首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristic features of changes in the vertical distribution and column content of NO2, total ozone, and stratospheric temperature have been revealed as a result of major sudden stratospheric warmings (SSWs). Strong negative anomalies of column NO2, total ozone and stratospheric temperature are caused by the displacement of the stratospheric circumpolar vortex aside from the pole. Strong positive anomalies of column NO2 and total ozone are observed more frequently under SSWs accompanied by splitting of the stratospheric circumpolar vortex and are caused by the transport of stratospheric air from the low latitudes. Major SSWs can lead to significant changes in the vertical profile of NO2. The changes in different stratospheric layers can be opposite to each other when the edge of the polar vortex is over a site of ground-based observations.  相似文献   

2.
Seasonal and latitudinal distributions of amplitudes of quasi-biennial variations in total NO2 content (NO2 TC), total ozone content (TOC), and stratospheric temperature are obtained. NO2 TC data from ground-based spectrometric measurements within the Network for the Detection of Atmospheric Composition Change (NDACC), TOC data from satellite measurements, and stratospheric temperature data from ERA-Interim reanalysis are used for the analysis. The differences in the NO2 TC diurnal cycles are identified between the westerly and easterly phases of the quasi-biennial oscillations (QBO) of equatorial stratospheric wind. The QBO effects in the NO2 TC, TOC, and stratospheric temperature in the Northern (NH) and Southern (SH) hemispheres are most significant in the winter–spring periods, with essential differences between the NH and SH. The NO2 TC in the Antarctic is less for the westerly phase of the QBO than that for the easterly phase, and the NO2 TC quasi-biennial variations in the SH mid-latitudes are opposite of the variations in the Antarctic. In the NH, the winter values of the NO2 TC are generally less during the westerly QBO phase than during the easterly phase, whereas in spring, on the contrary, the values for the westerly QBO phase exceed those for the easterly phase. Along with NO2, the features of the quasi-biennial variations of TOC and stratospheric temperature are discussed. Possible mechanisms of the quasi-biennial variations of the analyzed parameters are considered for the different latitudinal zones.  相似文献   

3.
Diurnal and annual variations in the NO2 total content (TC), the effect of its decrease owing to the products of the eruption of Mt. Pinatubo, its variations during an 11-year cycle of solar activity, and its linear trends are analyzed on the basis of data obtained from the ground-based spectrometric measurements of the NO2 TC in stratospheric vertical columns over the stations of the Network for the Detection of Atmospheric Composition Change. Latitudinal dependence of the indicated variations and trends is revealed. The annual estimates of the linear trends of the NO2 TC are found to be mostly positive for the middle and low latitudes of the Southern Hemisphere and negative for the middle and low latitudes of the Northern Hemisphere. The maximum values of the positive and negative trends amount to ~10% per ten years. In the high and polar latitudes of both hemispheres, the annual trend estimates are statistically insignificant. Seasonal estimates of the trends may differ from their annual estimates. The trends and solar-activity effect in the NO2 TC, which were estimated by using the two-dimensional model SOCRATES, as well as the analytical estimates of a zonal mean trend of the NO2 TC, on the whole, significantly differ from the estimates obtained from the measurements.  相似文献   

4.
According to the Holton-Tan hypothesis [1], oscillations of the equatorial stratospheric wind change the conditions of the vertical and meridional propagation of planetary waves in extratropical regions, which can cause quasi-biennial oscillations (QBOs) at middle and polar latitudes. To verify the Holton-Tan hypothesis, the intensity of the winter wave activity of the atmosphere in the Northern Hemisphere was estimated at different phases of the quasi-biennial oscillation of the equatorial stratospheric zonal wind. As it turned out, a higher level of the wave activity expected at the easterly phase of the equatorial QBO is characteristic only of the period when the winter circulation is established. At the end of winter a higher level of the wave activity is observed at the westerly QBO phase, which contradicts the Holton-Tan hypothesis. Small but nevertheless noticeable distinctions in the wave activity at low tropospheric levels suggest that the quasi-biennial periodicity of the wave activity at middle latitudes can be caused by oscillations of synoptic processes between the predominantly zonal and meridional forms of the circulation, as was indicated by Pogosyan and Pavlovskaya [2, 3].  相似文献   

5.
An analysis of the high-latitude ozone balloon sounding data derived from Canadian stations shows that, in the maximum of the 11-year cycle of solar activity (SA), the ozone content in the lower stratosphere is higher than in the SA minimum and, in the SA maximum, the lower stratosphere is warmer and the troposphere is colder than in the SA minimum. The ozone and temperature responses to the equatorial quasi-biennial oscillation (QBO) in the opposite phases of the 11-year cycle of SA show substantial differences: in the SA maximum, the QBO effects in the ozone and temperature cover a wider range of heights, the maxima of the effects manifest themselves at 5–10 km higher, and their amplitudes exceed the amplitudes of the effects in the SA minimum. The results indicate that the QBO is one of the “conductors” of the influence of the 11-year SA cycle in the Canadian sector of the Arctic.  相似文献   

6.
The goal of the paper is an analysis of changes in the amplitude and phase characteristics of the annual variation (AC) of total ozone (TO) from ground-based and satellite (TOMS) measurements and their interpretation with a two-dimensional photochemical model. According to ground-based TO measurements, two characteristic types of quasi-decadal variations in the phase of the annual harmonic (AH) of total ozone have been noted: variations in phase and antiphase with solar activity (SA). Changes in the TO AH phase opposite to solar activity variation are noted the high latitudes of the North Atlantic region and in the tropical belt, and in-phase changes are observed in the middle and subtropical latitudes of both hemispheres. Variations in the TO AH amplitude (hence, in the TO AV amplitude) and in the annual mean TO usually coincide in phase with the SA cycle. Analysis of satellite data shows that the 0-phase of the AV and the phase of the AH of the zonal mean TO at middle latitudes vary synchronously with the 11-year solar cycle. Model simulations have shown that the stratospheric ozone influx to the middle latitudes increases in the fall and winter period during a period of maximum solar activity. This dynamic mechanism accounts for up to 30% of the winter ozone increase in the ozone maximum layer in the Southern Hemisphere midlatitudes during the solar maximum as compared with the solar minimum. In the northern midlatitudes, the dynamic mechanism makes the main contribution to ozone changes during the latter half of winter under SA variations. The stratospheric ozone inflow change induced by SA variations affects the annual variation of ozone.  相似文献   

7.
On the basis of satellite observations of column carbon monoxide (CO) and total ozone (TO), an analysis has been performed of the connection of the interannual variability of CO with the quasi-biennial oscillation (QBO) of the equatorial stratospheric wind and the QBO of total ozone. It is found that the CO total colomn over most of the globe in the westerly phase of the QBO is greater than that in the easterly phase. The global distribution of the CO QBO amplitudes exhibits a local maximum over Indonesia, where the peak-to-peak amplitude of the CO QBO signal averages 15% of the local annual mean CO in this region. Analysis shows that the QBOs of CO are well synchronized with the QBO of wind at 50 hPa. At the same time, a joint analysis of the characteristics of the CO QBO and TO QBO demonstrates no direct photochemical coupling between of the quasi-biennial variations of TO and CO.  相似文献   

8.
The leading modes of interannual and long-term variations in the stratospheric and tropospheric circulation and total ozone (TOMS data) and their relations to Northern Hemisphere sea surface temperature (SST) anomalies are investigated using the monthly mean NCEP/NCAR reanalysis data for the winter months of 1958–2003. Strong correlations are indicated between the interannual total ozone variations over Labrador and the North Atlantic and changes in the stratospheric polar vortex. The onset of major stratospheric warmings is connected not only with the strengthening of westerlies at the 500-hPa level in the midlatitude Atlantic, but also with the weakening of tropospheric winds over the north of eastern Siberia and strengthening over the Far East. In years with major stratospheric warmings, abnormally cold winters are observed in Eurasia, especially in eastern Siberia and northeastern China. The calculated simultaneous (with no time lags) correlations of the stratospheric circulation changes with El Niño/La Niña events give evidence of low correlations between the tropical Pacific SST anomalies and the stratospheric dynamics in the Arctic. However, there are high correlations of the extratropical Pacific and Atlantic SST anomalies with interannual tropospheric and stratospheric circulation variations, the stratospheric dynamics being more strongly connected with Pacific SST than with Atlantic SST anomalies. The interannual changes in tropospheric circulation are coupled to SST anomalies in both the Pacific and the Atlantic. Mechanisms of long-term changes in the interactive ocean-atmosphere-ozone layer system are discussed.  相似文献   

9.
We used more than 25,000 nutrient samples to elucidate for the first time basin-scale distributions and seasonal changes of surface ammonium (NH4 +) and nitrite (NO2 ?) concentrations in the Pacific Ocean. The highest NH4 +, NO2 ?, and nitrate (NO3 ?) concentrations were observed north of 40°N, in the coastal upwelling region off the coast of Mexico, and in the Tasman Sea. NH4 + concentrations were elevated during May–October in the western subarctic North Pacific, May–December in the eastern subarctic North Pacific, and June–September in the subtropical South Pacific. NO2 ? concentrations were highest in winter in both hemispheres. The seasonal cycle of NH4 + was synchronous with NO2 ?, NO3 ?, and satellite chlorophyll a concentrations in the western subtropical South Pacific, whereas it was synchronous with chlorophyll-a but out of phase with NO2 ? and NO3 ? in the subarctic regions.  相似文献   

10.
An experiment was performed to determine the effect of injected CO2 on the deep-sea (3200 m) meiofaunal community in the Monterey Canyon. Approximately 20 L of liquid CO2 was added to each of three cylindrical corrals (PVC rings pushed into the seabed) that were arranged in a triangular array 10 m on a side. After a 30-day period, sediment cores were collected within an area exposed to the dissolution plume emanating from the CO2 pools and from a reference site approximately 40 m away; cores were also collected from within two of the CO2 corrals. Sediment cores were sectioned into 0–5, 5–10, and 10–20 mm layers. Abundances of major groups (harpacticoid copepods, nematodes, nauplii, kinorhynchs, polychaetes, and total meiofauna) were determined for each layer. CO2 exposure did not significantly influence the abundances or vertical distributions of any of the major taxa. However, other evidence suggests that abundance alone did not accurately reflect the effect of CO2 on meiofauna. We argue that slow decomposition rates of meiofaunal carcasses can mask adverse effects of CO2 and that longer experiments and/or careful examination of meiofaunal condition are needed to accurately evaluate CO2 effects on deep-sea meiofaunal communities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Quasi-biennial variations in vertical profiles of ozone, temperature, air pressure, and zonal and meridional wind velocities are analyzed from ozonesonde data obtained at the western European stations of Lindenberg, Hohenpeissenberg, and Payerne. The effect of quasi-biennial variations manifests itself variously in different variables and is nonuniform in altitude. The period of quasi-biennial variations is not constant, and the values of the mean period group mainly around 2 and 2.5 years. As in the North American region, the effects of quasi-biennial variations in different parameters of the stratosphere and troposphere over western Europe are due to a combination of the effects of the quasi-biennial oscillation (QBO) in the equatorial stratosphere, the El Niño-Southern Oscillation (ENSO), and the North Atlantic Oscillation (NAO). The observed 2.5-year variations in stratospheric ozone are related to the equatorial QBO to a larger extent in comparison with variations in other variables. It seems likely that a determining influence on variations in stratospheric wind and temperature is exerted by the ENSO. Variations in tropospheric and stratospheric parameters with a mean period of about 2 years are due to the ENSO and NAO effects.  相似文献   

12.
On the basis of ground-based measurements of total ozone content (TOC) over Russia and a number of neighboring states during 1973–2002, the amplitudes and phases of TOC variations caused by the quasi-biennial oscillation (QBO) of wind in the equatorial stratosphere are estimated for different regions and for the whole area. The seasonal dependence of the QBO effect in the TOC is analyzed. It is shown that the magnitude and even the sign of the effect depend on the relation between the equatorial QBO phase and the season. The regional empirical models of seasonally dependent QBO effects are constructed. It is found that the seasonal dependence of regional effects accounts for 4% (in the north of the area) to 20% (in the south) of the interannual variability of the TOC. The relation between the QBO effect and the 11-year cycle of solar activity is analyzed. Significant differences are revealed in the effects under the conditions of maximum and minimum solar activity. The QBO effects obtained from observations at Russian stations, satellite measurements with a TOMS instrument, and spectrometric observations of the TOC at western European stations are compared, and their satisfactory agreement is shown. An analysis of the results suggests that the QBO effects in the TOC over Russia are caused by several interacting factors and apparently reflect their regional properties.  相似文献   

13.
Having applied the method of discriminant analysis to the TOMS data of satellite sounding of the total ozone content (TOC) in the March months of 1979–2008, the authors could make a new estimate of the TOC field variability in the Northern Hemisphere and interlongitudinal regularities of its changes under the action of climatic variability. The effects of temperature variations in the polar stratosphere, El Niño, and quasi-biennial oscillation (QBO) have proven comparable and reach 80 DU in some regions. The influence of the Arctic Oscillation (AO) reaches 40 DU. The regions of TOC variations and their location and dimensions change depending on the phases of QBO, AO, and El Niño-Southern Oscillation (ENSO). Three regions of increased TOC—over Europe, Eastern Siberia, and the Pacific Ocean—are formed in years with a warm stratosphere. A compensating TOC decrease takes place in the tropics and over Greenland. In the years of El Niño and the easterly QBO phase, the TOC increases over Europe and drops over the central Pacific, as well as to the south from 45° N. The AO controls the ozone growth over most of Eurasia at temperate latitudes and its weak drop over the Atlantic. It was impossible to obtain such quantitative estimates with the use of methods based on an independent analysis of the TOC series at individual points of the coordinate grid. Testing with the Monte Carlo method confirmed that the results obtained are significant with a probability of 95–99.9%.  相似文献   

14.
The surface M 2 tide in the Canadian Arctic Archipelago (CAA) is reproduced on the basis of the QUODDY-4 three-dimensional finite-element hydrodynamic model. Particular emphasis has been placed on comparing model estimates for the amplitudes and phases of tidal elevations and the parameters of ellipses (major semiaxis and eccentricity) of the barotropic tidal current velocity with observational data. We present their spatial distributions and the distributions of averaged (over a tidal cycle) values of the density, horizontal transfer, and dissipation rate of barotropic tidal energy. It is found that the CAA is a much less effective dissipator of barotropic tidal energy than the World Ocean.  相似文献   

15.
Chemistry climate models of the gas composition of the atmosphere make it possible to simulate both space and time variations in atmospheric trace-gas components (TGCs) and predict their changes. Both verification and improvement of such models on the basis of a comparison with experimental data are of great importance. Data obtained from the 2009–2012 ground-based spectrometric measurements of the total contents (TCs) of a number of TGCs (ozone, HNO3, HCl, and NO2) in the atmosphere over the St. Petersburg region (Petergof station, St. Petersburg State University) have been compared to analogous EMAC model data. Both daily and monthly means of their TCs for this period have been analyzed in detail. The seasonal dependences of the TCs of the gases under study are shown to be adequately reproduced by the EMAC model. At the same time, a number of disagreements (including systematic ones) have been revealed between model and measurement data. Thus, for example, the EMAC model underestimates the TCs of NO2, HCl, and HNO3, when compared to measurement data, on average, by 14, 22, and 35%, respectively. However, the TC of ozone is overestimated by the EMAC model (on average, by 12%) when compared to measurement data. In order to reveal the reasons for such disagreements between simulated and measured data on the TCs of TGCs, it is necessary to continue studies on comparisons of the contents of TGCs in different atmospheric layers.  相似文献   

16.
The vertical structure of the M2 tidal current in the Yellow Sea is analyzed from data acquired using an acoustic Doppler current profiler. The observed vertical profiles of the M2 tidal current are decomposed into two rotating components of counter-clockwise and clockwise, and restructured using a simple one-point model with a constant vertical eddy viscosity. The analyzed results show that the internal fictional effect dominates the vertical structure of the tidal current in the bottom boundary layer. In the Yellow Sea, the effect of the bottom friction reduces the current speed by about 20–40% and induces the bottom phase advance by about 15–50 minutes. In the shallower coastal regions, the effects of bottom topography are more prominent on the vertical structure of tidal currents. The vertical profile of the tidal current in summer, when the water column is strongly stratified, is disturbed near the pycnocline layer. The stratification significantly influences the vertical shear and distinct seasonal variation of the tidal current.  相似文献   

17.
The SBUV/SBUV2 (65° S–65° N) and Bodeker Scientific (90° S–90° N) satellite databases have been used for composite and cross-wavelet analyses of the spatio-temporal variability of phase relations between a 11-year cycle of solar activity (SA) and quasi-decennial oscillations (QDOs) of total ozone content (TOC). For globally average TOC values, the QDO maxima coincide in phase with the solar-activity maxima, and amplitude variations of TOC correlate with those of the 11-year solar cycle. According to the analysis of amplitude and phase of QDOs for the zonal average TOC fields, a QDO amplitude is about 6–7 Dobson Units (DU) in the high northern and southern latitudes, and it does not exceed 2–3 DU in the tropic regions. The latitudinal TOC variations are distinguished by a delay of the quasi-decennial oscillation phase in the southern latitudes in comparison with the northern latitudes. The TOC maxima phase coincides with the SA maxima phase in the tropic regions; the TOC variations go ahead of the SA variations, on average, in moderate and high latitudes of the Northern Hemisphere; the TOC variations are behind the SA variations in the Southern Hemisphere. The phase delay between TOC QDO maxima in the northern and southern latitudes appears to increase in the course of time, and the TOC quasi-decennial variations in the Arctic and Antarctic subpolar regions occur approximately in an antiphase over the last two decades.  相似文献   

18.
Effects of CO<Subscript>2</Subscript> Enrichment on Marine Phytoplankton   总被引:1,自引:0,他引:1  
Rising atmospheric CO2 and deliberate CO2 sequestration in the ocean change seawater carbonate chemistry in a similar way, lowering seawater pH, carbonate ion concentration and carbonate saturation state and increasing dissolved CO2 concentration. These changes affect marine plankton in various ways. On the organismal level, a moderate increase in CO2 facilitates photosynthetic carbon fixation of some phytoplankton groups. It also enhances the release of dissolved carbohydrates, most notably during the decline of nutrient-limited phytoplankton blooms. A decrease in the carbonate saturation state represses biogenic calcification of the predominant marine calcifying organisms, foraminifera and coccolithophorids. On the ecosystem level these responses influence phytoplankton species composition and succession, favouring algal species which predominantly rely on CO2 utilization. Increased phytoplankton exudation promotes particle aggregation and marine snow formation, enhancing the vertical flux of biogenic material. A decrease in calcification may affect the competitive advantage of calcifying organisms, with possible impacts on their distribution and abundance. On the biogeochemical level, biological responses to CO2 enrichment and the related changes in carbonate chemistry can strongly alter the cycling of carbon and other bio-active elements in the ocean. Both decreasing calcification and enhanced carbon overproduction due to release of extracellular carbohydrates have the potential to increase the CO2 storage capacity of the ocean. Although the significance of such biological responses to CO2 enrichment becomes increasingly evident, our ability to make reliable predictions of their future developments and to quantify their potential ecological and biogeochemical impacts is still in its infancy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
为节约成本和样品,一些学者同时分析海洋沉积物中的碳、氮及其同位素(TOC、TN、δ13C和δ15N)。分析沉积物中的δ13C,需要对样品进行酸化去除无机碳,但是这一酸化过程会使TN和δ15N的分析结果产生偏差,且偏差范围与沉积物中无机碳含量(CaCO3)有关。本研究选取了低CaCO3含量(1-16%)和高CaCO3含量(20-40%)的海洋沉积物样品,比较了酸化过程对TN和δ15N的影响。研究结果表明,酸化过程对海洋沉积物中TN和δ15N的分析结果产生了显著影响。对于低CaCO3含量的样品,酸化导致样品中TN流失了约0-40%,δ15N偏移了约0-2‰;而对于高CaCO3含量的样品,酸化导致样品中TN流失了约10-60%,δ15N偏移了约1-14‰。表明酸化对TN和δ15N的影响已经超过了仪器的误差范围0.002%(TN)和0.08‰(δ15N),将影响TN和δ15N的环境指示意义。因此,即使海洋沉积物样品中CaCO3含量很低,也必须用原样分析TN和δ15N以避免酸化过程的影响。  相似文献   

20.
We have carried out a small-scale (∼20 l) CO2 sequestration experiment off northern California (684 m depth, ∼5°C, background ocean pH ∼7.7) designed as an initial investigation of the effects of physical forcing of the fluid, and the problem of sensing the formation of a low pH plume. The buoyant CO2 was contained in a square frame 1.2 m high, exposing 0.21 m2 to ocean flow. Two pH electrodes attached to the frame recorded the signal; a second frame placed 1.9 m south of the CO2 pool was also equipped with two recording pH electrodes. An additional pH electrode was held in the ROV robotic arm to probe the fluid interface. Local water velocities of up to 40 cm sec−1 were encountered, creating significant eddies within the CO2 box, and forcing wavelets at the fluid interface. This resulted in rapid CO2 dissolution, with all CO2 being depleted in a little more than 2 days. The pH record from the sensor closest (∼10 cm) to the CO2 showed many spikes of low pH water, the extreme value being ∼5.9. The sensor 1 m immediately below this showed no detectable response. The electrodes placed 1.9 m distant from the source also recorded very small perturbations. The results provide important clues for the design of future experiments for CO2 disposal and biogeochemical impact studies. These include the need for dealing with the slow CO2 hydration kinetics, better understanding of the fluid dynamics of the CO2-water interface, and non-point source release designs to provide more constant, controlled local CO2 enrichments within the experimental area. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号