首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake of water vapor on MgCl2×6H2O and NaCl salt dry solid films was studied over the temperature range 240 to 340 K and at 1 Torr pressure of helium using a flow reactor coupled to a modulated molecular beam mass spectrometer. The H2O to salt uptake data were obtained from the kinetics of H2O loss on salt coated Pyrex rods. The following Arrhenius expression was obtained for the initial uptake coefficient of H2O on MgCl2×6H2O films: γ 0 (MgCl2) = (6.5 ± 1.0) × 10−6 exp[(470 ± 40)/T] (calculated with specific BET surface area, quoted uncertainties are 1σ statistical). The rate of H2O adsorption on NaCl was found to be much lower than on MgCl2×6H2O, and only an upper limit was determined for the corresponding uptake coefficient: γ (NaCl) ≤ 5.6 × 10−6 at T = 300 K. The results show that the rate of H2O adsorption to salt surfaces is drastically dependent on the salt sample composition.  相似文献   

2.
This study investigates atmospheric conditions’ influence on the mean and extreme characteristics of PM10 concentrations in Poznań during the period 2006–2013. A correlation analysis was carried out to identify the most important meteorological variables influencing the seasonal dynamics of PM10 concentrations. The highest absolute correlation values were obtained for planetary boundary layer height (r = ?0.57), thermal (daily minimum air temperature: r = ?0.51), anemological (average daily wind speed: r = ?0.37), and pluvial (precipitation occurrence: r = ?0.36) conditions, however the highest correlations were observed for temporal autocorrelations (1 day lag: r = 0.70). As regulated by law, extreme events were identified on the basis of daily threshold value i.e. 50 μg m?3. On average, annually there are approximately 71.3 days anywhere in the city when the threshold value is exceeded, 46.6 % of those occur in winter. Additionally, 83.7 % of these cases have been found to be continuous episodes of a few days, with the longest one persisting for 22 days. The analysis of the macro-scale circulation patterns led to the identification of an easy-to-perceive seasonal relations between atmospheric fields that favour the occurrence of high PM10 concentration, as well as synoptic situations contributing to the rapid air quality improvement. The highest PM10 concentrations are a clear reaction to a decrease in air temperature by over 3 °C, with simultaneous lowering of PBL height, mean wind speed (by around 1 m s?1) and changing dominant wind directions from western to eastern sectors. In most cases, such a situation is related to the expansion of a high pressure system over eastern Europe and weakening of the Icelandic Low. Usually, air quality conditions improve along with an intensification of westerlies associated with the occurrence of low pressure systems over western and central Europe. Opposite relations are distinguishable in summer, when air quality deterioration is related to the inflow of tropical air masses originating over the Sahara desert.  相似文献   

3.
The global mean surface temperature (GMST) response of HadCM3 to a 1,000 year 4×CO2 forcing is analysed using a transfer function methodology. We identify a third order transfer function as being an appropriate characterisation of the dynamic relationship between the radiative forcing input and GMST output of this Atmosphere-Ocean General Circulation Model (A-OGCM). From this transfer function the equilibrium climate sensitivity is estimated as 4.62 (3.92–11.88) K which is significantly higher than previously estimated for HadCM3. The response is also characterised by time constants of 4.5 (3.2–6.4), 140 (78–191) and 1,476 (564–11,737) years. The fact that the longest time constant element is significantly longer than the 1,000 year simulation run makes estimation of this element of the response problematic, highlighting the need for significantly longer model runs to express A-OGCM behaviour fully. The transfer function is interpreted in relation to a three box global energy balance model. It was found that this interpretation gave rise to three fractions of ocean heat capacity with effective depths of 63.0 (46.7–85.4), 1291.7 (787.3–2,955.3) and 2,358.0 (661.3–17,283.8) meters of seawater, associated with three discrete time constants of 4.6 (3.2–6.5), 107.7 (68.9–144.3) and 537.1 (196.2–1,243.1) years. Given this accounts for approximately 94% of the ocean heat capacity in HadCM3, it appears HadCM3 could be significantly more well mixed than previously thought when viewed on the millennial timescale.  相似文献   

4.
Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2 fluxes. Momentum and scalar fluxes are calculated from the dissipation technique utilizing the inertial subrange of the power spectra and from estimation of the cospectral amplitude, and both flux estimates are compared to covariance derived fluxes. It is shown how even data having a poor signal-to-noise ratio can be used for flux estimations.  相似文献   

5.
The most direct method for flux estimation uses eddy covariance, which is also the most commonly used method for land-based measurements of surface fluxes. Moving platforms are frequently used to make measurements over the sea, in which case motion can disturb the measurements. An alternative method for flux estimation should be considered if the effects of platform motion cannot be properly corrected for. Three methods for estimating CO2 fluxes are studied here: the eddy-covariance, the inertial-dissipation, and the cospectral-peak methods. High-frequency measurements made at the land-based Östergarnsholm marine station in the Baltic Sea and measurements made from a ship during the Galathea 3 expedition are used. The Kolmogorov constant for CO2, used in the inertial-dissipation method, is estimated to be 0.68 and is determined using direct flux measurements made at the Östergarnsholm site. The cospectral-peak method, originally developed for neutral stratification, is modified to be applicable in all stratifications. With these modifications, the CO2 fluxes estimated using the three methods agree well. Using data from the Östergarnsholm site, the mean absolute error between the eddy-covariance and inertial-dissipation methods is 0.25 μmol  m?2 s?1. The corresponding mean absolute error between the eddy-covariance and cospectral-peak methods is 0.26 μmol m?2 s?1, while between the inertial-dissipation and cospectral-peak methods it is 0.14 μmol m?2 s?1.  相似文献   

6.
The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30–07:30 IST) and afternoon time (16:00–18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12° 58′ N, 77° 38′ E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of ~7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by ~2‰ compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) “polluted air” (PA) with isotopically enriched “free atmospheric air” (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.  相似文献   

7.
The interannual variations in the characteristics of the seasonal cycle (annual and seasonal amplitudes, winter emission, dates of annual minimum and maximum, and phase) and in the growth rate of atmospheric carbon dioxide concentration over Central Siberia are analyzed for the period from May 2009 to January 2016. The results are based on the continuous monitoring of CO2 concentration at the Zotino Tall Tower Observatory (ZOTTO, www.zottoproject.org). It is found that the seasonal amplitude of CO2 concentration in the atmo spheric surface layer over Western Siberia is 26.4 ± 0.8 μmol/mol (no long-term trend toward its increase was revealed), the annual mean growth rate of CO2 is 2.34 μmol/mol per year, its variations range from 1 to 4 μmol/mol per year.  相似文献   

8.
Although there is evidence that CO2-efficiency enhancing innovations in one country diffuse into other countries to contribute to the goals of climate change mitigation, very little is known about the conditions under which such international spillovers are most likely to take place. Our contribution in the present article seeks to address this gap by examining whether the strength of cross-border CO2-efficiency spatial dependence working through import ties and inward foreign direct investment (FDI) stocks is greater in (a) countries with lower existing levels of domestic CO2-efficiency and (b) countries with greater social capabilities in terms of a better educated workforce and higher institutional quality. We find that less CO2-efficient countries and countries with higher institutional quality experience stronger FDI-weighted CO2-efficiency spillovers, whereas a higher level of human capital increases receptivity to import-weighted international spillovers.  相似文献   

9.
Several economic reviews demonstrate the substantial costs related to climate change and consequently call for early action. These reviews, however, have been limited to measuring ‘objective’ risks and expected material damage related to climate change. The ‘subjective’ perceived risk of climate change and society’s willingness to pay (WTP) to avoid these risks are expected to provide an important additional motivation for direct action. We investigate whether and why air travel passengers—an increasingly important source of greenhouse gas emissions—are supportive of measures that increase the cost of their travel based on the polluter pays principle and compensate the damage caused by their flight. Compared to the results of the few previous studies that have elicited WTP estimates for climate policy more generally, our results appear to be at the lower end of the scale, while a comparison to estimates of the social cost of carbon shows that the average WTP estimate in this study is close to the estimated marginal damage cost. Although significant differences are found between travellers from Europe, North America, Asia and the rest of the world, we show that there exists a substantial demand for climate change mitigation action. The positive risk premium over and above the expected property damage cost assessments should be accounted for more explicitly in economic reviews as it will add to the burden of proof of direct action. Measurements of passenger WTP will help policy makers to design effective financial instruments aimed at discouraging climate-unfriendly travel activities as well as to generate funds for the measures directed at climate change mitigation and adaptation. Based on stated WTP by travellers to offset their greenhouse gas emissions, funds in the order of magnitude of €23 billion could be generated annually to finance climate change mitigation activities.  相似文献   

10.
Avoiding dangerous climate change will require a rapid transition away from fossil fuels. By some estimates, global consumption and production of fossil fuels—particularly coal and oil—will need to end almost entirely within 50 years. Given the scale of such a transition, nations may need to consider policies that constrain growth in fossil fuel supplies in addition to those that reduce demand. Here, we examine the emissions implications of a supply-constraining measure that was rapidly gaining momentum in the United States (US) under the Obama administration: ceasing the issuance of new leases for fossil fuel extraction on federal lands and waters. Such a measure could reduce global carbon dioxide emissions by an estimated 280 million tons annually by 2030, comparable to that of other major climate policies adopted or considered by the Obama administration. Our findings suggest that measures to constrain fossil fuel supply—though not currently viable in a US Trump administration—deserve further consideration at subnational levels in the US or by other countries now, and by future US administrations.  相似文献   

11.
PM10 samples were collected to characterize the seasonal and annual trends of carbonaceous content in PM10 at an urban site of megacity Delhi, India from January 2010 to December 2017. Organic carbon (OC) and elemental carbon (EC) concentrations were quantified by thermal-optical transmission (TOT) method of PM10 samples collected at Delhi. The average concentrations of PM10, OC, EC and TCA (total carbonaceous aerosol) were 222?±?87 (range: 48.2–583.8 μg m?3), 25.6?±?14.0 (range: 4.2–82.5 μg m?3), 8.7?±?5.8 (range: 0.8–35.6 μg m?3) and 54.7?±?30.6 μg m?3 (range: 8.4–175.2 μg m?3), respectively during entire sampling period. The average secondary organic carbon (SOC) concentration ranged from 2.5–9.1 μg m?3 in PM10, accounting from 14 to 28% of total OC mass concentration of PM10. Significant seasonal variations were recorded in concentrations of PM10, OC, EC and TCA with maxima during winter and minima during monsoon seasons. In the present study, the positive linear trend between OC and EC were recorded during winter (R2?=?0.53), summer (R2?=?0.59) and monsoon (R2?=?0.78) seasons. This behaviour suggests the contribution of similar sources and common atmospheric processes in both the fractions. OC/EC weight ratio suggested that vehicular emissions, fossil fuel combustion and biomass burning could be the major sources of carbonaceous aerosols of PM10 at the megacity Delhi, India. Trajectory analysis indicates that the air mass approches to the sampling site is mainly from Indo Gangetic plain (IGP) region (Uttar Pradesh, Haryana and Punjab etc.), Thar desert, Afghanistan, Pakistan and surrounding areas.  相似文献   

12.
A network of remote and in-situ sensors was deployed in a Paris suburb in order to evaluate the mesoscale evolution of the daily cycle of CO2 and related tracers in the atmospheric boundary layer (ABL) and its relation to ABL dynamics and nearby natural and anthropogenic sources and sinks. A 2-μm heterodyne Doppler differential absorption lidar, which combines measurements of, (1) structure of the atmosphere, (2) radial velocity, and (3) CO2 differential absorption was a particularly unique element of the observational array. We analyse the differences in the diurnal cycle of CO, CO2, lidar reflectivity (a proxy for aerosol content) and H2O using the lidar, airborne measurements in the free troposphere and ground-based measurements made at two sites located few kilometres apart. We demonstrate that vertical mixing dominates the early morning drawdown of CO and aerosol content trapped in the former nocturnal layer but not the H2O and CO2 mixing ratio variations. Surface fluxes, vertical mixing and advection all contribute to the ABL CO2 mixing ratio decrease during the morning transition, with the relative importance depending on the rate and timing of ABL rise. We also show evidence that when the ABL is stable, small-scale (0.1-km vertical and 1-km horizontal) gradients of CO2 and CO are large. The results illustrate the complexity of inferring surface fluxes of CO2 from atmospheric budgets in the stable boundary layer.  相似文献   

13.
The challenge to produce enough food is more urgent than ever. We argue that the dominant food regime has responded to this challenge by a ‘narrow’ ecological modernisation process within agriculture which may decrease environmental effects to a certain extent, but also causes new negative side-effects and exposes some important missing links. In this paper we explore what might be a ‘real’ ecological modernisation process, including social, cultural, spatial and political aspects. The central question concerns: is there evidence in practice that agro-ecological approaches can contribute to the future demand for food production, especially in developing countries? We illustrate this by describing examples from Africa, Brazil and China, showing a rich variety of such approaches in agricultural practices.Our conclusion is that agro-ecological approaches could significantly contribute to ‘feeding the world’, and thereby contribute to a ‘real green revolution’; but that this requires a more radical move towards a new type of regionally embedded agri-food eco-economy. This is one which includes re-thinking market mechanisms and organisations, an altered institutional context, and is interwoven with active farmers and consumers’ participation. It also requires a re-direction of science investments to take account of translating often isolated cases of good practice into mainstream agri-food movements.  相似文献   

14.
The aim of this article is to present statistical forecasting models concerning the dynamics of Artemisia pollen seasons in Wroc?aw, including the start and end, the date of maximum pollen concentration and seasonal pollen index (SPI). For statistical evaluation, use was made of aerobiological and meteorological data from the last 10 years (2002–2011). Based on this data, agroclimatic indicators, i.e. crop heat units (CHUs), were determined for various averaging periods. The beginning of the Artemisia pollen season in the studied time period, on average, took place on 23 June. Its length usually varied between 26 and 45 days, and maximum daily concentrations occurred between 31 July and 18 August. It was found that the beginning of the pollen season depends, above all, on the values of CHUs and photothermal unit (PTU) (p?<?0.05) in the period from March to June, for various thermal thresholds. The date of maximum daily concentration correlates with sunshine duration, PTU and air temperature for June and July (p?<?0.05). On the other hand, SPI is connected with thermal variables, i.e. average, maximum and minimum air temperatures and CHUs and heliothermal unit (HTU) for July (p?<?0.05) and the beginning of spring. Based on the correlation analysis and the chosen variables, regression models for the beginning date of Artemisia pollen season and SPI were prepared, which were then verified by using leave-one-out cross-validation. A better fit between modelled and actual values was found for the analysis concerning the season start date than for the SPI.  相似文献   

15.
The relationship between the radar reflectivity factor (Z) and the rainfall rate (R) is recalculated based on radar observations from 10 Doppler radars and hourly rainfall measurements at 6529 automatic weather stations over the Yangtze–Huaihe River basin. The data were collected by the National 973 Project from June to July 2013 for severe convective weather events. The ZR relationship is combined with an empirical qrR relationship to obtain a new Zqr relationship, which is then used to correct the observational operator for radar reflectivity in the three-dimensional variational (3DVar) data assimilation system of the Weather Research and Forecasting (WRF) model to improve the analysis and prediction of severe convective weather over the Yangtze–Huaihe River basin. The performance of the corrected reflectivity operator used in the WRF 3DVar data assimilation system is tested with a heavy rain event that occurred over Jiangsu and Anhui provinces and the surrounding regions on 23 June 2013. It is noted that the observations for this event are not included in the calculation of the Z–R relationship. Three experiments are conducted with the WRF model and its 3DVar system, including a control run without the assimilation of reflectivity data and two assimilation experiments with the original and corrected reflectivity operators. The experimental results show that the assimilation of radar reflectivity data has a positive impact on the rainfall forecast within a few hours with either the original or corrected reflectivity operators, but the corrected reflectivity operator achieves a better performance on the rainfall forecast than the original operator. The corrected reflectivity operator extends the effective time of radar data assimilation for the prediction of strong reflectivity. The physical variables analyzed with the corrected reflectivity operator present more reasonable mesoscale structures than those obtained with the original reflectivity operator. This suggests that the new statistical ZR relationship is more suitable for predicting severe convective weather over the Yangtze–Huaihe River basin than the ZR relationships currently in use.  相似文献   

16.
Data on salinity and δ18O from the NASA open-source database are used to estimate the Laptev Sea water mass transformation during ice formation and melting. The indicator of these processes is salinity variation. The estimates for the Laptev Sea show that the amount of meltwater can reach 40% for the sea water with salinity below 7 psu. In this case, sea water salinity reduction due to the meltwater inflow alone can be equal to 0.2-0.7 psu. In the sea water with salinity above 7 psu, ice formation prevails over ice melting. This process is the most strongly pronounced in the range of sea water salinity from 15 to 25 psu. In this salinity range, the average water removal for the ice formation makes up 9% (the maximum is 24%), and the average salinity growth is 0.5 psu (the maximum is 1.7 psu). The most transformed sea water masses during ice formation are located in the bottom layer of the shallow southern and southeastern parts of the Laptev Sea, where the sea depth is not more than 50 m.  相似文献   

17.
The relevance of climate change for society seems indisputable: scientific evidence points to a significant human contribution in causing climate change, and impacts which will increasingly affect human welfare. In order to meet national and international greenhouse gas (GHG) emissions reduction targets, there is an urgent need to understand and enable societal engagement in mitigation. Yet recent research indicates that this involvement is currently limited: although awareness of climate change is widespread, understanding and behavioral engagement are far lower. Proposals for mitigative ‘personal carbon budgets’ imply a need for public understanding of the causes and consequences of carbon emissions, as well as the ability to reduce emissions. However, little has been done to consider the situated meanings of carbon and energy in everyday life and decisions. This paper builds on the concept of ‘carbon capability’, a term which captures the contextual meanings associated with carbon and individuals’ abilities and motivations to reduce emissions. We present empirical findings from a UK survey of public engagement with climate change and carbon capability, focusing on both individual and institutional dimensions. These findings highlight the diverse public understandings about ‘carbon’, encompassing technical, social, and moral discourses; and provide further evidence for the environmental value-action gap in relation to adoption of low-carbon lifestyles. Implications of these findings for promoting public engagement with climate change and carbon capability are discussed.  相似文献   

18.
The atmospheric boundary layer (ABL) over a given coastal station is influenced by the presence of mesoscale sea breeze circulation, together with the local and synoptic weather, which directly or indirectly modulate the vertical thickness of ABL (z ABL). Despite its importance in the characterization of lower tropospheric processes and atmospheric modeling studies, a reliable climatology on the temporal evolution of z ABL is not available over the tropics. Here, we investigate the challenges involved in determination of the ABL heights, and discuss an objective method to define the vertical structure of coastal ABL. The study presents a two year morphology on the diurnal evolution of the vertical thickness of sea breeze flow (z SBF) and z ABL in association with the altitudes of lifting condensation level (z LCL) over Thiruvananthapuram (8.5° N, 76.9° E), a representative coastal station on the western coastline of the Indian sub-continent. We make use of about 516 balloon-borne GPS sonde measurements in the present study, which were carried out as part of the tropical tropopause dynamics field experiment under the climate and weather of the sun-earth system (CAWSES)–India program. Results obtained from the present study reveal major differences in the temporal evolution of the ABL features in relation to the strength of sea breeze circulation and monsoonal wind flow during the winter and summer monsoon respectively. The diurnal evolution in z ABL is very prominent in the winter monsoon as against the summer monsoon, which is attributed to the impact of large-scale monsoonal flow over the surface layer meteorology. For a majority of the database, the z LCL altitudes are found to be higher than that of the z ABL, indicating a possible decoupling of the ABL with the low-level clouds.  相似文献   

19.
“20110809”石家庄西部大暴雨分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用雷达、自动站和GPS可降水量等高时空分辨率加密观测资料,对石家庄一次局地大暴雨天气过程进行分析。结果表明:在高温高湿的大气环境下,弱切变线的西摆北伸是此次强对流天气过程出现的触发机制和预报难点,切变线位置是造成石家庄西部大暴雨的主要环流背景;强降水出现前大气水汽含量快速积累,GPS可降水量突升且存在着两个峰值,其中最大值刚好对应降水开始时间,次大值提前于降水出现时间16 h。强降水回波缘于主体回波、阵风锋以及新生回波的合并发展加强,CR、VIL和ET峰值分别达61 dBz、55 kg·m-2和17 km。在高温高湿的大气环境下,新生发展的回波、阵风锋、速度图上辐合、气旋或逆风区等都可以预示强对流天气发展。  相似文献   

20.
“20110730”辽宁大暴雨过程分析   总被引:2,自引:0,他引:2  
利用常规气象资料、卫星云图、雷达回波、自动气象站资料和NCEP(1°×1°)再分析资料,对2011年7月30日辽宁短时大暴雨过程进行分析。结果表明:暴雨期间500 hPa高空槽与850 hPa切变线形成前倾形势,前倾槽为大暴雨的产生提供了有利的不稳定条件。此次暴雨过程的中尺度分析表明,降水时空变率大;TBB等值线密集区和上冲云顶的位置对暴雨落区有较好的指示意义;强降水时雷达回波强度达到65 dBz,且有逆风区和正负速度对出现,中小尺度强对流特征明显;地面等温线密集带与地面切变线(或中尺度低压)的共同作用触发中尺度雨团,降水强度陡增。通过涡度方程诊断切变线形成动力机制得出,当正涡度变率发展加强时,切变线向正涡度变率大值区方向移动,产生辐合动力抬升条件;散度项对低层涡度变率的贡献最大,强辐合是低层切变线生成的动力机制之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号