首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Future NASA X-ray Observatories will shed light on a variety of high-energy astrophysical phenomena. Off-plane reflection gratings can be used to provide high throughput and spectral resolution in the 0.3–1.5 keV band, allowing for unprecedented diagnostics of energetic astrophysical processes. A grating spectrometer consists of multiple aligned gratings intersecting the converging beam of a Wolter-I telescope. Each grating will be aligned such that the diffracted spectra overlap at the focal plane. Misalignments will degrade both spectral resolution and effective area. In this paper we present an analytical formulation of alignment tolerances that define grating orientations in all six degrees of freedom. We verify our analytical results with raytrace simulations to fully explore the alignment parameter space. We also investigate the effect of misalignments on diffraction efficiency.  相似文献   

2.
A way to fully exploit the large collecting area of modern 8–10m class telescopes is high resolution spectroscopy. Many astrophysical problems from planetary science to cosmology benefit from spectroscopic observations at the highest resolution currently achievable and would benefit from even higher resolutions. Indeed in the era of 8–10m class telescopes no longer the telescope collecting area but the size of the beam – which is related to the maximum size in which reflection gratings are manufactured – is what mainly limits the resolution. A resolution‐slit product Rφ ≃ 40,000 is the maximum currently provided by a beam of 20 cm illuminating the largest grating mosaics. We present a conceptual design for a spectrograph with Rφ ≃ 80,000, i.e. twice as large as that of existing instruments. Examples of the possible exploitation of such a high Rφ value, including spectropolarimetry and very high resolution (R ∼ 300,000), are discussed in detail. The new concept is illustrated through the specific case of a high resolution spectropolarimeter for the Large Binocular Telescope.  相似文献   

3.
We present a new scheme of a moderate-resolution spectrograph based on a cascade of serial holographic gratings each of which produces an individual spectrum with a resolution of about 6000 and a bandwidth of 80 nm. The gratings ensure centering of each part of the spectrum they produce so as to provide uniform coverage of the broadest possible wavelength interval. In this study we manage to simultaneously cover the 430–680 nm interval without gaps using three gratings. Efficiency of the spectrograph optical system itself from the entrance slit to the CCD detector is typically of about 60% with a maximum of 75%. We discuss the advantages and drawbacks of the new spectrograph scheme as well as the astrophysical tasks for which the instrument can be used.  相似文献   

4.
无缝光谱巡天是如今国际天文学研究的重点方向, 相比较地基巡天任务, 空间巡天可获取更多紫外波段与红外波段的光谱信息, 其发展受到色散元件的制约, 针对紫外波段的核心色散元件---紫外透射闪耀光栅开展了一系列研究. 通过全息干涉光刻产生图形, 离子束垂直刻蚀将图形转移至基底形成光栅掩模, 利用光栅掩模对倾斜离子束的遮挡作用, 使得槽底不同部位受到离子束的轰击通量不同, 从而获得非对称的槽形结构. 实验分析了倾斜离子束刻蚀中沉积物的主要组成以及对槽形和闪耀角度的影响, 并在去除沉积物影响的情况下, 成功制作了线密度为333lines/mm, 闪耀角度分别为13.2°、10.5°的紫外透射闪耀光栅, 峰值衍射效率分别可达理论值的88%以及92%, 为制作高衍射效率紫外透射闪耀光栅奠定了基础.  相似文献   

5.
We present the status of an ongoing study for a high‐resolution near‐infrared echelle spectrograph for the 10.4‐m GTC (Gran Telescopio de Canarias) which will soon start operating at the Observatorio del Roque de los Muchachos on the island of La Palma. The main science driver of this instrument, which we have baptized NAHUAL, is to carry out a high precision radial velocity survey of exoplanets around ultracool dwarfs. NAHUAL is being especially designed to achieve the highest possible accuracy for radial velocity measurements. The goal is to reach an accuracy of a few m/s. It is thus required that the instrument is cross‐dispersed and that it covers simultaneously a wide wavelength range. Absorption cells will be placed in front of the slit which will allow a simultaneous self‐reference similar to an iodine‐cell in the optical regime. It is planned to place the instrument at one of the Nasmyth platform of the GTC behind the Adaptive Optics system. Our current design reaches a maximum spectral resolution of λ/Δλ = 50000 with a slit width of 0.175 arcsec, and gives nearly complete spectral coverage from 900 to 2400 nm. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
This paper discusses some of the challenges of spectro‐polarimetric observations with a large aperture solar telescope such as the ATST or the EST. The observer needs to reach a compromise between spatial and spectral resolution, time cadence, and signal‐to‐noise ratio, as only three of those four parameters can be pushed to the limit. Tunable filters and grating spectrographs provide a natural compromise as the former are more suitable for high‐spatial resolution observations while the latter are a better choice when one needs to work with many wavelengths at full spectral resolution. Given the requirements for the new science targeted by these facilities, it is important that 1) tunable filters have some multi‐wavelength capability; and 2) grating spectrographs have some 2D field of view (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
This paper describes the Wide Field Spectrograph (WiFeS) under construction at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) for the ANU 2.3 m telescope at the Siding Spring Observatory. WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent throughput, wavelength stability, spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320–950 nm wavelength region. It provides a 25×38 arcsec field with 0.5 arcsec sampling along each of twenty five 38×1 arcsec slitlets. The output format is optimized to match the 4096×4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of “interleaved nod-and-shuffle” will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions of 3000 and 7000 are provided. The full spectral range is covered in a single exposure at R=3000, and in two exposures in the R=7000 mode. The use of transmissive coated optics, VPH gratings and optimized mirror coatings ensures a throughput (including telescope atmosphere and detector) >30% over a wide spectral range. The concentric image-slicer design ensures an excellent and uniform image quality across the full field. To maximize scientific return, the whole instrument is configured for remote observing, pipeline data reduction, and the accumulation of calibration image libraries.  相似文献   

8.
We describe a multi-order spectrograph concept suitable for 8-m class telescopes, using the intrinsic spectral resolution of superconducting tunnelling junction detectors to sort the spectral orders. The spectrograph works at low orders, 1–5 or 1–6, and provides spectral coverage with a resolving power of   R ≃ 8000  from the atmospheric cut-off at 320 nm to the long-wavelength end of the infrared H or K band at 1800 nm or 2400 nm. We calculate that the spectrograph would provide substantial throughput and wavelength coverage, together with high time resolution and sufficient dynamic range. The concept uses currently available technology, or technologies with short development horizons, restricting the spatial sampling to two linear arrays; however, an upgrade path to provide more spatial sampling is identified. All of the other challenging aspects of the concept – the cryogenics, thermal baffling and magnetic field biasing – are identified as being feasible.  相似文献   

9.
SARG is a cross dispersed echelle spectrograph in operation since late spring 2000 at the Italian Telescopio Nazionale Galileo (TNG) 3.5 m telescope, La Palma. SARG offers both single object and long slit (up to 26 arcsec) observing modes covering a spectral range from λ = 0.37 up to1 μm, with resolution ranging from R = 29,000 up to R = 164,000. Cross dispersion is provided by means of a selection of four grisms; interference filters may be used for the long slit mode (up to 26 arcsec). A dioptric camera images the cross dispersed spectra onto a mosaic of two 2048 × 4096 EEV CCDs (pixel size: 13.5 μm) allowing complete spectral coverage at all resolving power for λ < 0.8 μm. In order to reach a high wavelength calibration precision an iodine-absorbing cell is provided. A Distributed Active Temperature Control System (DATCS) maintains constant the temperature of all spectrograph components at a preset value. Early results show that SARG works according to original specifications in terms of wavelength coverage, efficiency (measured peak efficiency is about 13%),resolution (maximum resolution R = 164,000 using a 0.3 arcsec slit, R ∼144,000 using an image slicer), and stability (preliminary estimates of radial velocity accuracy is ∼3 m/s using the iodine cell and ±150 m/s without the iodine cell). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The GraF instrument using a Fabry-Perot interferometer cross-dispersed with a grating was one of the first integral-field and long-slit spectrographs built for and used with an adaptive optics system. We describe its concept, design, optimal observational procedures and the measured performances. The instrument was used in 1997–2001 at the ESO3.6 m telescope equipped with ADONIS adaptive optics and SHARPII+camera. The operating spectral range was 1.2–2.5 μm. We used the spectral resolution from 500 to 10 000 combined with the angular resolution of 0.1″–0.2″. The quality of GraF data is illustrated by the integral field spectroscopy of the complex0.9″ × 0.9″ central region of η Car in the1.7 μm spectral range at the limit of spectral and angular resolutions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The Goddard Space Flight Center instrument carried on the pointed section of the OSO-7 satellite is described. This instrument contains: An extreme ultraviolet spectroheliograph using glancing incidence optics of Wolter's Type II to focus the Sun's light on the entrance slit of a concave grating spectrometer; an auxiliary H system; two X-ray spectroheliographs using mechanical collimators for spatial resolution and Ross filters to isolate spectral bands of interest, and a flare polarimeter operating in the 15–40 keV X-ray region. These subsystems may be operated in a number of modes which, when combined with the spacecraft modes, give the instrument great flexibility for making solar observations. Representative results from each of the subsystems are presented.  相似文献   

12.
We consider resonant absorption in a spectral line in the outflowing plasma within several tens of Schwarzschild radii from a compact object. We take into account both Doppler and gravitational shifting effects and reformulate the theory of P Cygni profiles in these new circumstances. It is found that a spectral line may have multiple absorption and emission components depending on how far the region of interaction is from the compact object and what the distribution of velocity and opacity is. Profiles of spectral lines produced near a neutron star or a black hole can be strongly distorted by Doppler blue- or redshifting and gravitational redshifting. These profiles may have both red- and blueshifted absorption troughs. The result should be contrasted with classical P Cygni profiles, which consist of redshifted emission and blueshifted absorption features.
We suggest that this property of line profiles to have complicated narrow absorption and emission components in the presence of strong gravity may help researchers to study spectroscopically the innermost parts of an outflow.  相似文献   

13.
We demonstrate that artificial bipolar structure can be detected using spectro-astrometry when the point spread function (PSF) of a point source suffers distortion in a relatively wide slit. Spectro-astrometry is a technique which allows us to probe the spatial structure of astronomical sources on milliarcsec (mas) scales making it possible to detect close binaries and to study the geometry and kinematics of outflowing gas on scales much smaller than the seeing or the diffraction limit of the telescope. It is demonstrated that a distorted PSF, caused by tracking errors of the telescope or unstable active optics during an exposure, can induce artificial signals which may be misinterpreted as a real spectro-astrometric signal. Using simulations, we show that these may be minimized by using a narrow slit relative to the seeing. Spectra should be obtained at antiparallel slit position angles (e.g. 0° and 180°) for comparison in order to allow artificial signatures to be identified.  相似文献   

14.
The light variability is one of the main characteristics of blazar objects. Because of the complexity of their light curves, the present periodicity analysis methods are not yet perfect. Based on the modern spectral estimate theory, this paper has described in details the principles of the maximum entropy spectral estimate and autoregressive (AR) spectral estimate, analyzed the effect of the order number selection on the resultant model. Applying these methods to the periodicity analysis of the quasar 3C 279 and BL Lac object OJ 287, their light periods are obtained to be 7.14 and 11.76 yr, respectively. As is verified by experiments, the AR spectral estimate has a high resolution and is a rather good periodicity analysis method. Finally, the items noteworthy for the application of these spectrum estimation methods to the periodicity analysis of the light variations of blazars are mentioned.  相似文献   

15.
We describe the future night‐time spectrograph for the GREGOR solar telescope and present its science core projects. The spectrograph provides a 3‐pixel resolution of up to R = 87 000 in 45 échelle orders covering the wavelength range 390‐900 nm with three grating settings. An iodine cell can be used for high‐precision radial velocity work in the 500‐630 nm range. The operation of the spectrograph and the telescope will be fully automated without the presence of humans during night‐time and will be based on the successful STELLA control system. Future upgrades include a second optical camera for even higher spectral resolution, a Stokes‐V polarimeter and a link to the laser‐frequency comb at the Vacuum Tower Telescope. The night‐time core projects are a study of the angular‐momentum evolution of “The Sun in Time” and a continuation of our long‐term Doppler imaging of active stars (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Planetary transits detected by the CoRoT mission can be mimicked by a low‐mass star in orbit around a giant star. Spectral classification helps to identify the giant stars and also early‐type stars which are often excluded from further follow‐up. We study the potential and the limitations of low‐resolution spectroscopy to improve the photometric spectral types of CoRoT candidates. In particular, we want to study the influence of the signal‐to‐noise ratio (SNR) of the target spectrum in a quantitative way. We built an own template library and investigate whether a template library from the literature is able to reproduce the classifications. Including previous photometric estimates, we show how the additional spectroscopic information improves the constraints on spectral type. Low‐resolution spectroscopy (R ≈ 1000) of 42 CoRoT targets covering a wide range in SNR (1–437) and of 149 templates was obtained in 2012–2013 with the Nasmyth spectrograph at the Tautenburg 2 m telescope. Spectral types have been derived automatically by comparing with the observed template spectra. The classification has been repeated with the external CFLIB library. The spectral class obtained with the external library agrees within a few sub‐classes when the target spectrum has a SNR of about 100 at least. While the photometric spectral type can deviate by an entire spectral class, the photometric luminosity classification is as close as a spectroscopic classification with the external library. A low SNR of the target spectrum limits the attainable accuracy of classification more strongly than the use of external templates or photometry. Furthermore we found that low‐resolution reconnaissance spectroscopy ensures that good planet candidates are kept that would otherwise be discarded based on photometric spectral type alone. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Upcoming large solar telescopes will offer the possibility of unprecedented high resolution observations. However, during periods of non‐ideal seeing such measurements are impossible and alternative programs should be considered to best use the available observing time. We present a synoptic program, currently carried out at the Istituto Ricerche Solari Locarno (IRSOL), to monitor turbulent magnetic fields employing the differential Hanle effect in atomic and molecular lines. This program can be easily adapted for the use at large telescopes exploring new science goals, nowadays impossible to achieve with smaller telescopes. The current, interesting scientific results prove that such programs are worthwhile to be continued and expanded in the future. We calculate the approximately achievable spatial resolution at a large telescope like ATST for polarimetric measurements with a noise level below 5 × 10‐5 and a temporal resolution which is sufficient to explore variations on the granular scale. We show that it would be important to optimize the system for maximal photon throughput and to install a high‐speed camera system to be able to study turbulent magnetic fields with unprecedented accuracy (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
[OIII] 5007 Å line profiles at high spectral and spatial resolution have been obtained at a single slit position near the Trapezium cluster in the Orion Nebula (M42, NGC1976) using the Manchester Echelle Spectrometer (MES). The very long integration time at this position confirms the earlier tentative identification of a shell on the nearside of the Trapezium cluster with a relative velocity of -100 kms–1 and a radius of 1 arcminute. No receding counterpart is found. We believe this is the first detection of this feature at optical wavelengths, previous spectroscopic work (O' Dellet al., 1993),(Baldwinet al., 1991),(Castaneda, 1988) having concentrated on the main nebular material at relatively low velocities.  相似文献   

19.
The star formation histories of galaxies in the Sloan Digital Sky Survey   总被引:1,自引:0,他引:1  
We present the results of a moped analysis of  ∼3 × 105  galaxy spectra from the Sloan Digital Sky Survey Data Release 3 (SDSS DR3), with a number of improvements in data, modelling and analysis compared with our previous analysis of DR1. The improvements include: modelling the galaxies with theoretical models at a higher spectral resolution of 3 Å, better calibrated data, an extended list of excluded emission lines and a wider range of dust models. We present new estimates of the cosmic star formation rate (SFR), the evolution of stellar mass density and the stellar mass function from the fossil record. In contrast to our earlier work the results show no conclusive peak in the SFR out to a redshift around 2 but continue to show conclusive evidence for 'downsizing' in the SDSS fossil record. The star formation history is now in good agreement with more traditional instantaneous measures. The galaxy stellar mass function is determined over five decades of mass, and an updated estimate of the current stellar mass density is presented. We also investigate the systematic effects of changes in the stellar population modelling, the spectral resolution, dust modelling, sky lines, spectral resolution and the change of data set. We find that the main changes in the results are due to the improvements in the calibration of the SDSS data, changes in the initial mass function and the theoretical models used.  相似文献   

20.
The redshift evolution of the galaxy cluster temperature function is a powerful probe of cosmology. However, its determination requires the measurement of redshifts for all clusters in a catalogue, which is likely to prove challenging for large catalogues expected from XMM-Newton , which may contain of the order of 2000 clusters with measurable temperatures, distributed around the sky. In this paper we study the apparent cluster temperature, which can be obtained without cluster redshifts. We show that the apparent temperature function itself is of limited use in constraining cosmology, and so concentrate our focus on studying how apparent temperatures can be combined with other X-ray information to constrain the cluster redshift. We also briefly study the circumstances under which the non-thermal spectral features can provide redshift information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号