首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用大约15个月的CRRES卫星MEA能量电子观测数据,分别在地磁活动平静(0≤Kp<3)、中等(3≤Kp≤6)及强烈(6<Kp≤9)的条件下,选取电子能量为148 keV,509 keV,1090 keV,1581 keV的辐射带能量电子通量进行统计分析,得到了不同地磁活动条件下地球辐射带高能电子通量在(L,MLT)...  相似文献   

2.
本文利用相对論带电粒子的两个寝渐不变量,討論了磁暴主相期間外輻射带中心結构的变化。作者认为磁暴主相是由“磁暴带”环电流所产生。“磁暴带”假設位于外輻射带中心之外,它是太阳等离子体穿入磁层后形成的。本文对初始能量W=20Kev和W=1Mev的电子分別进行了計算。 結果表明,在磁暴主相期間电子向外漂移,其赤道投擲角減小,但镜点离地面距离增高。因此,主相时所观測到的极光,并不是由于地磁場的平緩下降使小投擲角电子注入大气层而形成的。此外,計数率降低的主要原因是由于力管截面膨胀造成的粒子密度減小以及电子減速,而电子減速与投擲角有关,由此决定了电子通量沿磁力线分布的变化。以上結果与探险者6号(Explorer Ⅵ)的观測一致。  相似文献   

3.
From 1957 up to the present time, the Lebedev Physical Institute (LPI) has performed regular monitoring of ionizing radiation in the Earth’s atmosphere. There are cases when the X-ray radiation generated by energetic magnetospheric electrons penetrates the atmosphere and is observed at polar latitudes. The vast majority of these events occurs against the background of high-velocity solar wind streams, while magnetospheric perturbations related to interplanetary coronal mass ejections (ICMEs) are noneffective for precipitation. It is shown in the paper that ICMEs do not cause acceleration of a sufficient amount of electrons in the magnetosphere. Favorable conditions for acceleration and subsequent scattering of electrons into the loss cone are created by magnetic storms with an extended recovery phase and with sufficiently frequent periods of negative Bz component of the interplanetary magnetic field (IMF). Such geomagnetic perturbations are typical for storms associated with high-velocity solar wind streams.  相似文献   

4.
An assessment is made of the relative contribution of certain classes of energetic particle precipitation to the chemical composition of the middle atmosphere with emphasis placed on the production of odd nitrogen and odd hydrogen species and their subsequent role in the catalytic removal of ozone. Galactic cosmic radiation is an important source of odd nitrogen in the lower stratosphere but since the peak energy deposition occurs below the region where catalytic removal of O3 is most effective, it is questionable whether this mechanism is important in the overall terrestrial ozone budget. The precipitation of energetic solar protons can periodically produce dramatic enhancement in upper stratospheric NO. The long residence time of NO in this region of the atmosphere, where catalytic interaction with O3 is also most effective, mandates that this mechanism be included in future modelling of the global distribution of O3. Throughout the mesosphere the precipitation of energetic electrons from the outer radiation belt (60°70°) can sporadically act as a major local source of odd hydrogen and odd nitrogen leading to observable O3 depletion. Future satellite studies should be directed at simultaneously measuring the precipitation flux and the concomitant atmosphere modification, and these results should be employed to develop more sophisticated models of this important coupling.  相似文献   

5.
An abrupt change in the latitudinal profile of energetic electrons in the Earth’s outer radiation belt during magnetic storms is explained in many publications by a loss of electrons at L = 4–7 resulting from their departure to the atmosphere or to the magnetopause. In the present work, the loss of electrons is explained primarily by adiabatic transformation of the magnetic drift trajectories. For this purpose, the effect of dawnto- dusk asymmetry measured by low-orbit SERVIS-1 and KORONAS-F satellites is involved.  相似文献   

6.
The formation of a zone of energetic electron precipitation by the plasmapause, a region of enhanced plasma density, following energetic particle injection during a magnetic storm, is analyzed. Such a region can also be formed by detached cold plasma clouds appearing in the outer magnetosphere by restructuring of the plasmasphere during a magnetic storm. As a mechanism of precipitation, wave-particle interactions by the cyclotron instability between whistler-mode waves and electrons are considered. In the framework of the self-consistent equations of quasi-linear plasma theory, the distribution function of trapped electrons and the electron precipitation pattern are found. The theoretical results are compared with experimental data obtained from NOAA satellites.  相似文献   

7.
The connection between rapid increases in the intensity of electrons with energies >0.3 MeV and magnetospheric substorms was studied for the first time by measurements of energetic electrons on the low-orbit SERVIS-1 satellite. In addition to the well-known process of radial diffusion detected at the recovery phase, the increases during a period of time no longer than 1.5 h at the main phase of six magnetic storms in a channel of 0.3–1.7 MeV (in three of them, in a channel of 1.7–3.4 MeV) were measured. An analysis of auroral zone magnetograms demonstrated that the increases occurred at the instant of magnetospheric substorm activation. A conclusion is made that the increases are caused by the radial injection of electrons by a pulse electric field induced during substorm activations. Pulse injections are shown to be one of the main mechanisms of electron radiation belt completion in the inner magnetosphere and, in combination with moderate radial diffusion, to be responsible for the appearance of large fluxes of energetic electrons (“killers”) in the magnetosphere after magnetic storms.  相似文献   

8.
We evaluate the influence of the galactic cosmic rays (GCR), solar proton events (SPE), and energetic electron precipitation (EEP) on chemical composition of the atmosphere, dynamics, and climate using the chemistry-climate model SOCOL. We have carried out two 46-year long runs. The reference run is driven by a widely employed forcing set and, for the experiment run, we have included additional sources of NO x and HO x caused by all considered energetic particles. The results show that the effects of the GCR, SPE, and EEP fluxes on the chemical composition are most pronounced in the polar mesosphere and upper stratosphere; however, they are also detectable and statistically significant in the lower atmosphere consisting of an ozone increase up to 3?% in the troposphere and ozone depletion up to 8?% in the middle stratosphere. The thermal effect of the ozone depletion in the stratosphere propagates down, leading to a warming by up to 1?K averaged over 46?years over Europe during the winter season. Our results suggest that the energetic particles are able to affect atmospheric chemical composition, dynamics, and climate.  相似文献   

9.
《Journal of Atmospheric and Solar》2000,62(17-18):1719-1733
Attention is focused here on the quasilinear and nonlinear physics of cyclotron interactions between magnetospheric whistler mode waves and energetic electrons on dipolar geomagnetic flux tubes. These interactions can lead to the generation of noise-like emissions or phase-coherent discrete signals in the frequency-time domain. In the magnetosphere noise-like emissions called hiss are accompanied by a smooth electron precipitation pattern. Examples of discrete emissions are ELF/VLF chorus or VLF emissions triggered by whistlers from lightning or by radio transmitters on the ground. The rapid temporal variations of these signals are associated with fine structure of the distribution function of the radiation belt electrons, such as a transient step-like deformation or a well-organized beam, which are prepared by initial noise-like emissions or by a quasimonochromatic whistler–wave packet, respectively. These cause the properties of the electrons, which may be observed on a satellite, to evolve rapidly in time and on relatively short spatial scales. Bursts of precipitating electrons occur, and can contribute significantly to depleting the radiation belts. Recent results on improvements in the theoretical understanding of such processes and on new observations of magnetospheric electrons and whistler-mode waves are presented.  相似文献   

10.
Discovery of the Van Allen radiation belts by instrumentation flown on Explorer 1 in 1958 was the first major discovery of the Space Age. A view of the belts as distinct inner and outer zones of energetic particles with different sources was modified by observations made during the Cycle 22 maximum in solar activity in 1989–1991, the first approaching the activity level of the International Geophysical Year of 1957–1958. The dynamic variability of outer zone electrons was measured by the NASA–Air Force Combined Radiation Release and Effects Satellite launched in July 1990. This variability is caused by distinct types of heliospheric structure which vary with the solar cycle. The largest fluxes averaged over a solar rotation occur during the declining phase from solar maximum, when high-speed streams and co-rotating interaction regions (CIRs) dominate the inner heliosphere, leading to recurrent storms. Intense episodic events driven by high-speed interplanetary shocks launched by coronal mass ejections (CMEs) prevail around solar maximum when CMEs occur most frequently. Only about half of moderate storms, defined by intensity of the ring current, lead to an overall flux increase, emphasizing the need to quantify loss as well as source processes; both increase when the magnetosphere is strongly driven. Three distinct types of acceleration are described in this review: prompt and diffusive radial transport, which increases energy while conserving the first invariant, and local acceleration by waves, which change the first invariant. The latter also produce pitch angle diffusion and loss, as does outward radial transport, especially when the magnetosphere is compressed. The effect of a dynamic magnetosphere boundary on radiation belt electrons is described in the context of MHD-test particle simulations driven by measured solar wind input.  相似文献   

11.
Cases in which the outer boundary of the electron belt shifts to high latitudes are studied. The cases evidence that the zone of quasi-trapping of the night magnetosphere expands to the pole. These events are shown to be caused by substorm activity which, shifting to high latitudes, can lead to the development of so-called polar-cap substorms. It is shown that high-latitude bursts of energetic electrons can be generated in such substorms by analogy with their generation in classical substorms of the auroral zone.  相似文献   

12.
Situations when localized precipitation of energetic (E > 30 keV) protons and electrons, associated with the development of cyclotron instability in the magnetosphere, is recorded during one satellite pass are identified in the data of particle flux observations on the NOAA-12 low-orbiting satellite. Such events were observed only in the evening sector of the magnetosphere. This precipitation is compared with the data on the cold (E < 10 eV) plasma density obtained on the LANL geostationary satellites. The comparison showed that the precipitation of energetic particles is related to the presence of cold plasma with a density of 20–100 cm?3 in geostationary orbit in the evening sector of the magnetosphere. The conclusion has been made that the localized precipitation of energetic particles is generated at the edges of small-scale structures of cold plasma, forming the so-called “plasmaspheric tail,” i.e., the cold plasma region extending from the evening plasmapause toward the Sun.  相似文献   

13.
The losses of radiation belt electrons to the atmosphere due to wave–particle interactions with electromagnetic ion-cyclotron (EMIC) waves during corotating interaction region (CIR) storms compared to coronal mass ejections (CME) storms is investigated. Geomagnetic storms with extended ‘recovery’ phases due to large-amplitude Alfvén waves in the solar wind are associated with relativistic electron flux enhancements in the outer radiation belt. The corotating solar wind streams following a CIR in the solar wind contain large-amplitude Alfvén waves, but also some CME storms with high-speed solar wind can have large-amplitude Alfvén waves and extended ‘recovery’ phases. During both CIR and CME storms the ring current protons are enhanced. In the anisotropic proton zone the protons are unstable for EMIC wave growth. Atmospheric losses of relativistic electrons due to weak to moderate pitch angle scattering by EMIC waves is observed inside the whole anisotropic proton zone. During storms with extended ‘recovery’ phases we observe higher atmospheric loss of relativistic electrons than in storms with fast recovery phases. As the EMIC waves exist in storms with both extended and short recovery phases, the increased loss of relativistic electrons reflects the enhanced source of relativistic electrons in the radiation belt during extended recovery phase storms. The region with the most unstable protons and intense EMIC wave generation, seen as a narrow spike in the proton precipitation, is spatially coincident with the largest loss of relativistic electrons. This region can be observed at all MLTs and is closely connected with the spatial shape of the plasmapause as revealed by simultaneous observations by the IMAGE and the NOAA spacecraft. The observations in and near the atmospheric loss cone show that the CIR and CME storms with extended ‘recovery’ phases produce high atmospheric losses of relativistic electrons, as these storms accelerate electrons to relativistic energies. The CME storm with short recovery phase gives low losses of relativistic electrons due to a reduced level of relativistic electrons in the radiation belt.  相似文献   

14.
X-ray intensity variations in the surface layer of the atmosphere during precipitation in Apatity and Spitsbergen were analyzed. Based on a comprehensive system of monitoring over the radiation background, X-ray radiation variations were detected. These variations were found to be associated with meteorological processes in the lower atmosphere. X-ray energy spectra were obtained under good weather and precipitation conditions. These spectra have no characteristic lines inherent to radionuclides. Additional studies make it possible to suggest that the growth in X-ray radiation during precipitation is mainly caused by braking radiation of energetic electrons additionally accelerated by electric fields in rain clouds.  相似文献   

15.
The event of March 12–19, 2009, when a moderately high-speed solar wind stream flew around the Earth’s magnetosphere and carried millihertz ultralow-frequency (ULF) waves, has been analyzed. The stream caused a weak magnetic storm (D st min = −28 nT). Since March 13, fluxes of energetic (up to relativistic) electrons started increasing in the magnetosphere. Comparison of the spectra of ULF oscillations observed in the solar wind and magnetosphere and on the Earth’s surface indicated that a stable common spectral peak was present at frequencies of 3–4 mHz. This fact is interpreted as evidence that waves penetrated directly from the solar wind into the magnetosphere. Possible scenarios describing the participation of oscillations in the acceleration of medium-energy (E > 0.6 MeV) and high-energy (E > 2.0 MeV) electrons in the radiation belt are discussed. Based on comparing the event with the moderate magnetic storm of January 21–22, 2005, we concluded that favorable conditions for analyzing the interaction between the solar wind and the magnetosphere are formed during a deep minimum of solar activity.  相似文献   

16.
Particle fluxes in the outer radiation belts can show substantial variation in time, over scales ranging from a few minutes, such as during the sudden commencement phase of geomagnetic storms, to the years-long variations associated with the progression of the solar cycle. As the energetic particles comprising these belts can pose a hazard to human activity in space, considerable effort has gone into understanding both the source of these particles and the physics governing their dynamical behavior. Computationally tracking individual test particles in a model magnetosphere represents a very direct, physically-based approach to modeling storm-time radiation belt dynamics. Using global magnetohydrodynamic models of the Earth–Sun system coupled with test particle simulations of the radiation belts, we show through two examples that such simulations are capable of capturing the outer zone radiation belt configuration at a variety of time scales and through all phases of a geomagnetic storm. Such simulations provide a physically-based method of investigating the dynamics of the outer radiation zone, and hold promise as a viable method of providing global nowcasts of the radiation environment during geomagnetically active periods.  相似文献   

17.
电离层人工调制可以激发甚低频(VLF)波,其中向上传播进入磁层的VLF波,不但能够用来研究磁层中的各种物理现象,且具有人工沉降高能粒子,消除辐射带等实际用途.本文使用射线追踪方法,模拟电离层调制激发的VLF波在磁层的传播路径,分析激发纬度和调制频率对传播路径和传播特性的影响;并基于低频波的色散方程和波粒共振条件,分析VLF波传播路径上与磁层高能粒子的最低共振能及其分布.研究表明,VLF波通过在磁层来回反射向更高的L-shell传播,最终稳定在某一L-shell附近.以较低的调制频率或者从较高的纬度激发的VLF波能够传播到更高的L-shell,但是,当激发纬度过高时,低频波也可能不发生磁层反射而直接进入电离层和大气层.低频波在磁层的传播过程中,在较高的纬度或者较低的L-shell能够与较高能量的电子发生共振相互作用,在较高的L-shell并且低纬地区,能够与较低能量的电子发生共振相互作用.共振谐数越高,能发生波粒共振的电子能量越高.  相似文献   

18.
Variations of electron fluxes with energies 300–600 keV in the region of quasitrapping are analyzed using data of the low orbiting Coronas-F satellite. Enhancements in the electron fluxes with energies above 300 keV are observed at the polar boundary of the outer radiation belt. Meteor-3M satellite data, OVATION and AP models of the position of the auroral oval are used to determine the position of analyzed increases in the energetic electrons with respect to the position of the auroral oval. There is a significant number of events when these increases were observed at a few consequent orbits crossing the outer radiation belt boundary. Studied increases in relativistic electron fluxes are localized at the latitudes of the auroral oval. Different mechanisms of formation of observed enhancements are discussed. The possibility of the appearance of increases due to formation of local particle traps is analyzed using Tsyganenko geomagnetic field models. The role of the formation of local particle traps at the boundary of the outer radiation belt and its possible influence to the formation of the outer radiation belt is discussed.  相似文献   

19.
The present-day state of the studies of the outer radiation belt relativistic electrons and the boundary of the solar proton penetration into the magnetosphere during magnetic storms is briefly reviewed. The main attention is paid to the results from studying the interrelation between these structural formations and other magnetospheric plasma structures. It has been indicated that the relationship between the position of the maximum of belt of relativistic electrons injected during magnetic storms (L max) and the magnetic storm amplitude (|Dst|max = 2.75 × 104/L max4) can be used to predict the extreme latitudinal position of such magnetospheric plasma formations as a trapped radiation region boundary, the nighttime equatorial boundary of the auroral oval, and westward electrojet center during a storm. Using the examples of still rare studies of the solar proton boundary dynamics in the magnetosphere based on the simultaneous measurements on several polar satellites, it has been demonstrated that a change in the geomagnetic field topology during magnetic storms can be diagnosed.  相似文献   

20.
Further analysis of energetic electron precipitation at the evening sector of magnetosphere is performed. In the framework of the quantitative model of cyclotron wave-particle interactions developed in the previous Pasmanik et al. paper, the case of finite spread over energies of initial energetic electron distribution is studied. The solution for distribution function of energetic electron is found. The energetic spectrum of trapped and precipitating electrons and whistler wave spectrum are analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号