首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Antifouling herbicides in the coastal waters of western Japan   总被引:1,自引:0,他引:1  
Residue analyses of some antifouling herbicides (Diuron, Irgarol 1051 and the latter's degradation product M1, which is also known as GS26575), were conducted in waters collected along the coast of western Japan. In total, 142 water samples were collected from fishery harbours (99 sites), marinas (27 sites), and small ports (16 sites) around the Seto Inland Sea, the Kii Peninsula, and Lake Biwa, in August 1999. A urea-based herbicide, Diuron, was positively identified for the first time in Japanese aquatic environments. Diuron was detected in 121 samples (86%) up to a highest concentration of 3.05 microg/l, and was found in 86% of samples from fishery harbours, 89% from marinas, and 75% from ports. Four freshwater samples out of 11 collected at Lake Biwa contained Diuron. Neither Irgarol 1051 nor M1 was found in the lake waters, but both were found in many coastal waters. Irgarol 1051 was found in 84 samples (60%) at a highest concentration of 0.262 microg/l. The concentrations detected were of similar magnitude to those in our previous surveys, taken in 1997 and 1998. M1 was found in 40 samples (28%) up to a highest concentration of 0.080 microg/l. The concentrations detected were generally lower than those found in our previous surveys. The detection frequency among fishery harbours, marinas, and ports was 57-70% for Irgarol 1051 and 25-30% for M1. Ninety-five per cent of the coastal waters in which M1 was detected also contained Irgarol 1051, and 93% of the samples in which Irgarol 1051 was detected also contained Diuron. These results clearly suggest that commercial ship-bottom paints containing both Diuron and Irgarol 1051 are used extensively in the survey area.  相似文献   

2.
Irgarol 1051, a boosting antifouling agent often used to supplement copper based paints was found in surface waters from South Florida at stations collected from the Miami River, Biscayne Bay and selected areas of the Florida Keys. Concentrations of the herbicide ranged from below the method detection limit (1 ng/L) to as high as 182 ng/L in a canal system in Key Largo. The herbicide was present at 93% of the stations and often found in conjunction with its descyclopropyl metabolite (M1) previously reported to be the major degradation product of Irgarol under natural environmental conditions. The 90th percentile concentration calculated for all South Florida samples was 57.6 ng/L. Based on available data on the toxicity of Irgarol to algae and coral, only two stations (approximately 3%) ranked above the LC50 of 136 ng/L reported for the marine algae Naviculla pelliculosa and above the 100 ng/L level reported to reversibly inhibit photosynthesis of intact corals. However, a basic dissipation model for Irgarol using the Key Largo Harbor station as a point source indicated that concentrations of the herbicide decreased rapidly and concentrations below the MDL are observed within 2000 m of the source. No major coral based benthic habitats are documented for all the stations surveyed at distances that Irgarol may pose a substantial risk. However, other types of submerged vegetation like seagrasses are common around the marinas and the effects of Irgarol to such endpoints should be investigated further.  相似文献   

3.
In the yachting sector of the UK antifouling market, organic biocides are commonly added to antifouling preparations to boost performance. Few data presently exist for concentrations of these compounds in UK waters. In this study the concentrations of tributyltin (TBT) and eight booster biocides were measured before and during the 1998 yachting season. The Crouch Estuary, Essex, Sutton Harbour, Plymouth and Southampton Water were chosen as representative study sites for comparison with previous surveys of TBT concentrations. Diuron and Irgarol 1051 were the only organic booster biocides found at concentrations above the limits of detection. Diuron was measured at the highest concentrations, whilst detectable concentrations of both Irgarol 1051 and diuron were determined in areas of high yachting activity (e.g. mooring areas and marinas). Maximum measured values were 1,421 and 6,740 ng/l, respectively. Lower concentrations of both compounds were found in open estuarine areas, although non-antifouling contributions of diuron may contribute to the overall inputs to estuarine systems. TBT was found to be below or near the environmental quality standard (EQS) of 2 ng/l for all samples collected from estuarine areas frequented by pleasure craft alone, but with much higher concentrations measured in some marinas, harbours and in areas frequented by large commercial vessels. Using the limited published environmental fate and toxicity data available for antifouling booster biocides, a comparative assessment to evaluate the risk posed by these compounds to the aquatic environment is described. TBT still exceeds risk quotients by the greatest margins, but widespread effects due to Irgarol 1051 and less so diuron cannot be ruled out (particularly if use patterns change) and more information is required to provide a robust risk assessment.  相似文献   

4.
Variations in Irgarol 1051 concentrations in the UK's largest marina at Brighton were determined regularly over a period of one year. Aqueous concentrations ranged from <1 to 960 ngl(-1) with highest mean concentrations generally associated with berths for larger vessels and with the main channels. Temporally, highest concentrations were recorded in November through to January and were probably associated with maintenance of vessels in an adjacent boatyard. Elevated levels were also encountered at the beginning of the season, coinciding with the introduction of newly antifouled vessels. Increased concentrations also followed dredging, possibly through re-mobilisation of Irgarol 1051. No correlations were found between dissolved Irgarol 1051 concentrations and pH, temperature or salinity. With the exception of sporadically high concentrations recorded for water samples (probably taken in close proximity to recently antifouled vessels), concentrations rarely exceeded the no observed effect concentration for marine periphyton of 63 ngl(-1). Concentrations of Irgarol 1051 in sediments sampled from the marina ranged from <1 to 77 ngg(-1). Apparent distribution coefficients (K(d)) calculated from sedimentary and aqueous samples (collected simultaneously) are generally within the range of K(d)'s reported from laboratory experiments.  相似文献   

5.
Concentrations of copper in water rose rapidly following the introduction of boats to a new marina in San Diego Bay. Two months after the marina reached half its capacity, a majority of water samples exceeded chronic and acute criteria for dissolved copper, and copper concentrations in several samples exceeded the highest concentrations observed in another marina that has been listed as an impaired water body. A box model suggested that a small fraction of the leached copper was sequestered in sediment. Copper concentrations in water entering the marina from the bay was more than half the chronic concentration limit, so only 50% of marina boat capacity could be accommodated without exceeding the chronic criterion more than 50% of the time. Copper concentrations in water may increase rapidly following boat introduction in small marinas, but could return to pre-introduction levels by controlling boat numbers or reducing use of copper-based paints.  相似文献   

6.
《国际泥沙研究》2016,(4):324-329
Transport of contaminants in Miami River (Florida, USA) sediments with river currents is a concern due to their potential impact in areas that are away from the potential sources. Accumulation profiles of five metals (As, Cd, Hg, Zn, Pb) in the surficial sediments of the Miami River were evaluated in relation to grain size (from less than 0.075 mm to 6.3 mm) and organic content. Surficial sediment samples were collected along the river basin as well as in bay waters. Fine sediments ( o 0.106 mm) contained more than 10 times the levels of Cd and Hg and more than 6 times the levels of arsenic in comparison to the sediments that are larger than 0.850 mm. Zn and Pb levels were more than 10 times in the fine sediments ( o 0.106 mm) in comparison to those that were larger than 4.750 mm. Cd, Hg, and Zn levels had sig-nificant correlation with the total organic carbon content of the sediments. This indicates that Cd, Hg, and Zn in fine sediments have the potential to be metabolized in addition to potential to be mobilized with river currents. Analysis of the Gibbs settling velocities of particles showed that particles smaller than 0.5 mm can be transported with the river currents. The levels of heavy metal in fine sediments ( o 0.425 mm) along the river bed showed that fine particles had tendency to be mobilized and accu-mulate at locations where the rivers currents are low and carried out to the bay.  相似文献   

7.
The antifouling boosting agent Irgarol 1051 is a strong inhibitor of the photosystem II (PSII) with high efficiency/toxicity towards algae. However, because some phytoplankton species are more sensitive to Irgarol than others, its persistent release into the environment could result in adverse changes in the phytoplankton community structure at heavily impacted sites such as marinas. Continuous monitoring in the Florida Keys showed Irgarol concentrations of up to 635 ngL(-1) in the canal system leading to Key Largo Harbor Marina (KLH) with a sharp decrease in concentration at stations offshore from the mouth of the canal. Preliminary phytoplankton community assessments from surface water samples collected in KLH between February and August 2004 showed changes in several phytoplankton species in concordance with the increase of the herbicide concentrations. Typical responses include an increase in the abundance of eukaryotes and Cryptomonas sp. as Irgarol concentrations increase.  相似文献   

8.
International regulation of organotin compounds for use in antifouling paints has led to the development and increased use of replacement compounds, notably the s-triazine herbicide Irgarol 1051. Little is known about the distribution of Irgarol 1051 in tropical waters. Nor has the potential impact of this triazine upon photosynthesis of endosymbiotic microalgae (zooxanthellae) in corals been assessed. In this study Irgarol 1051 was detected in marinas, harbours and coastal waters of the Florida Keys, Bermuda and St. Croix, with concentrations ranging between 3 and 294 ng 1(-1). 14C incubation experiments with isolated zooxanthellae from the common inshore coral Madracis mirabilis showed no incorporation of H14CO3- from the sea water medium after 4-8 h exposure to Irgarol 1051 concentrations as low as 63 ng 1(-1). Reduction in net photosynthesis of intact corals was found at concentrations of l00 ng 1(-1) with little or no photosynthesis at concentrations exceeding 1000 ng 1(-1) after 2-8 h exposure at all irradiances. The data suggest Irgarol 1051 to be both prevalent in tropical marine ecosystems and a potent inhibitor of coral photosynthesis at environmentally relevant concentrations.  相似文献   

9.
A study of the distribution of the 'booster' biocide 2-methylthio-4-tert-butylamino-6-cyclopropyl amino-s-triazine (Irgarol 1051) was carried out in the coastal waters of Bermuda. Irgarol 1051 concentrations (as determined by GC/MS) up to 590 ng l-1 have been measured within Hamilton Harbour. The data presented herein unequivocally demonstrate contamination of the coastal system of Bermuda by Irgarol 1051. Concurrently, TBT concentrations were measured and results indicate that levels are falling through legislated changes in antifouling treatments, from 220 ng l-1 in 1990 to < 20 ng l-1 (as Sn) by 1995, in the open water area of Hamilton Harbour. Concentrations of TBT immediately offshore from a boatyard were found to be > 600 ng l-1 (Sn), indicating continuing release due to painting operations and sediments in the area.  相似文献   

10.
11.
Irgarol 1051 is a s-triazine herbicide used in popular slime-resistant antifouling paints. It has been shown to be acutely toxic to corals, mangroves and sea grasses, inhibiting photosynthesis at low concentrations (>50 ng l(-1)). We present the first data describing the occurrence of Irgarol 1051 in coastal waters of the Northeastern Caribbean (Puerto Rico (PR) and the US Virgin Islands (USVI)). Low level contamination of coastal waters by Irgarol 1051 is reported, the herbicide being present in 85% of the 31 sites sampled. It was not detected in water from two oceanic reference sites. In general, Irgarol 1051was present at concentrations below 100 ng l(-1), although far higher concentrations were reported at three locations within Benner Bay, USVI (223-1,300 ng l(-1)). The known toxicity of Irgarol 1051 to corals and sea grasses and our findings of significant contamination of the Northeastern Caribbean marine environment by this herbicide underscore the importance of understanding, more fully, local and regional exposure of reef and sea grass habitats to Irgarol 1051 and, where necessary, implementing actions to ensure adequate protection of these important ecosystems.  相似文献   

12.
Baseline levels of a number of trace metals have been determined in samples of water and sediment from Baffin Bay. Concentrations of Cr, Mn, Fe, Ni, Cu and Cd in the waters of Baffin Bay are generally lower than those observed in eastern Canadian coastal waters, levels being close to reported open ocean concentrations. Nearshore sediment samples, analysed for Cr, V, Mn, Ni, Co, Cu, Zn, Hg and Pb, display comparable concentrations to unpolluted muds in eastern Canadian coastal regions. Concentrations of these elements in the deep sediments of central Baffin Bay closely resemble levels in Atlantic Ocean deep-sea clays.  相似文献   

13.
Marinas are areas of special water quality concern because of the potential for pollutant accumulation within their protected waters. Perhaps the largest contaminant source to marinas is antifouling paints that leach copper to prevent the growth of encrusting organisms on vessel bottoms. Very little monitoring of marinas is typically conducted despite the potential environmental risk, particularly in the San Diego region of California, USA where as many as 17,000 recreational vessels are berthed. The objective of this study was twofold: (1) determine the extent and magnitude of dissolved copper concentrations in marinas throughout the San Diego region, and (2) determine if elevated copper concentrations in marinas of the San Diego region are resulting in adverse biological impacts. A probabilistic study design was used to sample water column copper concentrations and toxicity (using Mytilus galloprovincialis) at 30 stations. Results indicated that exceedence of state water quality objectives was widespread (86% of marina area), but that toxicity was much less prevalent (21% of marina area). Toxicity identification evaluations (TIEs) conducted at the most toxic sites indicated that toxicity was largely due to trace metals, most likely copper. Toxicity was reduced using TIE treatments that chelated trace metals such as cation exchange column, ethylenediaminetetraacetic acid (EDTA), and sodium thiosulfate (STS). Moreover, increasing dissolved copper concentrations correlated with increasing toxicity and these copper concentrations were high enough to account for virtually all of the observed toxicity.  相似文献   

14.
Organochlorine (OCs) and butyltin (BTs) residues were determined in deep-sea organisms collected from the western North Pacific, off-Tohoku, Japan. Among OCs, concentrations of polychlorinated biphenyls (PCBs) and DDTs (DDTs and its metabolites) were the highest in deep-sea organisms (maximum concentrations of 6700 and 13,000 ng/g lipid wt, respectively). Chlordane compounds (CHLs) were the next most abundant OCs, and hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) were the lowest. BTs were also detected at maximum concentrations of 570 ng/g wet wt. Concentrations of PCBs, CHLs and BTs in deep-sea organisms collected from the western North Pacific, off-Tohoku, were generally lower than those in deep-sea and shallow water organisms from Japanese coastal waters. On the other hand, considerable variations in the concentrations of OCs were found among deep-sea organisms analyzed. Several carnivorous fishes such as snubnosed eel, lanternshark and grenadiers accumulated some OCs such as PCBs, DDTs and CHLs at high concentrations of up to a few μg/g levels. In addition, the residue pattern of OCs and BTs in fishes showed a specific trend according to the sampling depth; higher concentrations of PCBs, DDTs and CHLs and lower concentrations of HCHs, HCB and BTs were found in fishes collected from greater depth (1000 m) compared to those from shallower waters. This trend is consistent with the results of our earlier study on mesopelagic myctophid fishes. Results of this study suggest vertical transport of hydrophobic OCs such as PCBs, DDTs and CHLs and its accumulation in benthic deep-sea organisms.  相似文献   

15.
The behavior of the herbicides isoproturon (IPU) and chlortoluron (CTU) in ground water and shallow unsaturated zone sediments were evaluated at a site situated on the Chalk in southern England. Concentrations of IPU in ground water samples varied from < 0.05 to 0.23 microgram/L over a five-year period of monitoring, and were found to correlate with application of the pesticide. Concentrations of pesticides in ground water samples collected during periods of rising water table were significantly higher than pumped samples and suggest that rapidly infiltrating recharge water contains higher herbicide concentrations than the native ground water. Significant variations in herbicide concentrations were observed over a three-month period in ground water samples collected by an automated system, with concentrations of IPU ranging from 0.1 to 0.5 microgram/L, and concentrations of a recent application of CTU ranging from 0.2 to 0.8 microgram/L. Different extraction methods were used to assess pore water concentrations of herbicides in the unsaturated zone, and samples were analyzed by standard HPLC analysis and immunoassay (ELISA) methods. These data indicated highly variable concentrations of herbicide ranging from 4 to 200 g/ha for HPLC and 0.01 to 0.04 g/ha for ELISA, but indicate a general pattern of decreasing concentrations with depth. The results of this study indicate that transport of IPU and CTU through the unsaturated zone to shallow ground water occurs and that this transport increases immediately following herbicide application. Measured concentrations of herbicides are generally lower than specified by the European Union Drinking Water Directive, but are observed to spike above this limit. These results imply that, while delivery of pesticides to ground water can occur as a result of normal agricultural practices, the impact on potable supplies is likely to be negligible due to the potential for degradation during the relatively long travel time through the unsaturated zone and high degree of dilution that occurs within the aquifer. As a result of the wide variation in concentrations detected by different techniques, it is suggested that for future site investigations more than one sampling strategy be employed to characterize the occurrence of pesticide residues and elucidate the transport mechanisms.  相似文献   

16.
Trace organic (chlorinated pesticides, PCBs, PAHs and dioxins/furans) and trace metal concentrations were measured in surficial sediment and biological tissues (i.e., worms, crustaceans, bivalve molluscs, and fish livers) collected from the Russian Arctic. Total DDT, chlordane, PCB and PAH concentrations ranged from ND to 1.2, ND to <0.1, ND to 1.5 and <20-810 ng g(-1), respectively, in a suite of 40 surficial sediment samples from the Kara Sea and the adjacent Ob and Yenisey Rivers. High sedimentary concentrations of contaminants were found in the lower part of the Yenisey River below the salt wedge. Total dioxins/furans were analysed in a subset of 20 sediment samples and ranged from 1.4 to 410 pg g(-1). The highest trace organic contaminant concentrations were found in organisms, particularly fish livers. Concentrations as high as 89 ng g(-1) chlordane; 1010 ng g(-1) total DDTs; 460 ng g(-1) total PCBs; and 1110 ng g(-1) total PAH, were detected. A subset of 11 tissue samples was analysed for dioxins and furans with total concentrations ranging from 12 to 61 pg g(-1). Concentrations of many trace organic and metal contaminants in the Kara Sea appear to originate from riverine sources and atmospheric transport from more temperate areas. Most organic contaminant concentrations in sediments were low; however, contaminants are being concentrated in organisms and may pose a health hazard for inhabitants of coastal villages.  相似文献   

17.
The release of tributyltin (TBT) from maritime traffic represents one of the main problems of direct, diffuse, and continued contamination of the marine environment. In the present survey, the concentrations of TBT and dibultytin (DBT) in brackish waters, sediments, and the gastropods Nassarius nitidus were evaluated in order to estimate the contamination of the southern part of the Venice lagoon. TBT and DBT were determined by GC-MS/MS. Recent contamination of TBT was found in brackish waters near marinas, whereas the highest concentrations of TBT and DBT were observed in surface sediments at dockyards and harbours. High content of organotin in the gastropods sampled near the dockyards, harbours, and marinas showed a mobilisation from the sediments through the food web. The present study allowed assessment of whether, despite the ban on the use of TBT paints, waters, sediments, and biota were still being contaminated by organotin compounds in the southern Venice lagoon.  相似文献   

18.
The characteristics of chromophoric dissolved organic matter (CDOM) were studied in Hudson Bay and Hudson Strait in the Canadian Arctic. Hudson Bay receives a disproportionately large influx of river runoff. With high dissolved organic matter (DOM) concentrations in Arctic rivers the influence of CDOM on coastal and ocean systems can be significant, yet the distribution, characteristics and potential consequences of CDOM in these waters remain unknown. We collected 470 discrete water samples in offshore, coastal, estuarine and river waters in the region during September and October 2005. Mixing of CDOM appeared conservative with salinity, although regional differences exist due to variable DOM composition in the rivers discharging to the Bay and the presence of sea-ice melt, which has low CDOM concentrations and low salinity. There were higher concentrations of CDOM in Hudson Bay, especially in coastal waters with salinities <28<28, due to river runoff. Using CDOM composition of water masses as a tracer for the freshwater components revealed that river runoff is largely constrained to nearshore waters in Hudson Bay, while sea-ice melt is distributed more evenly in the Bay. Strong inshore–offshore gradients in the bio-optical properties of the surface waters in the Hudson Bay cause large variation in penetration of ultraviolet radiation and the photic depth within the bay, potentially controlling the vertical distribution of biomass and occurrence of deep chlorophyll maxima which are prevalent only in the more transparent offshore waters of the bay. The CDOM distribution and associated photoprocesses may influence the thermodynamics and stratification of the coastal waters, through trapping of radiant heating within the top few meters of the water column. Photoproduction of biologically labile substrates from CDOM could potentially stimulate the growth of biomass in Hudson Bay coastal waters. Further studies are needed to investigate the importance of terrestrial DOM in the Hudson Bay region, and the impact of hydroelectric development and climate change on these processes.  相似文献   

19.
At present, there is a very limited information on the levels and distribution of dissolved metals in Manila Bay. In this study, the horizontal and vertical distribution of operationally defined species (labile, bound and total) of dissolved copper (Cu), cadmium (Cd) and zinc (Zn) were determined using differential pulse anodic and cathodic stripping voltammetry in water samples obtained from 18 stations in November 1998. In addition, the 24-h variability in the concentrations of these species at different depths in the water column was determined. These measurements were complemented by the determination of temperature, salinity, dissolved oxygen, chlorophyll a, particulate organic carbon and nutrients. Results showed that more than 50% of total dissolved copper and cadmium were labile while 50% of total dissolved zinc was organically bound. Vertical profiles showed that Cu, Cd and Zn concentrations were generally high at the surface. Zinc and cadmium were characterised by the presence of a mid-depth minimum while copper did not show any clear vertical trend.

Dissolved Cu concentrations during the spatial and diurnal samplings ranged from 0.32 to 6.95 nM and 1.52 to 45.65 nM, respectively. For Cd, the concentrations in 18 stations ranged from 0.05 to 2.92 nM, and from 0.03 to 2.42 nM over a 24-h period. Zn concentrations ranged from 2.48 to 147.43 nM and 2.87 to 88.27 nM during the spatial and diurnal samplings, respectively. The large variation in the concentration of Cu, Cd and Zn in the bay was observed to be associated with the presence of a large vertical density gradient in the water column, which appeared to limit the exchange of materials between the surface and bottom waters. Elevated levels of these metals near point sources suggest anthropogenic inputs in the bay.  相似文献   


20.
Tritium concentrations are used to trace water circulation in the Urumqi and Turfan basins in the Xinjiang, western China. Tritium analyses were made for 77 water samples of river waters, groundwaters, spring waters, lake waters and glacier ice collected in summers in 1992 and 1994. The tritium concentrations in the waters are in a wide range from 0 to 125 TU, most of which are considerably high compared with those of most waters in Japan, because tritium levels in precipitation in the area are over ten times as high as those in Japan. River waters originating in glacier regions contain melt glacier, the proportion of which is over 0.5 to river water. The mean resi-dence time of circulating meteoric water in the mountain regions is estimated to be about 15 years. Most groundwaters and spring waters in the flat regions are mainly derived from river waters originating in glacier regions. The groundwater of greatest tritium concentrations in wells in Urumqi City is derived from Urumqi River about 25 years ago. It takes several ten years for river water to pass the underground to many springs. Some groundwaters and spring waters have taken a long time more than 40 years to travel under the ground. Enrichment of tritium in lake water by evaporation is considered to estimate the contribution of groundwater flow to the recharge of lake. Various contributions of groundwater to lakes are inferred for the various type of salinity in closed or semi-closed lakes. The inflow rates of groundwater to salt lakes are small as against fresh water lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号