首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
Several authors (Basano and Hughes, 1979; ter Haar and Cameron, 1963, Dermott, 1968; Prentice, 1976) give the revised Titius-Bode law in the form $$r_n = r_o C^n ,$$ wherer n stands for the distance of thenth planet from the Sun;r o andC are constant. They pointed out, in addition, that regular satellites systems around major planets obey also that law. It is now generally thought that the Kant-laplace primeval nebula accounts for the origin and evolution of the solar system (Reeves, 1976). Furthermore, it is shown (Prentice, 1976) that rings, which obey the Titius-Bode law, are formed through successive contractions of the solar nebula. Among difficulties encountered by Prentice's theory, the formation of regular satellites similar to the planatery system is the most important one. Indeed, the starting point of the planetary system is a rotating flattened circular solar nebula, whereas a gaseous ring must be the starting point of satellites systems. As far as the Titius-Bode law is concerned, we have the feeling that orbits of planets around the Sun and of satellites around their primaries do not depend on starting conditions. That law must be inherent to gravitation, in the same manner that electron orbits depend only on the atomic law instead of the starting conditions under which an electron is captured. If it is correct, then one may expect to formulate similarity between the T-B law and the Bohr law in the early quantum theory. Such a similarity is found (Louise, 1982) by using a postulate similar to the Bohr-Sommerfeld one — i.e., $$\int_{r_o }^{r_n } {U(r) dr = nk,}$$ whereU(r)=GM /r is the potential created by the Sun,k is a constant, andn a positive integer. This similarity suggests the existence of an unknown were process in the solar system. The aim of the present paper is to investigate the possibility of such a process. The first approach is to study a steady wave encountered in special membrane, showing node rings similar to the Prentice's rings (1976) which obey the T-B law. In the second part, we try to apply the now classical Lindblad-Lin density wave theory of spiral galaxies to the solar nebula case. This theory was developed since 1940 (Lindblad, 1974) in order to account for the persistence of spiral structure of galaxies (Lin and Shu, 1964; Lin, 1966; Linet al., 1969; Contopoulos, 1973). Its basic assumption concerns the potential functionU expressed in the form $$U = U_0 + \tilde U,$$ whereU o stands for the background axisymmetric potential due to the disc population, and ?«U o is responsible of spiral density wave. Then, the corresponding mass-density distribution is \(\rho = \rho _o + \tilde \rho\) , with \(\tilde \rho \ll \rho _o\) . Both quantities ? and \(\tilde \rho\) must satisfy the Poisson's equation $$\nabla ^2 \tilde U + 4\pi G\tilde \rho = 0.$$ It is shown by direct observations that most spiral arms fit well with a logarithmic spiral curve (Danver, 1942; Considère, 1980; Mulliard mand Marcelin, 1981). From the physical point of view, they are represented by maxima of ? (or \(\tilde \rho\) ) which is of the form $$\tilde U = cte cos (q log_e r - m\theta ),$$ wherem is an integer (number of arms),q=cte, andr and θ are polar coordinates. The distancer is expressed in an arbitrary unit (r=d/do). In the case of an axisymmetric solar nebula (m=0), successive maxima of \(\tilde U\) are rings showing similar T-B law $$d = d_o C^n ,$$ withC=e 2 π/q constant, andn is a positive integer. It is noted, in addition, that the steady wave equation within the special membrane quoted above and the new expression of the Poisson's equation derived from (5) are quite similar and expressed in the form $$\nabla ^2 \tilde U + cte\tilde U/r^2 = 0.$$ This suggests that both spiral structure of galaxies and Prentice's rings system result from a wave process which is investigated in the last section. From Equation (2) it is possible to derive the wavelength of the assumed wave ‘χ’, by using a procedure similar to the one by L. De Broglie (1923). The velocity of the wave ‘χ’ process is discussed in two cases. Both cases lead to a similar Planck's relation (E=hv).  相似文献   

2.
The well-known Titius-Bode law (T-B) giving distances of planets from the Sun was improved by Basano and Hughes (1979) who found: $$a_n = 0.285 \times 1.523^n ;$$ a n being the semi-major axis expressed in astronomical units, of then-th planet. The integern is equal to 1 for Mercury, 2 for Venus etc. The new law (B-H) is more natural than the (T-B) one, because the valuen=?∞ for Mercury is avoided. Furthermore, it accounts for distances of all planets, including Neptune and Pluto. It is striking to note that this law:
  1. does not depend on physical parameters of planets (mass, density, temperature, spin, number of satellites and their nature etc.).
  2. shows integers suggesting an unknown, obscure wave process in the formation of the solar system.
In this paper, we try to find a formalism accounting for the B-H law. It is based on the turbulence, assumed to be responsible of accretion of matter within the primeval nebula. We consider the function $$\psi ^2 (r,t) = |u^2 (r,t) - u_0^2 |$$ , whereu 2(r, t) stands for the turbulence, i.e., the mean-square deviation velocities of particles at the pointr and the timet; andu 0 2 is the value of turbulence for which the accretion process of matter is optimum. It is obvious that Ψ2(r n,t0) = 0 forr n=0.285×1.523 n at the birth timet 0 of proto-planets. Under these conditions, it is easily found that $$\psi ^2 (r,t_0 ) = \frac{{A^2 }}{r}\sin ^2 [\alpha log r - \Phi (t_0 )]$$ With α=7.47 and Φ(t 0)=217.24 in the CGS system, the above function accounts for the B-H law. Another approach of the problem is made by considering fluctuations of the potentialU(r, t) and of the density of matter ρ(r, t). For very small fluctuations, it may be written down the Poisson equation $$\Delta \tilde U(r,t_0 ) + 4\pi G\tilde \rho (r,t_0 ) = 0$$ , withU(r, t)=U 0(r)+?(r, t 0 ) and \(\tilde \rho (r,t_0 )\) . It suffices to postulate \(\tilde \rho (r,t_0 ) = k[\tilde U(r,t_0 )/r^2 ](k = cte)\) for finding the solution $$\tilde U(r,t_0 ) = \frac{{cte}}{{r^{1/2} }}\cos [a\log r - \zeta (t_0 )]$$ . Fora=14.94 and ζ(t 0)=434.48 in CGS system, the successive maxima of ?(r,t 0) account again for the B-H law. In the last approach we try to write Ψ(r, t) under a wave function form $$\Psi ^2 (r,t) = \frac{{A^2 }}{r}\sin ^2 \left[ {\omega \log \left( {\frac{r}{v} - t} \right)} \right].$$ It is emphasized that all calculations are made under mathematical considerations.  相似文献   

3.
This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v), \(\sqrt {F(\upsilon )} \) and \(\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-0em} {F(\upsilon )}}} \) are given, where $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2. Some interesting relations involving Legendre polynomials are also noted.  相似文献   

4.
The fact that the energy density ρg of a static spherically symmetric gravitational field acts as a source of gravity, gives us a harmonic function \(f\left( \varphi \right) = e^{\varphi /c^2 } \) , which is determined by the nonlinear differential equation $$\nabla ^2 \varphi = 4\pi k\rho _g = - \frac{1}{{c^2 }}\left( {\nabla \varphi } \right)^2 $$ Furthermore, we formulate the infinitesimal time-interval between a couple of events measured by two different inertial observers, one in a position with potential φ-i.e., dt φ and the other in a position with potential φ=0-i.e., dt 0, as $${\text{d}}t_\varphi = f{\text{d}}t_0 .$$ When the principle of equivalence is satisfied, we obtain the well-known effect of time dilatation.  相似文献   

5.
The projection of an axially symmetric satellite's orbit on a plane perpendicular to the rotation axis (z=const.) is given by the second-order differential equation. $$\frac{{y''}}{{1 + y'^2 }} = \bar \Psi _y - y'\bar \Psi _{x,}$$ where the prime denotes the derivative with respect tox and \(\bar \Psi (x,y)\) is a known function. Two integrability cases have been investigated and it has been shown that for these two cases the integration can be carried out either by quadratures or reduced to a first-order differential equation. Analytical and physical properties are expressed, and it is shown that the equation can be derived from the calssical plane eikonal equation of geometric optics.  相似文献   

6.
The McGehee's study of the triple collision of the 3-body problem is here applied for the stability of an equilibrium. Let us consider the homogeneous Lagrangian: $$L = \frac{{\dot x^2 + \dot y^2 }}{2} + U(x,y)$$ whereU is polynomial, with degreek. We establish a necessary and sufficient condition onU for the stability of \(\omega (x = y = \dot x = \dot y = 0)\) .  相似文献   

7.
It is shown that the fractional increase in binding energy of a galaxy in a fast collision with another galaxy of the same size can be well represented by the formula $$\xi _2 = 3({G \mathord{\left/ {\vphantom {G {M_2 \bar R}}} \right. \kern-\nulldelimiterspace} {M_2 \bar R}}) ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {V_p }}} \right. \kern-\nulldelimiterspace} {V_p }})^2 e^{ - p/\bar R} = \xi _1 ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {M_2 }}} \right. \kern-\nulldelimiterspace} {M_2 }})^3 ,$$ whereM 1,M 2 are the masses of the perturber and the perturbed galaxy, respectively,V p is the relative velocity of the perturber at minimum separationp, and \(\bar R\) is the dynamical radius of either galaxy.  相似文献   

8.
If a satellite orbit is described by means of osculating Jacobi α's and β's of a separable problem, the paper shows that a perturbing forceF makes them vary according to $$\dot \alpha _\kappa = {\text{F}} \cdot \partial {\text{r/}}\partial \beta _k {\text{ }}\dot \beta _k = {\text{ - F}} \cdot \partial {\text{r/}}\partial \alpha _k ,{\text{ (}}k = 1,2,3).{\text{ (A1)}}$$ Herer is the position vector of the satellite andF is any perturbing force, conservative or non-conservative. There are two special cases of (A1) that have been previously derived rigorously. If the reference orbit is Keplerian, equations equivalent to (A1), withF arbitrary, were derived by Brouwer and Clemence (1961), by Danby (1962), and by Battin (1964). IfF=?gradV 1(t), whereV 1 may or may not depend explicitly on the time, Equations (A1) reduce to the well known forms (e.g. Garfinkel, 1966) $$\dot \alpha _\kappa = {\text{ - }}\partial V_1 {\text{/}}\partial \beta _k {\text{ }}\dot \beta _k = \partial V_1 {\text{/}}\partial \alpha _k ,{\text{ (}}k = 1,2,3).{\text{ (A2)}}$$ holding for all separable reference orbits. Equations (A1) can of course be guessed from Equations (A2), if one assumes that \(\dot \alpha _k (t)\) and \(\dot \beta _k (t)\) depend only onF(t) and thatF(t) can always be modeled instantaneously as a potential gradient. The main point of the present paper is the rigorous derivation of (A1), without resort to any such modeling procedure. Applications to the Keplerian and spheroidal reference orbits are indicated.  相似文献   

9.
A linear analysis of the asymmetries in Stokes profiles of magnetic lines is performed. The asymmetries in the linear and circular polarization profiles are characterized by suitable quantities, \(\delta \tilde Q\) and \(\delta \tilde V\) , strictly related to observed profiles. The response functions of \(\delta \tilde Q\) and \(\delta \tilde V\) to velocity fields are introduced and computed for various configurations of the magnetic field vector in a Milne-Eddington atmosphere. Some conclusions are drawn as to the importance of the asymmetries in Stokes profiles for recovering the velocity gradients from observations.  相似文献   

10.
Nonlinear magnetosonic waves propagating in a magnetic neutral sheet are investigated within the framework of a fluid model. It is shown that the behavior of the magnetosonic waves is governed by a ‘modified Burgers equation’ with an additional termc(η)? due to the relevant slowly varying background plasma parameter (density or magnetic field), $$\frac{{\partial \phi }}{{\partial \eta }}$$ where ?(ξ, η) is the amplitude of the wave, \(\xi = \int {k_x } {\text{d}}x + k_y y - \omega t\) , and η=εx is the coordinate stretched by a smallness parameter ε. When we consider fast magnetosonic waves propagating toward the neutral region across the magnetic field, they grow and undergo rapid steepening after passing through the neutral region; i.e., shock formation is promoted by the background inhomogeneity. By the numerical computation of the above equation, the time evolution is examined for two initial disturbances, the pulse type (gaussian) and the wave train type (sinusoidal wave). The relevance of the interactions between the magnetosonic shock waves and the neutral sheet plasma to a triggering mechanism of sympathetic flares is also suggested.  相似文献   

11.
The Ideal Resonance Problem, defined by the Hamiltonian $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x,\mu \ll 1,$$ has been solved in Garfinkelet al. (1971). As a perturbed simple pendulum, this solution furnishes a convenient and accurate reference orbit for the study of resonance. In order to preserve the penduloid character of the motion, the solution is subject to thenormality condition, which boundsAB" andB' away from zero indeep and inshallow resonance, respectively. For a first-order solution, the paper derives the normality condition in the form $$pi \leqslant max(|\alpha /\alpha _1 |,|\alpha /\alpha _1 |^{2i} ),i = 1,2.$$ Herep i are known functions of the constant ‘mean element’y', α is the resonance parameter defined by $$\alpha \equiv - {\rm B}'/|4AB\prime \prime |^{1/2} \mu ,$$ and $$\alpha _1 \equiv \mu ^{ - 1/2}$$ defines the conventionaldemarcation point separating the deep and the shallow resonance regions. The results are applied to the problem of the critical inclination of a satellite of an oblate planet. There the normality condition takes the form $$\Lambda _1 (\lambda ) \leqslant e \leqslant \Lambda _2 (\lambda )if|i - tan^{ - 1} 2| \leqslant \lambda e/2(1 + e)$$ withΛ 1, andΛ 2 known functions of λ, defined by $$\begin{gathered} \lambda \equiv |\tfrac{1}{5}(J_2 + J_4 /J_2 )|^{1/4} /q, \hfill \\ q \equiv a(1 - e). \hfill \\ \end{gathered}$$   相似文献   

12.
In a previous paper, Hayliet al. (1983), two families of periodic orbits in the three-dimensional potential $$U = \frac{1}{2}(Ax^2 + By^2 + Cz^2 ) - \varepsilon xz^2 - nyz^2 $$ with \(\sqrt A :\sqrt B :\sqrt C = 6:4:3\) and ?=0.5 were described. It was found empirically that the characteristic curves of the two families intersect in the space (x0, y0, η) for |η|?0.2. This property is demonstrated in the present paper by writing explicitely the Poincaré mapping and by giving an approximation directly comparable with the numerical results obtained in Hayliet al. (1983). It is thus shown that one family bifurcates off the other.  相似文献   

13.
The new analysis of radar observations of inner planets for the time span 1964–1989 is described. The residuals show that Mercury topography is an important source of systematic errors which have not been taken into account up to now. The longitudinal and latitudinal variations of heights of Mercury surface were found and an approximate map of equatorial zone |?|≤120° was constructed. Including three values characterizing global nonsphericity of Mercury surface into the set of parameters under determination allowed to improve essentially all estimates. In particular, the variability of the gravitational constantG was evaluated: $$\dot G/G = (0.47 \pm 0.47) \times 10^{ - 11} yr^{ - 1} $$ . The correction to Mercury perihelion motion: $$\Delta \dot \pi = - 0''.017 \pm 0''.052 cy^{ - 1} $$ and linear combination of the parameters of PPN formalism: $$\upsilon = (2 + 2\gamma - \beta )/3 = 0.9995 \pm 0.0013$$ were determined; they are in a good agreement with General Relativity predictions. The obtained values Δ.π and ν correspond to the negligible solar oblateness, the estimate of solar quadrupole moment being: $$J_2 = ( - 0.13 \pm 0.41) \times 10^{ - 6} $$ .  相似文献   

14.
A spherically-symmetric static scalar field in general relativity is considered. The field equations are defined by $$\begin{gathered} R_{ik} = - \mu \varphi _i \varphi _k ,\varphi _i = \frac{{\partial \varphi }}{{\partial x^i }}, \varphi ^i = g^{ik} \varphi _k , \hfill \\ \hfill \\ \end{gathered} $$ where ?=?(r,t) is a scalar field. In the past, the same problem was considered by Bergmann and Leipnik (1957) and Buchdahl (1959) with the assumption that ?=?(r) be independent oft and recently by Wyman (1981) with the assumption ?=?(r, t). The object of this paper is to give explicit results with a different approach and under a more general condition $$\phi _{;i}^i = ( - g)^{ - 1/2} \frac{\partial }{{\partial x^i }}\left[ {( - g)^{1/2} g^{ik} \frac{\partial }{{\partial x^k }}} \right] = - 4\pi ( -g )^{ - 1/2} \rho $$ where ?=?(r, t) is the mass or the charge density of the sources of the field.  相似文献   

15.
The planar problem of three bodies is described by means of Murnaghan's symmetric variables (the sidesa j of the triangle and an ignorable angle), which directly allow for the elimination of the nodes. Then Lemaitre's regularized variables \(\alpha _j = \sqrt {(\alpha ^2 - \alpha _j )}\) , where \(\alpha ^2 = \tfrac{1}{2}(a_1 + a_2 + a_3 )\) , as well as their canonically conjugated momenta are introduced. By finally applying McGehee's scaling transformation \(\alpha _j = r^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} \tilde \alpha _j\) , wherer 2 is the moment of inertia a system of 7 differential equations (with 2 first integrals) for the 5-dimensional triple collision manifold \(T\) is obtained. Moreover, the zero angular momentum solutions form a 4-dimensional invariant submanifold \(N \subset T\) represented by 6 differential equations with polynomial right-hand sides. The manifold \(N\) is of the topological typeS 2×S 2 with 12 points removed, and it contains all 5 restpoint (each one in 8 copies). The flow on \(T\) is gradient-like with a Lyapounov function stationary in the 40 restpoints. These variables are well suited for numerical studies of planar triple collision.  相似文献   

16.
Some useful results and remodelled representations ofH-functions corresponding to the dispersion function $$T\left( z \right) = 1 - 2z^2 \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x/\left( {z^2 - x^2 } \right)} $$ are derived, suitable to the case of a multiplying medium characterized by $$\gamma _0 = \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x > \tfrac{1}{2} \Rightarrow \xi = 1 - 2\gamma _0< 0} $$   相似文献   

17.
A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck's function as a nonlinear function of optical depth, viz., $$B_v (T) = b_0 + b_1 {\text{ }}e^{ - \beta \tau } $$ is obtained by the method of discrete ordinates originally due to Chandrasekhar.  相似文献   

18.
The equation of transfer for interlocked multiplets has been solved by Laplace transformation and the Wiener-Hopf technique developed by Dasgupta (1978) considering two nonlinear forms of Planck function: i.e., (a) $$B{\text{ }}_{\text{v}} (T) = B(t) = b_0 + b_1 {\text{ }}e^{ - \alpha t} ,$$ (b) $$B{\text{ }}_{\text{v}} (T) = B(t) = b_0 + b_1 t + b_2 E_2 (t).$$ Solutions obtained by Dasgupta (1978) or by Chandrasekhar (1960) may be obtained from our solutions by dropping the nonlinear terms.  相似文献   

19.
A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck's function as a nonlinear function of optical depth, viz. $$B{\text{ }}_v (T) = b_0 + b_1 {\text{ }}e^{ - \beta \tau } $$ is obtained by the method developed by Busbridge (1953).  相似文献   

20.
An exact solution of the transfer equation for coherent scattering in stellar atmospheres with Planck's function as a nonlinear function of optical depth, of the form $$B_v (T) = b_0 + b_1 {\text{ }}e^{ - \beta \tau } $$ is obtained by the method of the Laplace transform and Wiener-Hopf technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号