首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The mid‐Silurian Major Mitchell Sandstone of the Grampians Group outcrops at Mt Bepcha, western Victoria, represent a prograding fluviodeltaic sequence comprising four lithofacies and five ichnofacies. The stratigraphically lowest Interbedded Sandstone/Siltstone Facies is characterised by thin sandstone and siltstone beds with soft‐sediment deformation and scours with gravelly lag deposits. This lithofacies contains Thalassinoides, Palaeophycus, Rhizocorallium and intrastratal burrows, together indicative of the Cruziana Ichnofacies, and is interpreted as a shallow‐marine depositional environment on a low‐energy delta front with minor tidal influences. The overlying Massive Sandstone Facies lacks silt, and consists of predominantly massive and some plane‐laminated sandstone, abundant Skolithos linearis , rare Palaeophycus and a single small Cruziana problematica ; the trace‐fossil assemblage is assigned to the Skolithos Ichnofacies. This facies is believed to have been deposited in a marine high‐energy shoreface environment with continuously shifting sands, affected by periodic flooding events from the mouth of a nearby river. Above this is the Trough Cross‐bedded Facies, which contains trough cross‐bedding with gravelly lag deposits, a northwest palaeocurrent direction and large Taenidium barretti burrows (Burrowed Ichnofacies). This facies also contains abundant plane‐laminated sandstone with a northeast‐southwest palaeocurrent direction and ichnofossils of Scoyenia and Daedalus , representing the Scoyenia Ichnofacies. The Trough Cross‐bedded Facies is interpreted to have been deposited in shallow low‐sinuosity channels by overbank‐flooding events, most likely on a delta plain. The uppermost facies, the Plane‐laminated Facies, contains thin beds of current‐lineated, plane‐laminated graded coarse to fine sandstone that preserve arthropod trackways (Arthropod Ichnofacies). This facies was deposited on a periodically sheet‐flooded, subaerially exposed delta plain.  相似文献   

2.
Turbidite facies distribution and palaeocurrent analysis of submarine fan evolution in the Pindos foreland basin of west Peloponnesus peninsula (SW Greece) indicate that this part of the foreland was developed during Late Eocene to Early Oligocene in three linear sub‐basins (Tritea, Hrisovitsi and Finikounda). The basin fill conditions, with a multiple feeder system, which is characterized by axial transport of sediments and asymmetric stratigraphic thickness of the studied sediments, indicate that the Pindos Foreland Basin in this area was an underfilled foreland basin. Sediments are dominated by conglomerates, sandstones and mudstones. The flow types that controlled the depositional processes of the submarine fans were grain flows, debris flows and low‐ and high‐density turbidity currents. The sedimentary model that we propose for the depositional mechanisms and geometrical distribution of the turbidite units in the Tritea sub‐basin is a mixed sand‐mud submarine fan with a sequential interaction of progradation and retrogradation for the submarine fan development and shows a WNW main palaeocurrent direction. The Hrisovitsi sub‐basin turbidite system characterized by small‐scale channels was sediment starved, and the erosion during deposition was greater than the two other studied areas, indicating a more restricted basin topography with a NW main palaeocurrent direction. The Finikounda sub‐basin exhibits sand‐rich submarine fans, is characterized by the presence of distinct, small‐scale, thickening‐upward cycles and by the covering of a distal fan by a proximal fan. It was constructed under the simultaneous interaction of progradation and aggradation, where the main palaeocurrent direction was from NNW to SSE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A study of detrital zircon age populations in Namurian–Westphalian (Carboniferous) sandstones in the southern Central Pennine Basin of the UK has revealed considerable complexity in their provenance history. The Pendleian–Marsdenian Morridge Formation, which is known to have been derived from the Wales‐Brabant Massif to the south on the basis of palaeocurrent and petrographic information, is dominated by zircons ultimately derived from the Caledonian belt to the north. These zircons were recycled from sandstones of northern origin that had been previously deposited over the massif during Middle to Late Devonian times. The Morridge Formation also includes Late Neoproterozoic zircons of local Wales‐Brabant Massif origin. The south lobe of the Yeadonian Rough Rock has been previously interpreted as having a complex provenance including sediment of northern origin interbedded with sediment ascribed to a Wales‐Brabant Massif source. However, the zircon spectrum lacks a Late Neoproterozoic component that would have been diagnostic of input from the Wales‐Brabant Massif, and the provenance history of the Rough Rock south lobe therefore remains enigmatic. The Langsettian Ludgbridge Conglomerate is dominated by Late Neoproterozoic zircons of Wales‐Brabant Massif origin, but even in this evidently proximal deposit, the provenance is complex since the main zircon group (ca. 640 Ma) cannot be matched with known local Neoproterozoic basement sources. The data either indicate the presence of hitherto‐unknown magmatic rocks of this age adjacent to the South Staffordshire coalfield or indicate that the zircons were recycled from sediment with a more distal origin. Finally, the Duckmantian Top Hard Rock contains zircons that can be reconciled with a source in the Irish Caledonides, consistent with the palaeocurrent evidence, supplemented by zircons derived from the Wales‐Brabant Massif, possibly including the Monian Composite Terrane of Anglesey. The study reinforces the important message that failure to recognize the presence of recycled zircon could lead to erroneous reconstructions of sediment provenance and transport history. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
志留纪宁强组碳酸盐岩台地的时空演变及宁强湾的封闭   总被引:3,自引:0,他引:3  
李越 《地层学杂志》1998,22(1):16-24
志留纪兰多维列世时扬子地台的陆表海的各部分先后上升为陆,至特列奇期末仅在局部地区残留海湾,其西北缘的宁强湾就是其中之一。在相当于griestonensis带上部和spiralis-grandis笔石带的宁强组内沉积了2000多米厚的泥页岩夹碳酸盐岩,底栖生态组合指示的深度浅于潮下带下部。基底的快速沉降和来自周缘不同时期隆起区陆源碎屑的强烈均衡补偿充填是宁强湾沉积的主要特征。宁强湾开口于西面的广海,其它三面由大巴山率先升隆区和西乡上升区环绕,在陆源碎屑干扰较弱的时期和地点形成了局限碳酸盐岩台地的沉积建造。宁强组碳酸盐岩地层可分为8个主要形成期,每期形成的局限台地在不同部位发育了各种类型的生物岩隆,各期碳酸盐岩台地都是由于大量陆源碎屑泥质的盖覆而结束。宁强组的顶界从东北向西南穿时,指示了扬子地台西北缘在特列奇期末由东北而西南的最后抬升过程。  相似文献   

5.
Acid etching of a calcareous sandstone horizon within the lower part of the upper Llandovery Kilbride Formation, exposed at Coolin Lough, Co. Galway, has yielded a phosphatic microfauna dominated by conodont elements and thelodont scales. The thelodonts are identified as Loganellia ex gr. scotica and provide the first record of fishes from the Lower Silurian of Ireland; they suggest a Telychian age. The conodont fauna is dominated by Icriodella, indicative of a nearshore environment of deposition. The microfossils were extracted from a shell bed packed with Eocoelia curtisi curtisi Ziegler, confirming a late Telychian age and also suggesting a shallow water depositional environment. This fauna developed marginal to Laurentia and is similar to coeval assemblages from the Anglo–Welsh area and Baltoscandia. © 1996 John Wiley & Sons, Ltd.  相似文献   

6.
The Hirnantian and Llandovery sedimentary succession of the Barrandian area has been assigned to middle and outer clastic‐shelf depositional settings, respectively. Deposition was influenced by the remote Gondwanan glaciation and subsequent, long‐persisting, post‐glacial anoxia triggered by a current‐driven upwelling system. High‐resolution graptolite stratigraphy, based upon 19 formally defined biozones—largely interval zones—and five subzones, enabled a detailed correlation between 42 surface sections and boreholes, and enabled linking of the sedimentary record, graptoloid fauna dynamics, organic‐content fluctuations and spectral gamma‐ray curves. The Hirnantian and Llandovery succession has been subdivided into four biostratigraphically dated third‐order sequences (units 1–4). Time–spatial facies distribution recorded early and late Hirnantian glacio‐eustatic sea‐level lowstands separated by a remarkable mid‐Hirnantian rise in sea‐level. A major part of the post‐glacial sea‐level rise took place within the late Hirnantian. The highstand of Unit 2 is apparently at the base of the Silurian succession. Short‐term relative sea‐level drawdown and a third‐order sequence boundary followed in the early Rhuddanian upper acuminatus Zone. Early Aeronian and late Telychian sea‐level highstands and late Aeronian drawdown of likely eustatic origin belong to units 3 and 4. Sea‐level rise culminated in the late Telychian, which may also be considered as a highstand episode of a second‐order Hirnantian–early Silurian cycle. Facies and sequence‐stratigraphic analysis supports recent interpretations on nappe structures in the core part of the Ordovician–Middle Devonian Prague Synform of the Barrandian. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The Plio‐Pleistocene non‐marine sequence in the northeast Guadix–Baza Basin (southern Spain) comprises alluvial and lacustrine deposits (Baza Formation). The results of a revised lithostratigraphical correlation between sections from the middle and upper members of the Baza Formation in the northeast part of the basin, supported by detailed mapping, is presented. The position of micromammal sites in the lithostratigraphical scheme, together with the results of intensive palaeontological sampling for small mammal remains, has allowed us to develop a high‐resolution biostratigraphical framework for the area. This provides an opportunity to refine the biozonation for the Plio‐Pleistocene micromammal faunas, and to define faunal events from the late Villanyian (late Pliocene) to the early Pleistocene. On the basis of the lithostratigraphical and biostratigraphical approaches we obtain the following sequence of biozones for the late Pliocene to early Pleistocene: Kislangia gusii, Mimomys cf. reidi, M. oswaldoreigi, Allophaiomys pliocaenicus and A. burgondiae. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Coarse‐grained deep‐water strata of the Cerro Toro Formation in the Cordillera Manuel Señoret, southern Chile, represent the deposits of a major channel belt (4 to 8 km wide by >100 km long) that occupied the foredeep of the Magallanes basin during the Late Cretaceous. Channel belt deposits comprise a ca 400 m thick conglomeratic interval (informally named the ‘Lago Sofia Member’) encased in bathyal fine‐grained units. Facies of the Lago Sofia Member include sandy matrix conglomerate (that show evidence of traction‐dominated deposition and sedimentation from turbulent gravity flows), muddy matrix conglomerate (graded units interpreted as coarse‐grained slurry‐flow deposits) and massive sandstone beds (high‐density turbidity current deposits). Interbedded sandstone and mudstone intervals are present locally, interpreted as inner levée deposits. The channel belt was characterized by a low sinuousity planform architecture, as inferred from outcrop mapping and extensive palaeocurrent measurements. Laterally adjacent to the Lago Sofia Member are interbedded mudstone and sandstone facies derived from gravity flows that spilled over the channel belt margin. A levée interpretation for these fine‐grained units is based on several observations, which include: (i) palaeocurrent measurements that indicate flows diverged (50° to 100°) once they spilled over the confining channel margin; (ii) sandstone beds progressively thin, away from the channel belt margin; (iii) evidence that the eroded channel base was not very well indurated, including a stepped margin and injection of coarse‐grained channel material into surrounding fine‐grained units; and (iv) the presence of sedimentary features common to levées, including slumped units inferring depositional slopes dipping away from the channel margin, lenticular sandstone beds thinning distally from the channel margin, soft sediment deformation and climbing ripples. The tectonic setting and foredeep architecture influenced deposition in the axial channel belt. A significant downstream constriction of the channel belt is reflected by a transition from more tabular units to an internal architecture dominated by lenticular beds associated with a substantially increased degree of scour. Differential propagation of the fold‐thrust belt from the west is speculated to have had a major control on basin, and subsequently channel, width. The confining influence of the basin slopes that paralleled the channel belt, as well as the likelihood that numerous conduits fed into the basin along the length of the active fold‐thrust belt to the west, suggest that proximal–distal relationships observed from large channels in passive margin settings are not necessarily applicable to axial channels in elongate basins.  相似文献   

9.
Despite over a century of geological investigation, the Ordovician evolution of South Mayo, western Ireland, is still imperfectly understood. An example of this is the supposed lateral equivalence of two formations within the succession, the Rosroe and Derrylea Formations of Arenig age, exposed on opposite limbs of a major east–west syncline. These formations exhibit characteristics which suggest that they were not deposited in the same basin. Both formations contain tuff horizons. Geochemical analysis of these tuffs shows that each formation contains chemically distinct volcanic signatures suggesting deposition in separate sub‐basins. Previously the Rosroe Formation on the south limb of the syncline was considered the coarse‐grained proximal equivalent of the finer‐grained Derrylea Formation, both being deposited in a deep‐water fan environment. Previously published palaeocurrent data together with new data show the Rosroe Formation to have been derived from the northeast and therefore it cannot be the proximal equivalent of the Derrylea Formation. Additionally, the two formations show different and distinct associations of heavy mineral assemblages. It is suggested that one explanation for these data is that both formations were deposited in separate sub‐basins controlled by oblique slip sinistral faults, similar in some respects to the Cenozoic basins of the Gulf of California. In the Irish case these faults would have been largely buried by later Ordovician sedimentation. Some models for the Ordovician evolution of this area postulate the presence of an initial oceanic arc situated above a southward directed subduction zone. The presence of thick proximal submarine tuffs derived from an arc environment in the Rosroe Formation suggest that at least by this time the subduction zone was in fact northward directed and outboard of the arc. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Wagner, B., Bennike, O., Cremer, H. & Klug, M. 2010: Late Quaternary history of the Kap Mackenzie area, northeast Greenland. Boreas, Vol. 39, pp. 492–504. 10.1111/j.1502‐3885.2010.00148.x. ISSN 0300‐9483. The Kap Mackenzie area on the outer coast of northeast Greenland was glaciated during the last glacial stage, and pre‐Holocene shell material was brought to the area. Dating of marine shells indicates that deglaciation occurred in the earliest Holocene, before 10 800 cal. a BP. The marine limit is around 53 m a.s.l. In the wake of the deglaciation, a glaciomarine fauna characterized the area, but after c. one millennium a more species‐rich marine fauna took over. This fauna included Mytilus edulis and Mysella sovaliki, which do not live in the region at present; the latter is new to the Holocene fauna of northeast Greenland. The oldest M. edulis sample is dated to c. 9500 cal. a BP, which is the earliest date for the species from the region and indicates that the Holocene thermal maximum began earlier in the region than previously documented. This is supported by driftwood dated to c. 9650 cal. a BP, which is the earliest driftwood date so far from northeastern Greenland and implies that the coastal area was at least partly free of sea ice in summer. As indicated by former studies, the Storegga tsunami hit the Kap Mackenzie area at c. 8100 cal. a BP. Loon Lake, at 18 m a.s.l., was isolated from the sea at c. 6200 cal. a BP, which is distinctly later than expected from existing relative sea‐level curves for the region.  相似文献   

11.
Excellent exposures of thick, multistorey, fluvial deposits from the deltaic Atane Formation on south‐east Nuussuaq, central West Greenland, show the architecture of up to 100 m thick continuously aggrading fluvial depositional complexes. The succession comprises vertically stacked channel belt sandstones separated by thin floodplain deposits, with little to no incision between storeys. Architectural elements and palaeocurrent patterns of channel deposits indicate deposition in large, relatively stable, low‐sinuosity rivers, probably located within an incised valley. Gradual transitions from channel to floodplain deposits accompanied by a gradual change from floodplain to spillover sand suggest avulsion on the floodplain as a possible mechanism for the vertically alternating channel and floodplain deposits. Despite its relative proximity to contemporaneous sea‐level (ca 35 km upstream from the palaeo‐shoreline) the depositional complex is entirely non‐marine. The aggrading nature of the deposits suggests a continuously rising base level coupled with a high and steady sediment supply. Vertical alternations between floodplain and channel deposits may be forced by subtle interruptions in this balance or autocyclic mechanisms on the floodplain. This study provides an example of aggrading lowstand/non‐marine transgressive systems tract deposits.  相似文献   

12.
The Rhuddnant Grits turbidite system was deposited within an elongate, fault-bounded trough in the late Llandovery (Telychian) Welsh Basin. Two groups of sandstones are identified within the system: high-matrix sandstones and laminated sandstones. The high-matrix sandstones are medium to very thick bedded, fine to very coarse-grained muddy sandstones. The high-matrix sandstone beds are almost entirely structureless and have several features indicative of deposition from high density turbidity currents, probably undergoing late stage debris flow behaviour (e.g. grain size discontinuities, inverse grading, floating clasts). The laminated sandstones are thin to very thin bedded, fine-grained and have a distinctive mud/silt lamination. Tractional structures and convolution are common in these beds. They were probably deposited by slow moving, dilute turbidity currents. Dissimilar palaeocurrent vectors and estimates of flow properties from the two types of sandstone support the contrasting nature of the depositing flows. A coarsening and thickening upwards trend is identified in the laminated sandstones of the Rhuddnant Grits Formation. This trend is not reflected in the high-matrix sandstone beds. Although the high-matrix sandstones appear in packets or groups within the laminated sandstone background, they were otherwise deposited in an entirely random manner throughout the exposed system. This may suggest that the two types of sandstone are the result of different triggering mechanisms at source, or of contrasting flow properties developed early in the flow histories.  相似文献   

13.
Trace fossils from the Middle Devonian Caherbla Group of the Dingle Peninsula, southwest Ireland, record a diverse arthropod fauna inhabiting a hot‐arid intracontinental rift setting. Aeolian dunefield and coeval fluvial interdune deposits interfinger spatially and temporally with alluvial fan sedimentary rocks. Three distinct trace fossil assemblages are recognized. The Taenidium‐Scoyenia ichnocoenosis occurs in alluvial fan and fluvial channel deposits, and includes the large backfilled burrow Taenidium, interpreted as eoarthropleurid aestivation chambers. The Rusophycus‐Protichnites ichnocoenosis, composed of arthropod trackways and surface pits, occurs in an interdune ponded area that was susceptible to ephemeral fluvial flow, with Rusophycus showing preferred orientation into the oncoming palaeocurrent. Both the Taenidium‐Scoyenia and Rusophycus‐Protichnites ichnocoenoses are assignable to the globally recurring continental Scoyenia ichnofacies. They are clearly substrate‐controlled and moisture‐related due to the ephemeral nature of the fluvial system. The Palmichnium‐Entradichnus ichnocoenosis occurs in aeolian dune deposits, and includes Palmichnium, attributed to large stylonurid eurypterids, and Diplichnites, attributed to eoarthropleurids. These trackways represent the activities of dune pioneers that left their fluvial habitat to forage for detritus. Interface burrows (Entradichnus, Palaeophycus) were also constructed by arthropods moving just under the sand surface and vertical burrows (Cylindricum, Pustulichnus) were made by arthropods digging downward. Trace preservation in the aeolian environment was probably enhanced by heavy nocturnal dew‐fall or light rain. The Palmichnium‐Entradichnus ichnocoenosis is assigned to the globally recurring aeolian Octopodichnus‐Entradichnus ichnofacies. This aeolian facies, and associated ichnofauna described herein, represents the oldest development of a unique erg system in the Old Red Sandstone (Devonian) of the southern British Isles, and one of the oldest and most diverse aeolian ichnofaunas to be reported worldwide. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The western margin of the Lachlan Fold Belt contains early ductile and brittle structures that formed during northeast‐southwest and east‐west compression, followed by reactivation related to sinistral wrenching. At Stawell all of these structural features (and the associated gold lodes) are dismembered by a complex array of later northwest‐, north‐ and northeast‐dipping faults. Detailed underground structural analysis has identified northwest‐trending mid‐Devonian thrusts (Tabberabberan) that post‐date Early Devonian plutonism and have a top‐to‐the‐southwest transport. Deformation associated with the initial stages of dismemberment occurred along an earlier array of faults that trend southwest‐northeast (or east‐west) and dip to the northwest (or north). The initial transport of the units in the hangingwall of these fault structures was top‐to‐the‐southeast. ‘Missing’ gold lodes were discovered beneath the Magdala orebody by reconstructing a displacement history that involved a combination of transport vectors (top‐to‐the‐southeast and top‐to‐the‐southwest). Fold interference structures in the adjacent Silurian Grampians Group provide further evidence for at least two almost orthogonal shortening regimes, post the mid‐Silurian. Overprinting relationships, and correlation with synchronous sedimentation in the Melbourne Trough, indicates that the early fault structures are mid‐ to late‐Silurian in age (Ludlow: ca 420–414 Ma). These atypical southeast‐vergent structures have regional extent and separate significant northeast‐southwest shortening that occurred in the mid‐Devonian (‘Tabberabberan orogeny’) and Late Ordovician (‘Benambran orogeny’).  相似文献   

15.
Sandstone bodies in the Sunnyside Delta Interval of the Eocene Green River Formation, Uinta Basin, previously considered as point bars formed in meandering rivers and other types of fluvial bars, are herein interpreted as delta mouth‐bar deposits. The sandstone bodies have been examined in a 2300 m long cliff section along the Argyle and Nine Mile Canyons at the southern margin of the Uinta lake basin. The sandstone bodies occur in three stratigraphic intervals, separated by lacustrine mudstone and limestone. Together these stratigraphic intervals form a regressive‐transgressive sequence. Individual sandstone bodies are texturally sharp‐based towards mudstone substratum. In proximal parts, the mouth‐bar deposits only contain sandstone, whereas in frontal and lateral positions mudstone drapes separate mouth‐bar clinothems. The clinothems pass gradually into greenish‐grey lacustrine mudstone at their toes. Horizontally bedded or laminated lacustrine mudstone onlaps the convex‐upward sandstone bars. The mouth‐bar deposits are connected to terminal distributary channel deposits. Together, these mouth‐bar/channel sandstone bodies accumulated from unidirectional jet flow during three stages of delta advance, separated by lacustrine flooding intervals. Key criteria to distinguish the mouth‐bar deposits from fluvial point bar deposits are: (i) geometry; (ii) bounding contacts; (iii) internal structure; (iv) palaeocurrent orientations; and (v) the genetic association of the deposits with lacustrine mudstone and limestone.  相似文献   

16.
It is suggested that a decrease in graptoloid diversity in the utilis Subzone (early Telychian) resulted from a eustatic fall in sea level induced by the spread of ice sheets from the highlands of central Gondwanaland. Major extinctions occurred within the retiolites and the genera Glyptograptus, Petalolithus, Stimulograptus and Rastrites. The selectivity of the extinction may reflect the degree of environmental tolerance of the various graptoloid taxa, with those exhibiting water mass specificity most seriously affected. Lithological changes, here correlated with the glacial interval, are recognized from the Yangtze Platform of China and from Europe.  相似文献   

17.
华南志留系红层的时代   总被引:3,自引:0,他引:3  
王成源 《地层学杂志》1998,22(2):127-128
华南志留系红层有三个形成期,“下红层”形成于晚Aeronian至早Telychian期;“上红层”主要形成于晚Telychian期;第三套红层形成于Ludlow期,但在O.crispa牙形刺带之前。每套红层的时代各地不同,有穿时现象。  相似文献   

18.
One of the most significant, but poorly understood, tectonic events in the east Lachlan Fold Belt is that which caused the shift from mafic, mantle‐derived calc‐alkaline/shoshonitic volcanism in the Late Ordovician to silicic (S‐type) plutonism and volcanism in the late Early Silurian. We suggest that this chemical/isotopic shift required major changes in crustal architecture, but not tectonic setting, and simply involved ongoing subduction‐related magmatism following burial of the pre‐existing, active intraoceanic arc by overthrusting Ordovician sediments during Late Ordovician — Early Silurian (pre‐Benambran) deformation, associated with regional northeast‐southwest shortening. A review of ‘type’ Benambran deformation from the type area (central Lachlan Fold Belt) shows that it is constrained to a north‐northwest‐trending belt at ca 430 Ma (late Early Silurian), associated with high‐grade metamorphism and S‐type granite generation. Similar features were associated with ca 430 Ma deformation in east Lachlan Fold Belt, highlighted by the Cooma Complex, and formed within a separate north‐trending belt that included the S‐type Kosciuszko, Murrumbidgee, Young and Wyangala Batholiths. As Ordovician turbidites were partially melted at ca 430 Ma, they must have been buried already to ~20 km before the ‘type’ Benambran deformation. We suggest that this burial occurred during earlier northeast‐southwest shortening associated with regional oblique folds and thrusts, loosely referred to previously as latitudinal or east‐west structures. This event also caused the earliest Silurian uplift in the central Lachlan Fold Belt (Benambran highlands), which pre‐dated the ‘type’ Benambran deformation and is constrained as latest Ordovician — earliest Silurian (ca 450–440 Ma) in age. The south‐ to southwest‐verging, earliest Silurian folds and thrusts in the Tabberabbera Zone are considered to be associated with these early oblique structures, although similar deformation in that zone probably continued into the Devonian. We term these ‘pre’‐ and ‘type’‐Benambran events as ‘early’ and ‘late’ for historical reasons, although we do not consider that they are necessarily related. Heat‐flow modelling suggests that burial of ‘average’ Ordovician turbidites during early Benambran deformation at 450–440 Ma, to form a 30 km‐thick crustal pile, cannot provide sufficient heat to induce mid‐crustal melting at ca 430 Ma by internal heat generation alone. An external, mantle heat source is required, best illustrated by the mafic ca 430 Ma, Micalong Swamp Igneous Complex in the S‐type Young Batholith. Modern heat‐flow constraints also indicate that the lower crust cannot be felsic and, along with petrological evidence, appears to preclude older continental ‘basement terranes’ as sources for the S‐type granites. Restriction of the S‐type batholiths into two discrete, oblique, linear belts in the central and east Lachlan Fold Belt supports a model of separate magmatic arc/subduction zone complexes, consistent with the existence of adjacent, structurally imbricated turbidite zones with opposite tectonic vergence, inferred by other workers to be independent accretionary prisms. Arc magmas associated with this ‘double convergent’ subduction system in the east Lachlan Fold Belt were heavily contaminated by Ordovician sediment, recently buried during the early Benambran deformation, causing the shift from mafic to silicic (S‐type) magmatism. In contrast, the central Lachlan Fold Belt magmatic arc, represented by the Wagga‐Omeo Zone, only began in the Early Silurian in response to subduction associated with the early Benambran northeast‐southwest shortening. The model requires that the S‐type and subsequent I‐type (Late Silurian — Devonian) granites of the Lachlan Fold Belt were associated with ongoing, subduction‐related tectonic activity.  相似文献   

19.
New in situ data based on hydraulic fracturing and overcoring have been compiled for eastern Australia, increasing from 23 to 110 the number of in situ stress analyses available for the area between and including the Bowen and Sydney Basins. The Bowen Basin displays a consistent north‐northeast maximum horizontal stress (σH) orientation over some 500 km. Stress orientations in the Sydney Basin are more variable than in the Bowen Basin, with areas of the Sydney Basin exhibiting north‐northeast, northeast, east‐west and bimodal σH orientations. Most new data indicate that the overburden stress (σV) is the minimum principal stress in both the Bowen and Sydney Basins. The Sydney Basin is relatively seismically active, whereas the Bowen Basin is relatively aseismic. Despite the fact that in situ stress measurements sample the stress field at shallower depth than the seismogenic zone, there is a correlation between the stress measurements and seismicity in the two areas. Mohr‐Coulomb analysis of the propensity for failure in the Sydney Basin suggests 41% of the new in situ stress data are indicative of failure, as opposed to 13% in the Bowen Basin. The multiple pre‐existing structural grains in the Sydney Basin further emphasise the difference between propensity for failure in the two areas. Previous modelling of intraplate stresses due to plate boundary forces has been less successful at predicting stress orientations in eastern than in western and central Australia. Nonetheless, stress orientation in the Bowen Basin is consistent with that predicted by modelling of stresses due to plate boundary forces. Variable stress orientations in the Sydney Basin suggest that more local sources of stress, such as those associated with the continental margin and with local structure, significantly influence stress orientation. The effect of local sources of stress may be relatively pronounced because stresses due to plate boundary forces result in low horizontal stress anisotropy in the Sydney Basin.  相似文献   

20.
New occurrences of metabentonites from the Telychian Stage of the Silurian successions in SW Scotland, Co. Down and Co. Mayo, Ireland, are described in terms of their biostratigraphical setting and geochemical characteristics. The Co. Mayo occurrence extends the known distribution of Telychian metabentonites in Europe by 280 km WSW from the coast of Co. Down. Comparisons between samples based on selected trace element ratios suggest three potential correlations. One is between a tuffaceous clay from the Finny School Member, Upper Kilbride Formation of Co. Mayo, and a metabentonite from the Tara Sandstone Formation, Gala Group, Co. Down. One pair of metabentonites from the Carghidown Formation of Kirkcudbrightshire can be related to one pair from the Ardglass Formation of Co. Down. In addition, a unique alkaline chemical composition is identified in two samples from the Kirkmaiden Formation of Kirkcudbrightshire and one sample from the Ballyquintin Formation of Northern Ireland, which implies the existence of a local extensional tectonic regime at that time, consistent with a back‐arc basin. These metabentonites extend across at least two Caledonian suspect terranes and a variety of different sedimentary facies. These data may assist future discoveries and be able to improve stratigraphic correlations across three terranes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号