首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
提出了一种适用于天基空间目标光学观测的初始轨道确定新方法. 通过对比地基和天基观测的几何构型, 分析了利用天基光学观测数据进行初轨确定时计算收敛到观测平台自身轨道的原因. 基于轨道半通径方程和改进Gauss方程, 推导出了斜距条件方程组的解析形式, 将天基光学观测的初轨确定问题转换为求解关于观测时刻斜距变量的非线性条件方程组的问题. 利用轨道能量约束减小了解的搜索区域, 消除了方程组的奇点. 最后利用天基实测数据验证并分析了非线性条件方程组根的性质, 利用低轨光学观测平台对低、中、高轨和大椭圆轨道空间目标的仿真观测数据验证了方法的有效性.  相似文献   

2.
受大量射频干扰信号影响,快速从海量观测数据中准确识别出单脉冲信号已成为天文数据处理的一项重要任务,而设计和提取有效数据特征,是利用机器学习进行单脉冲信号高效识别的决定因素.针对如何选择最优特征,进而提升单脉冲信号的分类精度这一关键问题,设计了面向单脉冲信号分类的集成特征选择方法.方法首先混合单脉冲信号的参数特征、统计特征和抽象特征,然后分别利用5种单一特征选择方法选出各自的最优特征集,最后利用贪心策略对5种单一方法获取的最优特征集进行集成筛选,获取最优集成特征集.实验表明,最优特征集合既包含统计特征也包含抽象特征.在相同特征数量下,利用集成特征选择比单一特征选择能获得更高的模型精度,可使F1值最高提升1.8%.在海量数据背景下,集成特征选择对减少特征数量、提升分类性能和加快数据处理速度具有重要作用.  相似文献   

3.
In view of the limitation of ground-based Tracking Telemetry and Command (TT&C) system in covering the geostationary satellite in space and time, the method of determining the orbit of the geostationary satellite by the LEO (Low Earth Orbit) multi-satellites network with small orbit inclination was proposed. According to the space environment and optical viewing conditions, the simulation data were screened to simulate the real observation scene. The precise orbit determination (POD) of geostationary satellite was calculated by using the optical angle measurement data and the numerical method. By comparing with the reference orbit, under the condition of platform’s orbit accuracy of 5 m, measurement accuracy of 5-arcsecond, and 12 hours of observation, the POD accuracy of geostationary satellite by two LEO satellites can reach the order of kilometers, while the POD accuracy by four LEO satellites can reach the order of 100 meters. Therefore, the POD accuracy has been greatly improved with the increase of the number of LEO satellites.  相似文献   

4.
针对地基卫星测控系统(Tracking Telemetry and Command, TT&C)系统对地球静止轨道(Geostation-\lk ary Earth Orbit, GEO)卫星在空间和时间覆盖上的局限性, 提出小倾角低地球轨道(Low Earth Orbit, LEO)多星组网天基平台对GEO卫星进行跟踪定轨的方法. 根据空间环境和光学可视条件对仿真数据进行筛选以模拟真实的观测场景, 利用光学测角数据, 使用数值方法对GEO卫星的轨道进行确定. 结果与参考轨道进行重叠对比, 在平台轨道精度5 m、测量精度5rq\rq、 定轨弧长12 h的情况下, 两颗LEO卫星对GEO卫星进行跟踪定轨的精度可达到千米量级, 4颗LEO卫星对GEO目标进行跟踪定轨的精度可达到百米量级. 随着LEO组网卫星数量的增加, 定轨精度得到了较大的提高.  相似文献   

5.
?pik’s formulae for the probability of collision are applied to the analysis of the collision risk against space debris in Low-Earth Orbit (LEO) and Medium Earth Orbit. The simple analytical formulation of ?pik’s theory makes it applicable to complex dynamical systems, such as the interaction of the ISS with the whole debris population in LEO The effect of a fragmentation within a multiplane constellation can also be addressed. The analysis of the evolution of the collision risk in Earth orbit shows the need of effective mitigation measures to limit the growth of the collision risk and of the fragmentation debris in the next century.  相似文献   

6.
It is known that the dynamical orbit determination is the most common way to get the precise orbits of spacecraft. However, it is hard to build up the precise dynamical model of spacecraft sometimes. In order to solve this problem, the technique of the orbit determination with the B-spline approximation method based on the theory of function approximation is presented in this article. In order to verify the effectiveness of this method, simulative orbit determinations in the cases of LEO (Low Earth Orbit), MEO (Medium Earth Orbit), and HEO (Highly Eccentric Orbit) satellites are performed, and it is shown that this method has a reliable accuracy and stable solution. The approach can be performed in both the conventional celestial coordinate system and the conventional terrestrial coordinate system. The spacecraft's position and velocity can be calculated directly with the B-spline approximation method, it needs not to integrate the dynamical equations, nor to calculate the state transfer matrix, thus the burden of calculations in the orbit determination is reduced substantially relative to the dynamical orbit determination method. The technique not only has a certain theoretical significance, but also can serve as a conventional algorithm in the spacecraft orbit determination.  相似文献   

7.
中国区域定位系统(Chinese Area Positioning System,CAPS)把寿命末期的地球静止轨道(Geostationary Earth Orbit,GEO)通信卫星推到比GEO轨道高约200 km的倾斜高圆轨道(inclined Highly Circular Orbit,iHCO),卫星相对地球向西漂移。利用该类卫星组建CAPS导航星座,可以实现全球范围内的导航通信覆盖。重点开展基于iHCO通信卫星的CAPS星座优化研究,结果表明:利用GEO通信卫星和iHCO通信卫星组成的星座可以实现较好的空间星座布局,可以满足一般导航用户的需要。  相似文献   

8.
基于通信卫星的导航系统可以利用比地球静止轨道(Geostationary Earth Orbit,GEO)高约200 km的倾斜高圆轨道(inclined Highly Circular Orbit,iHCO)通信卫星组成导航星座.结合两种轨道高度的倾斜高圆轨道通信卫星,仿真分析了利用倾斜高圆轨道卫星组成的中国区域定位系统(Chinese Area Positioning System,CAPS)的导航性能,并讨论了利用倾斜高圆轨道卫星组成的中国区域定位系统实现中国区域覆盖的最佳星座布局.  相似文献   

9.
Space debris—man-made non-functional objects of all sizes in near-Earth space—has been recognized as an increasing threat for current and future space operations. The debris population in near-Earth space has therefore been extensively studied during the last decade. Information on objects at altitudes higher than about 2,000 km is, however, still comparatively sparse. Debris in this region is best detected by surveys utilizing optical telescopes. Moreover, the instruments and the applied observation techniques, as well as the processing methods, have many similarities with those used in optical surveys for ‘astronomical’ objects like near-Earth objects (NEOs). The present article gives a general introduction to the problem of space debris, presents the used observation and processing techniques emphasizing the similarities and differences compared to optical surveys for NEOs, and reviews the results from optical surveys for space debris in high-altitude Earth orbits. Predictions on the influence of space debris on the future of space research and space astronomy in particular are reported as well.  相似文献   

10.
This paper reviews positioning systems in the context of communication systems.First,the basic positioning technique is described for location based service(LBS) in mobile communication systems.Then the high integrity global positioning system(iGPS) is introduced in terms of aspects of what it is and how the low Earth orbit(LEO) Iridium telecommunication satellites enhance the global positioning system(GPS).Emphasis is on the Chinese Area Positioning System(CAPS) which is mainly based on commercial geostationary(GEO) communication satellites,including decommissioned GEO and inclined geosynchronous communication satellites.Characterized by its low cost,high flexibility,wide-area coverage and ample frequency resources,a distinctive feature of CAPS is that its navigation messages are generated on the ground,then uploaded to and forwarded by the communication satellites.Fundamental principles and key technologies applied in the construction of CAPS are presented in detail from the CAPS validation phase to its experimental system setup.A prospective view of CAPS has concluded it to be a seamless,high accuracy,large capacity navigation and communication system which can be achieved by expanding it world wide and enhancing it with LEO satellites and mobile base stations.Hence,this system is a potential candidate for the next generation of radio navigation after GPS.  相似文献   

11.
VLBI (Very Long Baseline Interferometry)技术观测卫星需要对干涉测量数据进行相关和后处理,通过相关、时延校准、条纹搜索,最终得到卫星的基线几何时延.基于天文开源软件建立起一套卫星干涉测量数据处理系统.该系统可工作在实时和事后两种状态,实现相关、中性大气、电离层、钟模型以及仪器硬件的时延校准、条纹搜索、生成基线时延和时延率序列.使用该系统处理北斗GEO (Geosynchronous Earth Orbit)卫星的干涉测量试验数据,得到了精度在1–2 ns量级的卫星基线时延序列.  相似文献   

12.
越来越多的LEO卫星装载了高精度的星载GPS接收机,星载GPS定轨已成为LEO卫星精密定轨的重要手段之一。星载GPS精密定轨精度依赖于GPS星历及钟差精度,采用CODE(Center for Orbit Determination in Europe)官方网站提供的GPS精密星历及钟差数据,基于瑞士伯尼尔大学开发的Bernese 5.0软件,采用非差减缩动力学定轨方法,解算了60天的CHAMP卫星和SAC-C卫星轨道,并将所得轨道与JPL和GFZ事后科学轨道比较,得出的轨道位置三维精度优于20 cm量级,速度三维精度约为0.20 mm/s。  相似文献   

13.
As a special approach to orbit determination for satellites with spaceborne GPS receivers, the kinematic Precise Orbit Determination (POD) is independent of any mechanical model (e.g., the Earth gravity ?eld, atmospheric drag, solar radiation pressure, etc.), and thus especially suitable for the orbit determination of Low Earth Orbiting (LEO)satellites perturbed strongly bythe atmosphere. In this paper, based on the space-borne dual-frequency GPS data, we study the kinematic POD, discuss the pre-processing of the data, and construct an algorithm of zero-difference kinematic POD. Using the observational data from GRACE (Gravity Recovery And Climate Experiment) satellites covering the whole month of February 2008, we verify the effectiveness and reliability of this algorithm. The results show that the kinematic POD may attain an accuracy of about 5 cm (with respect to satellite laser ranging data), which is at the same level as the dynamic and reduced-dynamic PODs  相似文献   

14.
Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km \(\times \) 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth’s second zonal harmonic coefficient, the simulations include the Earth’s gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.  相似文献   

15.
由于地球电离层的阻挡以及其他干扰,在地面难以进行有效的甚低频天文观测,而使用搭载于绕地或绕月轨道卫星上的甚低频天线进行干涉观测会大大提高观测灵敏度和角分辨率.卫星定位精度会影响观测数据的处理结果,进而影响成图质量,并且会大幅影响飞行项目的复杂度和总成本.首先分析卫星姿态控制精度和星间基线测量精度对绕地轨道甚低频干涉观测的影响,之后对干涉观测中信号延时误差进行仿真,研究延时误差与数据相关处理中条纹搜索范围之间的关系,并对数据计算速度需求进行估算.分析和仿真结果可以辅助相关空间甚低频观测项目总体方案的制定和工程指标的优化.  相似文献   

16.
With the increased number of low Earth orbit (LEO) satellites equipped with Global Positioning System (GPS) receiver, the LEO based GPS slant total electron content (STEC) data play a more important role in ionospheric research due to better global coverage. The accuracy of LEO TEC is hardly evaluated by comparison with the independent TEC measurement simultaneously. We propose an approach based on the simulated data to verify the accuracy of TEC determination. The simulated data (i.e., the pseudorange and carrier phase observations) was generated based on the consideration of the effect of the ionosphere, the so-called differential code bias (DCB) and observational noise. The errors of carrier phase to code leveling process and DCB estimation are analyzed quantitatively. Also, the effect of observational noise, solar activity and LEO orbit altitude on the accuracy of TEC determination will be discussed in detail. The accuracy of TEC determination is relative to solar activity and LEO orbit altitude, the higher LEO orbit and lower F10.7 index, the higher accuracy of TEC determination. It is found by the first time that, with the amplification of the pseudorange noise, the accuracy of leveling process and TEC determination declines almost linearly. With the LEO missions in the near future, it is hoped that the GPS satellite DCBs estimated based on LEO observations would be better than those based on ground-based observations.  相似文献   

17.
37 years of space activities have led to a large number of anthropogenic objects orbiting the Earth. Ground-based observations with radar and optical facilities reveal the existence of about 7500 objects in space, which do not represent an immediate excessive danger. However, adequate actions are required to keep the long-term debris hazard for manned and unmanned missions within acceptable tolerances. In this paper the space debris environment of the Earth and its future evolution are described. New developments which could have a major impact on the space environment, are the the planned multi-satellite constellations for communications purposes or solar power stations in Earth orbit. Finally, methods for debris reduction are outlined. Space debris is a global problem which can only be effectively solved by international cooperation.  相似文献   

18.
中高轨卫星广播星历精度分析   总被引:17,自引:0,他引:17  
GPS广播星历参数具有物理意义明确、参数少、精度高等优点,可以考虑将它应用于其他卫星导航系统。但是GPS系统的卫星构成比较单一,而其他卫星导航系统可能包含中地球轨道 (MEO)、倾斜地球同步轨道(IGSO)和地球静止轨道(GEO)等多种不同类型的中高轨卫星。分析了采用GPS广播星历参数时,MEO、IGSO和GEO卫星的广播星历拟合精度,特别讨论了轨道倾角接近于0的GEO卫星的广播星历拟合精度,并给出了相应的改进措施。计算表明,对于 MEO卫星,2 h的广播星历拟合精度(三维位置)可达厘米级;对于IGSO卫星和轨道倾角较大的GEO卫星,4 h的广播星历拟合精度约为0.1 m,径向位置误差在厘米量级;而对于轨道倾角接近于0的GEO卫星,若不采取特殊措施,由于轨道倾角和升交点经度统计相关,其广播星历拟合精度很差,为此提出了一种坐标转换方法。采用此方法后的广播星历拟合精度可达0.1 m,径向位置误差为厘米量级。  相似文献   

19.
GPS掩星折射率剖面一维变分同化   总被引:11,自引:1,他引:10  
洪振杰  郭鹏  刘敏  黄珹 《天文学报》2006,47(1):100-110
近年来,GPS/LEO(全球定位系统/低地球轨道)卫星无线电掩星技术给出了地球大气探测的新途径.从LEO卫星观测到的掩星数据可以反演的地球大气的气压、水汽、温度等剖面;它们对气象和大气科学研究,是具有潜在价值的数据资源.掩星数据资料的同化技术可以有效地改进这些气象参数的剖面,从而改进目前的数值天气预报模式.在当前采用的一维变分同化反演技术中,可以用掩星观测资料的大气折射率或弯曲角剖面进行同化,来反演大气水汽和温度剖面以及海平面压强.作为独立自主开发的GPD/LEO掩星技术系统的一部分,以欧洲中尺度天气预报分析(ECMWF)资料为背景场,CHAMP 掩星观测得到的折射率剖面为观测值,采用Levenberg—Marquardt方法实行GPS掩星资料一维变分同化.在讨论中,用掩星观测点附近相应的探空气球资料来检验CHAMP掩星资料变分同化的结果.  相似文献   

20.
The long-term dynamics of the geostationary Earth orbits (GEO) is revisited through the application of canonical perturbation theory. We consider a Hamiltonian model accounting for all major perturbations: geopotential at order and degree two, lunisolar perturbations with a realistic model for the Sun and Moon orbits, and solar radiation pressure. The long-term dynamics of the GEO region has been studied both numerically and analytically, in view of the relevance of such studies to the issue of space debris or to the disposal of GEO satellites. Past studies focused on the orbital evolution of objects around a nominal solution, hereafter called the forced equilibrium solution, which shows a particularly strong dependence on the area-to-mass ratio. Here, we (i) give theoretical estimates for the long-term behavior of such orbits, and (ii) we examine the nature of the forced equilibrium itself. In the lowest approximation, the forced equilibrium implies motion with a constant non-zero average ‘forced eccentricity’, as well as a constant non-zero average inclination, otherwise known in satellite dynamics as the inclination of the invariant ‘Laplace plane’. Using a higher order normal form, we demonstrate that this equilibrium actually represents not a point in phase space, but a trajectory taking place on a lower-dimensional torus. We give analytical expressions for this special trajectory, and we compare our results to those found by numerical orbit propagation. We finally discuss the use of proper elements, i.e., approximate integrals of motion for the GEO orbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号