted by the snow surface on the atmosphere and hence influence drifting snow. Although the surface drag over rough sastrugi fields has been estimated for individual locations in Antarctica, its variation over time and with respect to drifting snow has received little attention. Using year-round data from a meteorological mast, seasonal variations in the neutral drag coefficient at a height of 10 m \((C_{{ DN}10})\) in coastal Adelie Land are presented and discussed in light of the formation and behaviour of sastrugi based on observed aeolian erosion patterns. The measurements revealed high \(C_{{ DN}10} \) values \((\ge \) 2 \(\times \) 10\(^{-3})\) and limited drifting snow (35% of the time) in summer (December–February) versus lower \(C_{{ DN}10} \) values \((\approx \) 1.5 \(\times \) \(10^{-3})\) associated with more frequent drifting snow (70% of the time) in winter (March–November). Without the seasonal distinction, there was no clear dependence of \(C_{{ DN}10} \) on friction velocity or wind direction, but observations revealed a general increase in \(C_{{ DN}10} \) with rising air temperature. The main hypothesis defended here is that higher temperatures increase snow cohesion and the development of sastrugi just after snow deposition while inhibiting the sastrugi streamlining process by raising the erosion threshold. This increases the contribution of the sastrugi form drag to the total surface drag in summer when winds are lighter and more variable. The analysis also showed that, in the absence of erosion, single snowfall events can reduce \(C_{{ DN}10} \) to \(1\,\times \,10^{-3}\) due to the burying of pre-existing microrelief under newly deposited snow. The results suggest that polar atmospheric models should account for spatial and temporal variations in snow surface roughness through a dynamic representation of the sastrugi form drag.  相似文献   

11.
We present an objective optimization procedure to determine the roughness parameters for very rough boundary-layer flow over model urban canopies. For neutral stratification the mean velocity profile above a model urban canopy is described by the logarithmic law together with the set of roughness parameters of displacement height d, roughness length \(z_0\), and friction velocity \(u_*\). Traditionally, values of these roughness parameters are obtained by fitting the logarithmic law through (all) the data points comprising the velocity profile. The new procedure generates unique velocity profiles from subsets or combinations of the data points of the original velocity profile, after which all possible profiles are examined. Each of the generated profiles is fitted to the logarithmic law for a sequence of values of d, with the representative value of d obtained from the minima of the summed least-squares errors for all the generated profiles. The representative values of \(z_0\) and \(u_*\) are identified by the peak in the bivariate histogram of \(z_0\) and \(u_*\). The methodology has been verified against laboratory datasets of flow above model urban canopies.  相似文献   

12.
Evaporation from wet-canopy (\(E_\mathrm{C}\)) and stem (\(E_\mathrm{S}\)) surfaces during rainfall represents a significant portion of municipal-to-global scale hydrologic cycles. For urban ecosystems, \(E_\mathrm{C}\) and \(E_\mathrm{S}\) dynamics play valuable roles in stormwater management. Despite this, canopy-interception loss studies typically ignore crown-scale variability in \(E_\mathrm{C}\) and assume (with few indirect data) that \(E_\mathrm{S}\) is generally \({<}2\%\) of total wet-canopy evaporation. We test these common assumptions for the first time with a spatially-distributed network of in-canopy meteorological monitoring and 45 surface temperature sensors in an urban Pinus elliottii tree row to estimate \(E_\mathrm{C}\) and \(E_\mathrm{S}\) under the assumption that crown surfaces behave as “wet bulbs”. From December 2015 through July 2016, 33 saturated crown periods (195 h of 5-min observations) were isolated from storms for determination of 5-min evaporation rates ranging from negligible to 0.67 \(\hbox {mm h}^{-1}\). Mean \(E_\mathrm{S}\) (0.10 \(\hbox {mm h}^{-1}\)) was significantly lower (\(p < 0.01\)) than mean \(E_\mathrm{C}\) (0.16 \(\hbox {mm h}^{-1}\)). But, \(E_\mathrm{S}\) values often equalled \(E_\mathrm{C}\) and, when scaled to trunk area using terrestrial lidar, accounted for 8–13% (inter-quartile range) of total wet-crown evaporation (\(E_\mathrm{S}+E_\mathrm{C}\) scaled to surface area). \(E_\mathrm{S}\) contributions to total wet-crown evaporation maximized at 33%, showing a general underestimate (by 2–17 times) of this quantity in the literature. Moreover, results suggest wet-crown evaporation from urban tree rows can be adequately estimated by simply assuming saturated tree surfaces behave as wet bulbs, avoiding problematic assumptions associated with other physically-based methods.  相似文献   

13.
Planetary boundary-layer (PBL) structure was investigated using observations from a Doppler lidar and the 325-m Institute of Atmospheric Physics (IAP) meteorological tower in the centre of Beijing during the summer 2015 Study of Urban-impacts on Rainfall and Fog/haze (SURF-2015) field campaign. Using six fair-weather days of lidar and tower data under clear to cloudy skies, we evaluate the ability of the Doppler lidar to probe the urban boundary-layer structure, and then propose a composite method for estimating the diurnal cycle of the PBL depth using the Doppler lidar. For the convective boundary layer (CBL), a threshold method using vertical velocity variance \((\sigma _w^2 >0.1\,\hbox {m}^{2}\hbox {s}^{-2})\) is used, since it provides more reliable CBL depths than a conventional maximum wind-shear method. The nocturnal boundary-layer (NBL) depth is defined as the height at which \(\sigma _w^2\) decreases to 10 % of its near-surface maximum minus a background variance. The PBL depths determined by combining these methods have average values ranging from \(\approx \)270 to \(\approx \)1500 m for the six days, with the greatest maximum depths associated with clear skies. Release of stored and anthropogenic heat contributes to the maintenance of turbulence until late evening, keeping the NBL near-neutral and deeper at night than would be expected over a natural surface. The NBL typically becomes more shallow with time, but grows in the presence of low-level nocturnal jets. While current results are promising, data over a broader range of conditions are needed to fully develop our PBL-depth algorithms.  相似文献   

14.
A non-iterative analytical scheme is developed for unstable stratification that parametrizes the Monin–Obukhov stability parameter \(\zeta \) (\({=}z{/}L\), where z is the height above the ground and L is the Obukhov length) in terms of bulk Richardson number (\(Ri_B\)) within the framework of Businger–Dyer type similarity functions. The proposed scheme is valid for a wide range of roughness lengths of heat and momentum. The absolute relative error in the transfer coefficients of heat and momentum is found to be less than 1.5% as compared to those obtained from an iterative scheme for Businger–Dyer type similarity functions. An attempt has been made to extend this scheme to incorporate the similarity functions having a theoretically consistent free convection limit. Further, the performance of the scheme is evaluated using observational data from two different sites. The proposed scheme is simple, non-iterative and relatively more accurate compared to the schemes reported in the literature and can be used as a potential alternative to iterative schemes used in numerical models of the atmosphere.  相似文献   

15.
Adequate high-quality data on three-dimensional velocities in the atmospheric surface layer (height \(\delta \)) were acquired in the field at the Qingtu Lake Observation Array. The measurement range occupies nearly the entire logarithmic layer from approximately \(0.006\delta \)\(0.2\delta \). The turbulence intensity and eddy structures of the velocity fluctuations in the logarithmic region were primarily analyzed, and their variations in the z (wall-normal) direction were revealed. The primary finding was that the turbulent intensity of wall-normal velocity fluctuations exhibits a sharp upswing in the logarithmic region, which differs from classic scaling law and laboratory results. The upswing of the wall-normal turbulence intensity in the logarithmic region is deemed to be linear based on an ensemble of 20 sets of data. In addition, the wall-normal extent of the correlated structures and wall-normal spectra were compared to low Reynolds number results in the laboratory.  相似文献   

16.
The Nieuwstadt closed-form solution for the stationary Ekman layer is generalized for katabatic flows within the conceptual framework of the Prandtl model. The proposed solution is valid for spatially-varying eddy viscosity and diffusivity (O’Brien type) and constant Prandtl number (Pr). Variations in the velocity and buoyancy profiles are discussed as a function of the dimensionless model parameters \(z_0 \equiv \hat{z}_0 \hat{N}^2 Pr \sin {(\alpha )} |\hat{b}_\mathrm{s} |^{-1}\) and \(\lambda \equiv \hat{u}_{\mathrm{ref}}\hat{N} \sqrt{Pr} |\hat{b}_\mathrm{s} |^{-1}\), where \(\hat{z}_0\) is the hydrodynamic roughness length, \(\hat{N}\) is the Brunt-Väisälä frequency, \(\alpha \) is the surface sloping angle, \(\hat{b}_\mathrm{s}\) is the imposed surface buoyancy, and \(\hat{u}_{\mathrm{ref}}\) is a reference velocity scale used to define eddy diffusivities. Velocity and buoyancy profiles show significant variations in both phase and amplitude of extrema with respect to the classic constant \(\textit{K}\) model and with respect to a recent approximate analytic solution based on the Wentzel-Kramers-Brillouin theory. Near-wall regions are characterized by relatively stronger surface momentum and buoyancy gradients, whose magnitude is proportional to \(z_0\) and to \(\lambda \). In addition, slope-parallel momentum and buoyancy fluxes are reduced, the low-level jet is further displaced toward the wall, and its peak velocity depends on both \(z_0\) and \(\lambda \).  相似文献   

17.
The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (\(\alpha \) and \(\beta )\) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., \(\alpha = 3\) and \(\beta = 1/26~\hbox {(ms)}^{-1}\) for the infrared, and \(\alpha = 3\) and \(\beta = 1/19~\hbox {(ms)}^{-1}\) for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter \(\alpha \) and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of \(\alpha \). The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.  相似文献   

18.
We investigate the effects of an isolated meso-\(\gamma \)-scale surface heterogeneity for roughness and albedo on the atmospheric boundary-layer (ABL) height, with a case study at a semi-arid forest surrounded by sparse shrubland (forest area: \(28~\text{ km }^2\), forest length in the main wind direction: 7 km). Doppler lidar and ceilometer measurements at this semi-arid forest show an increase in the ABL height over the forest compared with the shrubland on four out of eight days. The differences in the ABL height between shrubland and forest are explained for all days with a model that assumes a linear growth of the internal boundary layer of the forest through the convective ABL upwind of the forest followed by a square-root growth into the stable free atmosphere. For the environmental conditions that existed during our measurements, the increase in ABL height due to large sensible heat fluxes from the forest (\(600~\text {W~m}^{-2}\) in summer) is subdued by stable stratification in the free atmosphere above the ABL, or reduced by high wind speeds in the mixed layer.  相似文献   

19.
The influence of wave-associated parameters controlling turbulent \(\hbox {CO}_2\) fluxes through the air–sea interface is investigated in a coastal region. A full year of high-quality data of direct estimates of air–sea \(\hbox {CO}_2\) fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of \(\hbox {CO}_2\) with a mean flux of \(-1.3\, \upmu \hbox {mol m}^{-2}\hbox {s}^{-1}\) (\(-41.6\hbox { mol m}^{-2}\hbox {yr}^{-1}\)). The results of a quantile-regression analysis computed between the \(\hbox {CO}_2\) flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.  相似文献   

20.
Urban morphology and inter-building shadowing result in a non-uniform distribution of surface heating in urban areas, which can significantly modify the urban flow and thermal field. In Part I, we found that in an idealized three-dimensional urban array, the spatial distribution of the thermal field is correlated with the orientation of surface heating with respect to the wind direction (i.e. leeward or windward heating), while the dispersion field changes more strongly with the vertical temperature gradient in the street canyon. Here, we evaluate these results more closely and translate them into metrics of “city breathability,” with large-eddy simulations coupled with an urban energy-balance model employed for this purpose. First, we quantify breathability by, (i) calculating the pollutant concentration at the pedestrian level (horizontal plane at \(z\approx 1.5\)–2 m) and averaged over the canopy, and (ii) examining the air exchange rate at the horizontal and vertical ventilating faces of the canyon, such that the in-canopy pollutant advection is distinguished from the vertical removal of pollution. Next, we quantify the change in breathability metrics as a function of previously defined buoyancy parameters, horizontal and vertical Richardson numbers (\(Ri_\text {h}\) and \(Ri_\text {v}\), respectively), which characterize realistic surface heating. We find that, unlike the analysis of airflow and thermal fields, consideration of the realistic heating distribution is not crucial in the analysis of city breathability, as the pollutant concentration is mainly correlated with the vertical temperature gradient (\(Ri_\text {v}\)) as opposed to the horizontal (\(Ri_\text {h}\)) or bulk (\(Ri_\text {b}\)) thermal forcing. Additionally, we observe that, due to the formation of the primary vortex, the air exchange rate at the roof level (the horizontal ventilating faces of the building canyon) is dominated by the mean flow. Lastly, since \(Ri_\text {h}\) and \(Ri_\text {v}\) depend on the meteorological factors (ambient air temperature, wind speed, and wind direction) as well as urban design parameters (such as surface albedo), we propose a methodology for mapping overall outdoor ventilation and city breathability using this characterization method. This methodology helps identify the effects of design on urban microclimate, and ultimately informs urban designers and architects of the impact of their design on air quality, human health, and comfort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号