首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
Profiles of electrical conductivity in the troposphere and stratosphere were measured by balloon-borne conductivity sondes at Garmisch-Partenkirchen, West Germany, from January to May, 1980, when volcanic activity was low. The aerosol concentration has been deduced from the relative decrease of conductivity from surrounding values by assuming the effective attachment coefficient of ions to aerosols. A prominent decrease of the conductivity near the tropopause is usually observed indicating high concentrations of Aitken particles (500–1000 cm–3). A decrease of conductivity, well above the tropopause, is sometimes observed, probably due to the transport of tropospheric Aitken particles with high concentration (200–400 cm–3) into the stratosphere.  相似文献   

2.
The eruptions of Nevado del Ruiz in 1985 were unusually rich in sulfur dioxide. These eruptions were observed with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) which can quantitatively map volcanic sulfur dioxide plumes on a global scale. A small eruption, originally believed to be of phreatic origin, took place on September 11, 1985. However, substantial amounts of sulfur dioxide from this eruption were detected with TOMS on the following day. The total mass of SO2, approximately 9 ± 3 × 104 metric tons, was deposited in two clouds, one in the upper troposphere, the other possibly at 15 km near the stratosphere.The devastating November 13 eruptions were first observed with TOMS at 1150 EST on November 14. Large amounts of sulfur dioxide were found in an arc extending 1100 km from south of Ruiz northeastward to the Gulf of Venezuela and as an isolated cloud centered at 7°N on the Colombia-Venezuela border. On November 15 the plume extended over 2700 km from the Pacific Ocean off the Colombia coast to Barbados, while the isolated mass was located over the Brazil-Guyana border, approximately 1600 km due east of the volcano. Based on wind data from Panama, most of the sulfur dioxide was located at 10–16 km in the troposphere and a small amount was quite likely deposited in the stratosphere at an altitude above 24 km.The total mass of sulfur dioxide in the eruption clouds was approximately 6.6 ± 1.9 × 105 metric tons on November 14. When combined with quiescent sulfur dioxide emissions during this period, the ratio of sulfur dioxide to erupted magma from Ruiz was an order of magnitude greater than in the 1982 eruption of El Chichon or the 1980 eruption of Mount St. Helens.  相似文献   

3.
Air traffic is a source of trace gases in the upper troposphere and lower stratosphere. Contrails readily form from water vapor exhausts under favorable meteorological conditions. Since contrails are ice crystal clouds like natural cirrus clouds, they bear a greenhouse potential which has to be investigated. The IFU has built a scanning lidar system employing a pulsed Nd:YAG laser as the emitter and a 52-cm diameter telescope as the receiver. Signals are processed in several channels to investigate depolarization and wavelength dependencies of the light backscattered from ice crystals. These investigations are aimed at the formation and life cycles of contrails, their optical properties, and their climatological consequences in areas of dense air traffic. The experimental lidar setup is described and a sample measurement is shown.  相似文献   

4.
The results of studying the finely dispersed particles in the natural and anthropogenic geosystems are briefly reviewed. The analysis is confined to the solid Earth, the troposphere, and the stratosphere. Definitions are given for the main fine-dispersed objects in geophysics (nanocrystals, nano- and microscale particles, nanoclusters, nanoporous materials, colloidal particles, aerosols, etc.). The specific mechanical properties of nanoobjects are outlined, and the limiting particle sizes at which these particularities are significant are estimated. The studies of fine-dispersed particles formed in the experiments on destruction of rocks are described. The role of fine particles in the Atmospheric Brown Clouds is discussed, and the effect of these clouds on the climatic changes is analyzed. Participation of fine particles in the interactions between the geospheres is considered by the examples of extraterrestrial dust, eruption of the Eyjafjallajökull volcano, and vortex entrainment of the fine particles from the troposphere into the stratosphere.  相似文献   

5.
火山活动对热带高空温度变化的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
本文利用序列回归分析、对比分析和个例分析法分析了火山活动对热带高空大气的温度效应. 主要结论为:火山活动影响最显著的高度是平流层70 hPa约22 km高空,由此高度向上或向下,火山活动的影响都逐渐减小;火山活动将引起平流层大气升温、对流层大气降温,其分界线大致位于对流层顶300 hPa附近;火山活动对于热带70 hPa高空温度距平变化的影响超过了总方差的457%;单独考察几次强火山活动(如阿贡火山、皮纳图博火山和厄尔奇冲火山等)的温度效应表明,在热带地区强火山爆发后的20个月内,对热带高空温度的影响超过了其距平变化的80%!成为该时段高空温度变化的决定性因素.  相似文献   

6.
This paper studies the data on the conductivity and concentration of nitrates (ions) in an ice core from central Greenland obtained with high time resolution. The performed analysis indicates that the abrupt increase in the concentration of sulfate aerosols in the stratosphere due to additional ionization resulted from precipitation of solar cosmic ray energetic particles is one of the main factors that cause simultaneous origination of powerful peaks in the nitrate conductivity and concentration. Thus, coincidences of peaks in both studied paleoseries are manifestations of the effect that has been experimentally registered with lidar and satellite equipment for the last 25 years. This demonstrates that the relationship between the aerosol concentration and the ionization rate in the stratosphere is real and makes it possible to expand the interval where this relationship exists to more than 200 years. The possible physical mechanisms of the observed phenomenon are discussed.  相似文献   

7.
火山活动对北半球平流层气候异常变化的影响   总被引:8,自引:0,他引:8       下载免费PDF全文
文中利用逐次滤波法滤除北半球平流层70 hPa约15~22 km高空大气温度异常变化中太阳活动的影响之后,进一步分析了火山活动的气候效应,分析结果表明,火山活动能引起平流层较大幅度增温,对于北半球70hPa高空气候异常变化的影响超过了总方差的30%;火山活动影响最显著的高度是平流层70 hPa约15~22 km高空,由此高度向上或向下,火山活动的影响都逐渐减小;火山活动引起平流层大气升温的同时还将引起对流层大气降温,其分界线大致位于对流层顶300 hPa附近;强火山爆发如皮纳图博火山爆发、阿贡火山爆发和堪察加北楮缅奴等火山爆发是引起未来两年左右平流层中下层温度异常变化最重要的因素,其方差贡献率超过百分之五十三!;火山喷发高度越高,引起平流层增温效应的层次也越高;北半球大气温度异常变化对南半球火山活动响应的滞后时间比北半球火山活动长. 平流层高空气候异常变化还具有显著的22年变化周期,分析认为是大气温度场对太阳磁场磁性周期22年异常变化的响应,其方差贡献率超过9%.  相似文献   

8.
利用美国航空航天局MERRA(Modern-Era Retrospective Analysis for Research and Applications)再分析资料和MODIS(Moderate-Resolution Imaging Spectroradiometer)卫星资料以及欧洲气象中心ECMWF-Interim(European Centre for Medium-Range Weather Forecasts)再分析资料,分析了发生于青藏高原北侧上空的一次地形重力波事件,并使用中尺度预报模式WRF-ARW.V3.0(Weather Research and Forecasting model,V3.0)对其进行了数值模拟.在此基础上,诊断分析了此次地形重力波在UTLS(Upper Troposphere and Lower Stratosphere)区域造成的物质和能量垂直传输特征.分析结果表明这一中尺度地形重力波信号的水平波长约为600km,与地形扰动水平尺度接近,重力波在对流层中传播的垂直波长约为3km,在垂直方向上随着高度的增加呈现出由东向西倾斜的结构特征.此次地形重力波上传进入平流层并在150hPa附近破碎,波破碎后动量通量在短时间内发生了强烈的衰减,重力波携带的能量在破碎高度附近释放.重力波破碎的同时垂直方向湍流混合变得异常强烈,湍流交换系数可在短时间内增加到背景值的8倍以上,剧烈湍流混合过程导致了对流层上层的空气进入平流层,使下平流层空气出现了位势涡度和臭氧的低值区,在浮力频率的垂直剖面中也可以看到由于地形重力波过程造成的平流层下层浮力频率异常低值区.  相似文献   

9.
Quasi-biennial oscillation (QBO) is a predominant phenomenon in the tropical stratosphere and troposphere. The possible interactions between the stratospheric QBO and tropospheric biennial oscillation (TBO) over the Indian monsoon region as well as the equatorial region is investigated using the zonal wind data of 23 vertical levels (1000–1 hpa) from 1960–2002. The structure of lower stratosphere and troposphere are entirely different over the equator and India. In biennial scales, both the stratosphere and troposphere over the Indian region are closely related and winter season QBO is a good predictor of Indian summer monsoon rainfall.  相似文献   

10.
Calculating the global mass exchange between stratosphere and troposphere   总被引:1,自引:0,他引:1  
Large-scale cross-tropopause mass fluxes are diagnosed globally from 1979 to 1989 for Northern Hemisphere winter conditions (December, January, and February). Results of different methods of approaches with regard to the definition of the tropopause and the way to calculate the mass fluxes are compared and discussed. The general pattern of the mass exchange from the tropopause into the stratosphere and vice versa agrees fairly well when using different methods, but the absolute values can differ up to 100%.An inspection of the temporal development of the mass fluxes for solstice conditions indicates a complex picture. Whereas a permanent significant downward flux from the stratosphere into the troposphere is detected for latitude regions nearly between 25°N and 40°N and between 30°S and 50°S (initiated by the poleward branches of the Hadley cells), a non-uniform behaviour is observed at higher latitude bands. Periods of strong mass exchange from the troposphere into the stratosphere are disrupted by periods of an opposite mass exchange. A comparison of the stratoshere-troposphere (ST) exchange with the exchange at higher altitudes through surfaces, quasi-parallel to the tropopause, excludes a general connection. Only a few strong upward directed ST mass exchange events have counterparts at higher altitudes. The composition of the stratosphere may be influenced directly by the ST exchange only in a thin layer above the tropopause.  相似文献   

11.
This paper attempts to establish a connection between stratospheric anomalies in the North Pole and rainfall on the Iberian Peninsula through the occurrence of major midwinter warmings (MMWs) and cold events (CEs), taking February as a preliminary approach. We define the MMWs as the warmings which break down the polar vortex, whereas the CEs are the episodes in which the polar vortex remains cold and undisturbed. Both anomalies lead to a wind anomaly around the north polar stratosphere, which is connected with a shortly lagged tropospheric anomaly through a stratosphere–troposphere coupling in winter. A T-mode principal component analysis (PCA) was used as an objective pattern classification method for identifying the main daily surface-level pressure (SLP) patterns for February for the 1961–1990 reference period. Subsequently, those February months with an MMW or a CE influence in the troposphere are identified in the whole study period (1958–2000) by means of the Arctic Oscillation Index (AOI). Thus, performing the same analysis for the selected February months, new principal patterns for detecting changes in surface circulation structure and morphology are obtained. The results show a significant decrease in the westerlies and a southward shift of the storm tracks in Western Europe some weeks after an MMW occurrence, leading to an increase in precipitation in western Iberia and a slight decrease on the eastern Mediterranean fringe. The results are quite the opposite under a CE influence: the westerlies are strengthened and shifted northwards due to the displacement of the Atlantic anticyclone towards Central Europe; dry conditions are established throughout Iberia, except for the Mediterranean fringe, where precipitation shows a considerable increase due to the greater frequency of the northeasterly winds. Finally, an 11-year sunspot cycle–quasi-biennial oscillation (QBO) modulation might be demonstrated in Iberian rainfall in February through the occurrence of these stratospheric anomalies.  相似文献   

12.
The troposphere and lower stratosphere (TLS) is a region with active atmospheric fluctuations. The Wuhan Mesosphere-Stratosphere-Troposphere (MST) radar is the first MST radar to have become operational in Mainland China. It is dedicated to real-time atmospheric observations. In this paper, two case studies about inertia gravity waves (IGWs) derived from three-dimensional wind field data collected with the Wuhan MST radar are presented. The intrinsic frequencies, vertical wavelengths, horizontal wavelengths, vertical wavenumber spectra, and energy density are calculated and analyzed. In this paper, we also report on multiple waves existing in the lower stratosphere observed by the Wuhan MST radar. Lomb-Scargle spectral analysis and the hodograph method were used to derive the vertical wavenumber and propagation direction. Meanwhile, an identical IGW is observed by Wuhan MST radar both in troposphere and lower stratosphere regions. Combining the observations, the source of the latter IGW detected in the TLS would be the jet streams located in the tropopause region, which also produced wind shear above and below the tropopause.  相似文献   

13.
The physics of solar forcing of the climate and long term climate change is summarized, and the role of energetic charged particles (including cosmic rays) on cloud formation and their effect on climate is examined. It is considered that the cosmic ray-cloud cover hypothesis is not supported by presently available data and further investigations (during Forbush decreases and at other times) should be analyzed to further examine the hypothesis. Another player in climate is lightning through the production of NOx; this greenhouse gas, water vapour in the troposphere (and stratosphere) and carbon dioxide influence the global temperature through different processes. The enhancement of aerosol concentrations and their distribution in the troposphere also affect the climate and may result in enhanced lightning activity. Finally, the roles of atmospheric conductivity on the electrical activity of thunderstorms and lightning discharges in relation to climate are discussed.  相似文献   

14.
夏季平流层盛行强东风,Rossby波能量难以从对流层向上传播至平流层,而冬季平流层盛行西风,Rossby波能量容易上传,因此以往对Rossby波能量向平流层传播的研究多考虑冬季的情况.而事实上,因为夏季高原上空南亚高压反气旋环流,并非只有强东风存在,所以Rossby波能量也可能在南亚高压区向上传播,从而影响平流层的温度、风场及大气成分等.因此,本文利用ERA-interim逐日再分析资料,分析了1979—2015年夏季南亚高压区Rossby波能量穿越对流层顶传播的特征与机制.结果表明:Rossby波能量可以从南亚高压西北部的窗口区上传至平流层,最高可到达平流层顶,而在南亚高压的其他部分,Rossby波能量均不能穿越对流层顶上传或穿越对流层顶后无法继续上传.南亚高压西北区Rossby波能量可以穿越对流层顶传播的原因是盛行西风,且西风急流出现的频率很小,同时涡动热量通量异常引起的垂直分量的第一项对其上传有很大贡献.南亚高压东北区也盛行西风,然而Rossby波能量不能向上穿越对流层顶的原因是强西风出现频率较高,且温度脊与高度脊位相相近,不利于上传.南亚高压南部均盛行东风,在平流层中下层均为稳定层结,因此Rossby波能量很难上传.南亚高压西南区在对流层位于青藏高原环流的伊朗高原下沉区附近,层结稳定,并且温度脊超前于高度脊,所以Rossby波能量很难上传.而南亚高压东南区在对流层位于南海-西太平洋热带幅合带,层结不稳定,存在Rossby波能量较弱的上传,达到对流层顶后无法继续上传,该区域温度脊落后于高度脊的温压场配置也为Rossby波能量在对流层内的传播提供了条件.  相似文献   

15.
毕云 《地球物理学报》2011,54(10):2468-2476
北极地区(60°N~90°N)平流层纬向风和气压场有明显的季节变化,不同高度层季节变化的时间有差异.北极平流层从冬至夏,季节转换从上向下推进,从夏至冬,季节转换从下向上推进.以20 hPa为例,平均而言,4月上旬以前,北极被极涡控制;4月中旬北极地区高压的势力开始超过低压,5月上旬,北极高压正式建立;7月份达到最强,8...  相似文献   

16.
A European campaign of ground-based radar, lidar and optical measurements was carried out during the winter of 1996/1997 (28 December–2 February) to study lee waves in the northern part of Scandinavia. The participants operated ozone lidars, backscatter lidars and MST radars at ALOMAR/Andoya and Esrange/Kiruna, and an ALIS imaging system in Kiruna. The Andoya site was generally windward of the Scandinavian mountains, the Kiruna site on the leeward side. The goal of the experiment was to examine the influence of lee waves on the formation of Polar Stratospheric Clouds (PSCs). This paper studies the radar data from MST-radar ESRAD located at Esrange [68.°N, 21.°E], i.e. in the lee of the mountains. We present three cases where strong lee waves were observed: in one case they propagated upwards to the lower stratosphere and in the other two cases they were trapped or absorbed in the troposphere. We examine the local waves and the direction and strength of the local wind using the radar, the synoptic meteorological situation using weather maps (European Meteorological Bulletin) and the synoptic stratospheric temperatures using ECMWF data. We observed that waves propagate up to the stratosphere during frontal passages. When anticyclonic ridges are present, the propagation to the stratosphere is very weak. This is due to trapping of the waves at or below the tropopause. We also show that the radar data alone can be used to characterise the different weather conditions for the three cases studied (through the variation of the height of the tropopause). The synoptic stratospheric temperatures in the three cases were similar, and were above the expected threshold for PSC formation. Lidar and visual observation of PSCs and nacreous clouds, respectively, showed that these were present only in the case when the lee waves propagated up to the lower stratosphere.  相似文献   

17.
A combined Raman–Rayleigh lidar has been designed at Chung-Li, Taiwan for the simultaneous measurement of water-vapor mixing ratio, temperature and extinction-to-backscatter ratio of aerosol in the lower troposphere. The technique of Raman–Rayleigh lidar can retrieve correct temperature profile in the lower troposphere where the measurements are underestimated due to the aerosol loading. Two typical cases are discussed under different humidity (dry/wet) conditions. The water vapor and temperature profile have shown a good agreement with radiosonde. Simultaneous measurement of Raman–Rayleigh lidar also illustrates the physical nature of the aerosol and is useful in understanding the effects of humidity on aerosol swelling.  相似文献   

18.
The small-scale structure of the refractivity distribution due to water vapor density fluctuations in the terrestrial troposphere and lower stratosphere is modeled. Propagation of the signals in the troposphere and lower stratosphere are numerically simulated on the basis of the parabolic equation of diffraction and for occultation geometry. Fluctuations of the signal amplitude on the tangential paths due to small-scale inhomogeneities of the atmospheric refractivity are estimated.  相似文献   

19.
The research on climate change in polar regions, especially on the role of polar in the global climate system, has gain unprecedented level of interest. It has been the key scientific issue of the International Polar Year program (IPY, 2007―2008). In this paper, we dealt with the debate upon the breakup time of the stratospheric polar vortex in boreal spring. An observational study of the relation between strato- spheric polar vortex breakup and the extra-tropical circulation was performed. The mean breakup date―when the winter westerly at the core of polar jet turns to summer easterly―is about April 10. The breakup time has large interannual variation with a time span of about 2 months. It also has a long-term trend with the 1990s and 2000s witnessing more and more late breakups of polar vortex. Composite of wind speed at the core of polar jet for the extremely early and late breakup years shows that late years have two periods of westerly weakening while early breakup years have only one. The first weakening in the late years happens in middle January with wind speed dropping sharply from more than 40 m s?1 to about 15 m s?1. This is accompanied with anomalous activities of planetary waves in both strato- sphere and troposphere; while the second weakening in the late breaking years is mainly the results of diabatic heating with very weak wave activities. In early breakup years, the transition from westerly to easterly is rapid with wind speed dropping from more than 30 m s?1 to less than ?10 m s?1 within a month. This evolution is associated with a strong bidirectional dynamical coupling of the stratosphere and troposphere. The circulation anomalies at low troposphere are also analyzed in the extremely early and late breakup years. It shows that there are significant differences between the two kinds of extreme years in the geopotential height and temperature composite analysis, indicating the dynamical cou- pling of stratosphere and troposphere with the evolution of stratospheric polar vortex.  相似文献   

20.
Wind observations made at Gadanki (13.5°N) by using Indian MST Radar for few days in September, October, December 1995 and January, 1996 have been analyzed to study gravity wave activity in the troposphere and lower stratosphere. Horizontal wind variances have been computed for gravity waves of period (2–6) h from the power spectral density (PSD) spectrum. Exponential curves of the form eZ/H have been fitted by least squares technique to these variance values to obtain height variations of the irregular winds upto the height of about 15 km, where Z is the height in kilometers. The value of H, the scale height, as determined from curve fitting is found to be less than the theoretical value of scale height of neutral atmosphere in this region, implying that the waves are gaining energy during their passage in the troposphere. In other words, it indicates that the sources of gravity waves are present in the troposphere. The energy densities of gravity wave fluctuations have been computed. Polynomial fits to the observed values show that wave energy density increases in the troposphere, its source region, and then decreases in the lower stratosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号