首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
佛洞庙-红崖子断裂位于祁连山北缘断裂带中段,是1条活动逆断裂。在佛洞庙-红崖子断裂东、中、西各段落开挖整理了5个探槽。通过探槽揭示的各地层单元的沉积特征、各单元之间的层序关系以及断层对不同地层的切割关系,共辨认出了4次古地震事件。根据探槽中各地层单元的14C样品和光释光样品测年结果,对4次古地震事件给出了年龄制约:最早事件E4发生在距今约10.6ka,事件E3发生在距今约7.1ka,事件E2发生在距今约3.4ka,事件E1为1609年红崖堡地震。这4次地震事件的间隔分别约3.5ka、3.7ka和3.0ka,平均复发间隔约3.4ka,具有准周期重复特征。  相似文献   

2.
内蒙古色尔腾山山前断裂带乌加河段古地震活动   总被引:10,自引:0,他引:10       下载免费PDF全文
通过对色尔腾山山前断裂带乌加河段断层地貌研究,并结合前人对断裂带断裂活动性的工作,分析得到乌加河活动断裂段晚更新世晚期(距今1.445~2.234万年)以来平均垂直位移速率是0.48~0.75 mm/a,全新世早中期以来(距今5 570~8 830年)平均垂直位移速率是0.56~ 0.88 mm/a.利用5个探槽中揭露的古地震现象,结合前人对该断裂带古地震的研究结果,分析确定出2.7万年以来,色尔腾山山前断裂乌加河段共揭露出5次古地震事件,重复间隔约为4 300~4 400年.距今8 000~9 000年之间可能为一个古地震丛,而距今1~2万年之间可能遗漏了两次古地震事件.对比断层陡坎的高度与探槽中揭示出古地震事件的位移和,以及由断层平均位移速率和一次事件的位移得到古地震的重复间隔,得到阿拉盖兔探槽中缺失了3次古地震事件,整个活动断裂段上可能缺失了两次古地震事件.   相似文献   

3.
夏垫断裂是北京平原区内1条极为重要的隐伏活动断裂,同时也是1679年三河—平谷MS8.0地震的发震断层。为获取该断裂完整的古地震序列,主要开展了2方面工作:(1)以大胡庄探槽原始资料为基础,重新对探槽进行了解译,共识别出3个埋藏古土壤,6个崩积楔和1次砂土液化现象;(2)结合该断裂其它部位探槽揭示的古地震事件,通过对比各探槽标志性地层,建立不同探槽中古地震事件在同一时间轴上的联系,得到夏垫断裂完整的古地震序列。结果表明:距今31 ka以来,夏垫断裂共发生过11次古地震事件,古地震平均复发间隔约为2.8ka,但距今25~15 ka存在1个古地震丛集期,丛集期内共发生5次强震,平均复发间隔约为2.0 ka,反映出夏垫断裂活动性存在阶段性的差异。  相似文献   

4.
榆木山北缘断裂古地震特征研究   总被引:5,自引:0,他引:5       下载免费PDF全文
榆木山北缘断裂位于祁连山主体山系以北的榆木山北部边缘.断裂活动形成一系列沿山前发育的断层陡坎.通过探槽剖面对发生在该断裂带上的古地震事件进行了分析,大致可以确定全新世以来的2次古地震事件.事件Ⅰ的年代为距今(4.066±0.086)ka;事件Ⅱ为距今(6.852±0.102)ka至(6.107±0.082)ka之间.该...  相似文献   

5.
大凉山断裂带是中国大陆大型强震断裂带鲜水河-小江断裂系的重要组成部分,其中段的普雄断裂是断裂带中最长的1条次级断裂。该次级断裂的古地震活动情况对评价该区域地震活动水平和建立地震灾害预防措施具有重要意义。近年开展的活动断层填图和古地震探槽研究表明普雄断裂是1条晚更新世以来活动强烈的略向W倾的高角度左旋走滑断层。沿断裂开挖的2个探槽分别揭露了2次和3次古地震事件,分别发生在8206 BC—1172 AD、1084—1549 AD和17434—7557BC、1577—959 BC、927—1360 AD。结合探槽古地震结果和历史地震记载,进行建模分析得到断裂的离逝时间约为0.7ka,与距今倒数第2次事件的时间间隔约为2.3ka。同时,根据震级与地表破裂长度的经验公式估算古地震事件震级在7级以上。  相似文献   

6.
柯坪塔格断裂西段古地震初步研究   总被引:8,自引:1,他引:7       下载免费PDF全文
柯坪塔格断裂位于西南天山柯坪塔格推覆构造的最前缘,以皮羌断裂为界分成东西两段。在柯坪塔格断裂西段开挖了6个规模较大的探槽,6个探槽都揭露出断层,但其中3个探槽的古地震事件不清晰,另外3个探槽有古地震遗迹。通过分析研究,共确定了全新世以来的4次古地震事件:第1次古地震事件发生于距今约12ka,第2次事件发生于距今约8·6ka,第3次事件大致发生于距今约5ka,第4次事件发生于距今(1·73±0.15)ka以来,很可能是1961年西克尔6·8级地震。这4次古地震事件具有约3~5ka的准周期重复特征。天山南麓有5~6排推覆体,每排推覆体的前缘都发育活动逆断裂,它们向下收敛于寒武系底部的滑脱面,因此,天山南麓的地震破裂非常复杂,这4次古地震事件的震级、发震构造等问题都有待于今后的深入研究  相似文献   

7.
宁夏香山—天景山断裂带晚第四纪强震重复间隔的研究   总被引:18,自引:4,他引:18  
香山—天景山断裂带晚第四纪的活动性表现为东强西弱。通过开挖探槽,获得的古地震研究结果表明:在时间上晚更新世末期事件多而间隔短,全新世时间间隔相对加长;在空间上东段的全新世古地震事件多于西段,古地震震级也以东段为强。从断裂带东段全新世平均滑动速率求出的强震平均重复间隔为2000多年,小于古地震研究得到的时间间隔。  相似文献   

8.
断错地貌调查和探槽开挖是获取活动断裂多期活动重要的线索.介绍了龙门山中央断裂带北川县城及平武县平通镇的断层沟槽调查及龙门山前山断裂带绵竹县汉旺镇台地前缘探槽开挖获得的认识.调查结果表明,北川断层沟槽包括汶川地震在内至少存在3次断层活动事件;平通断层沟槽包括汶川地震在内至少存在两次以上断层活动事件;汉旺探槽揭示了2-3次古地震事件.在上述3个地点中,北川断层沟槽和汉旺探槽在汶川地震前的一次强震时间接近,分别为大于5.8ka和小于6.63ka,接近为6ka.由此也获取了在汶川地震前龙门山活动断裂带的一次强震活动中,中央断裂带和前山断裂带同时活动的证据.  相似文献   

9.
青海德令哈巴音郭勒河断裂带的新活动特征   总被引:3,自引:0,他引:3       下载免费PDF全文
在青海德令哈巴音郭勒河北侧山前冲洪积扇上新发现了一条长约60km的逆断裂带,属于本区NNW-NWW向的柴达木盆地北缘活动断裂系内的一条次级挤压构造。断裂在地貌上表现为明显的挤压逆冲断层陡坎,晚更新世晚期以来的平均垂直滑动速率为0.41±0.27mm/a。探槽剖面确定了三次古地震事件,其年代分别为距今约32.7±1.45ka、15.54±1.32ka和3.2±0.33ka。  相似文献   

10.
前人在山西交城断裂带上开挖过多个探槽,揭露出全新世3次古地震事件,但其研究结果尚不能确定该断裂带全新世活动段的北部边界.近期在该断裂带北端和中段又开挖了3个大型探槽,其中在阳曲县泥屯盆地西界开挖的龙王沟探槽,是一个由多个探槽组合成的大探槽,该探槽揭示的地层断错信息,将交城断裂带全新世活动的范围向北延伸了20km.另外2个大型探槽分别为交城断裂带中段瓦窑沟东侧台地前缘的瓦窑探槽与市儿口沟西侧T1阶地前缘的新民探槽.这3个大探槽均揭示出全新世中期(14C测年值为距今5 ~ 6ka)的垆土和淤泥层,以及多组平行分布的断面,所揭示的全新世3次古地震事件具有断错事件活动的同步性,可与前人探槽揭示的全新世断层活动事件相对比.3次断错活动时间分别距今3.06 ~3.53ka、5.32ka左右或6.14ka左右、8.36ka左右;3次事件的时间间隔分别为2.02 ~ 2.84ka和2.22 ~ 3.04ka.这些断错事件的同震垂直位移为1.5~4.7m,显示了7级以上地表破裂型的强震活动.最后讨论了探槽中14C测年样品的影响因素.  相似文献   

11.
Geomorphic study on Wjiahe segment of Serteng piedmont fault,Inner Mongolia is made.Throuth analysis of the available data in combination with the results of predecessors‘studies it can be obtained that average vertical displacement rate is 0.48-0.75mm/a along the Wujiahe segment since the late Pleistocene(14.450-22.340ka BP)and 0.56-0.88mm/s since the early-middle Holocene(5.570-8.830ka BP).Analyzing paleoseismic phenomena revealed in the excavated 5trenches in combination with the results of predecessors‘studies of paleoearthquakes on the fault,we determine five paleoseismic events on the Wujiahe segment of Serteng piedmont fault since 27.0ka BP and the recurrence interval to be about 4.300-4.400ka,A cluster of paleoearthquakes occurred probably during 8.000-9.000ka BP and two paleoeismic events in 10.000-20.000ka BP may be missed.A comparison between height of fault scarps and sum of displacement caused by paleoseismic events revealed in trenches,and recurrence interval of paleoseismic events obtained from average displacement rate along the fault and the disloca-tion by one event suggest that three paleoseismic events are absent in Alagaitu trench.Two paleoseismic events may be absent on the whole active fault segment.  相似文献   

12.
The Bolokenu-Aqikekuduk fault zone(B-A Fault)is a 1 000km long right-lateral strike-slip active fault in the Tianshan Mountains. Its late Quaternary activity characteristics are helpful to understand the role of active strike-slip faults in regional compressional strain distribution and orogenic processes in the continental compression environment, as well as seismic hazard assessment. In this paper, research on the paleoearthquakes is carried out by remote sensing image interpretation, field investigation, trench excavation and Quaternary dating in the Jinghe section of B-A Fault. In this paper, two trenches were excavated on in the pluvial fans of Fan2b in the bulge and Fan3a in the fault scarp. The markers such as different strata, cracks and colluvial wedges in the trenches are identified and the age of sedimentation is determined by means of OSL dating for different strata. Four most recent paleoearthquakes on the B-A Fault are revealed in trench TC1 and three most recent paleoearthquakes are revealed in trench TC2. Only the latest event was constrained by the OSL age among the three events revealed in the trench TC2. Therefore, when establishing the recurrence of the paleoearthquakes, we mainly rely on the paleoearthquake events in trench TC1, which are labeled E1-E4 from oldest to youngest, and their dates are constrained to the following time ranges: E1(19.4±2.5)~(19.0±2.5)ka BP, E2(18.6±1.4)~(17.3±1.4)ka BP, E3(12.2±1.2)~(6.6±0.8)ka BP, and E4 6.9~6.2ka BP, respectively. The earthquake recurrence intervals are(1.2±0.5)ka, (8.7±3.0)ka and(2.8±3)ka, respectively. According to the sedimentation rate of the stratum, it can be judged that there is a sedimentary discontinuity between the paleoearthquakes E2 and E3, and the paleoearthquake events between E2 and E3 may not be recorded by the stratum. Ignoring the sedimentary discontinuous strata and the earthquakes occurring during the sedimentary discontinuity, the earthquake recurrence interval of the Jinghe section of B-A Fault is ~1~3ka. This is consistent with the earthquake recurrence interval(~2ka)calculated from the slip rate and the minimum displacement. The elapsed time of the latest paleoearthquake recorded in the trench is ~6.9~6.2ka BP. The magnitude of the latest event defined by the single event displacement on the fault is ~MW7.4, and a longer earthquake elapsed time indicates the higher seismic risk of the B-A Fault.  相似文献   

13.
The Fodongmiao-Hongyazi Fault is a Holocene active thrust fault, belonging to the middle segment of northern Qilianshan overthrust fault zone, located in the northeastern edge of the Tibet plateau. The Hongyapu M7(1/4) earthquake in 1609 AD occurred on it. A few paleo-seismology studies were carried out on this fault zone. It was considered that four paleoearthquakes occurred on the Fodongmiao-Hongyazi Fault between(6.3±0.6) ka BP and(7.4±0.4) ka BP, in(4.3±0.3) ka BP, in(2.1±0.1) ka BP and in 1609 AD. The occurrences of the earthquakes suggested the quasi-periodic characteristic with a quasi-periodic recurrence interval between 1 600~2 500a(Institute of Geology, State Seismological Bureau, Lanzhou Institute of Seismology, State Seismological Bureau. 1993; Liu et al., 2014). There was no direct evidence for the Hongyapu M7(1/4) earthquake in 1609 AD from trench research in the previous studies. Great uncertainty exists because of the small number of the chronology data, as a few TL and OSL measurement data and several14 C data, and it was insufficient to deduce the exact recurrence interval for the paleoearthquakes. Five trenches were excavated and cleared up respectively in the eastern segment, middle segment and western segment along the Fodongmiao-Hongyazi Fault. After detail study on the trench profiles, the sedimentary characteristics, sequence relationship of the stratigraphical units, and fault-cuts in different stratigraphical units were revealed in these five trenches. Four paleoearthquakes in Holocene were distinguished from the five trenches, and geology evidences of the Hongyapu M7(1/4) earthquake in 1609 AD were also found. More accurate constraint of the occurring time of the paleo-earthquakes since Holocene on the Fodongmiao-Hongyazi Fault is provided by the progressive constraining method(Mao and Zhang, 1995), according to amounts of 14 C measurement data and OLS measurement data of the chronology samples from different stratigraphical units in the trenches. The first paleoevent, E4 occurred 10.6ka BP. The next event, E3 occurred about 7.1ka BP. The E2 occurred about 3.4ka BP. The last event, E1 is the Hongyapu M7(1/4) earthquake in 1609 AD. Abounds of proofs for the occurrences of the events of E1, E2 and E3 were found in the trench Tc1, trench Tc2, trench Tc4 and trench Tc3, located in the eastern, middle and western segments of the Fodongmiao-Hongyazi Fault accordingly. It's considered that the events E1, E2 and E3 may cause whole segment rupturing according to the proofs for these three events found together in individual trenches. The event E4 was only found in the trench Tc5 profile in the west of the Xiaoquan village in the eastern segment of the Fodongmiao-Hongyazi Fault. The earthquake rupture characteristics of this event can't be revealed before more detailed subsequent research. The time intervals among the four paleoearthquakes are ca 3.5ka, ca 3.7ka, and ca 3.0ka. The four events are characterized by ca 3.4ka quasi-periodic recurrence interval.  相似文献   

14.
The Xiaojiang fault zone is located in the southeastern margin of the Tibetan plateau, the boundary faults of Sichuan-Yunnan block and South China block. The largest historical earthquake in Yunnan Province, with magnitude 8 occurred on the western branch of the Xiaojiang Fault in Songming County, 1833. Research on the Late Quaternary surface deformation and strong earthquake rupture behavior on the Xiaojiang Fault is crucial to understand the future seismic risk of the fault zone and the Sichuan-Yunnan region, even crucial for the study of tectonic evolution of the southeastern margin of Tibetan plateau. We have some new understanding through several large trenches excavated on the western branch of the Xiaojiang fault zone. We excavated a large trench at Caohaizi and identified six paleoseismic events, named U through Z from the oldest to the youngest. Ages of these six events are constrained at 40000-36300BC, 35400-24800BC, 9500BC-500AD, 390-720AD, 1120-1620AD and 1750AD-present. The Ganhaizi trench revealed three paleoearthquakes, named GHZ-E1 to GHZ-E3 from the oldest to the youngest. Ages of the three events are constrained at 3300BC-400AD, 770-1120AD, 1460AD-present. The Dafendi trench revealed three paleoearthquakes, named E1 to E3 from the oldest to the youngest, and their ages are constrained at 22300-19600BC, 18820-18400BC, and 18250-present. Caohaizi and Ganhaizi trenches are excavated on the western branch of the Xiaojiang Fault, the distance between them is 400m. We constrained four late Holocene paleoearthquakes with progressive constraining method, which are respectively at 500-720AD, 770-1120AD, AD 1460-1620 and 1833AD, with an average recurrence interval of 370~440a. Large earthquake recurrence in the late Holocene is less than the recurrence interval of~900a as proposed in the previous studies. Thus, the seismic hazard on the Xiaojiang Fault should be reevaluated. We excavated a large trench at Dafendi, about 30km away south of Caohaizi trench. Combining with previous paleoseismological research, it is found that the western branch of Xiaojiang Fault was likely to be dominated by segmented rupturing in the period from late of Late Pleistocene to early and middle Holocene, while it was characterized by large earthquakes clustering and whole segment rupturing since late Holocene.  相似文献   

15.
刘兴旺  袁道阳  邵延秀  张波  柳煜 《地震》2019,39(3):1-10
玉门—北大河断裂是酒西盆地南侧的一条重要的活动断裂, 断裂西起青草湾, 向东经老玉门市、 青头山、 大红泉, 止于北大河以东骨头泉一带, 长约80 km, 走向北西西, 倾向南, 倾角20°~60°。 玉门—北大河断裂为一条全新世活动的逆冲断裂, 断裂东段保留了地震破裂带遗迹, 通过野外断错地貌调查和探槽开挖, 揭示该破裂带形成于距今1.7±0.3 ka, 此前断裂在4.1±0.3~5.4±0.3 ka及8.4±1.0 ka还有过2次古地震事件, 利用经验公式和已有震例估算, 每次地震震级约为M7。  相似文献   

16.
The northern piedmont fault of Wutai Mountain is located at the north of the Shanxi Graben system,which is the dominating fault of the south boundary of the Fanshi-Daixian depression. This paper discusses the fault activity and paleoearthquakes around the Nanyukou segment of the northern piedmont fault of Wutai Mountain during the late Quaternary through field investigation along the fault,measuring geomorphic deformation and excavating trenches at some important sites. From Nanyukou to the southwest of Shanhui,we find obviously dislocated alluvial fans,with strong neotectonic movement at these sites. Since nearly 20ka,the vertical average slip rate is 1. 55mm /a to 2. 0mm /a. However,since nearly 6ka,it has reached as high as 2. 3mm /a,which is twice that on other segments. 2 trenches were excavated around Nanyukou with 6 events discovered. The referenced ages of the events are before 7600a,6700a ~ 7600a,5321a ~ 5575a,4400a ~ 5400a,4200a ~ 4400a and after 1600a B. P. with approximate recurrence interval 1400a. The latest event is likely to be the earthquake occurring at 512 A. D. ,so it is necessary to do further work to verify this in the future.  相似文献   

17.
The Yuguang basin is a half-graben basin in the basin-range tectonic zone in northwest Beijing, located at the northern end of the Shanxi graben system, and the Yuguang basin southern marginal fault (YBSMF) controls the formation of this basin. A linear fault escarpment has formed in the proluvial fan on the piedmont fault zone of the Tangshankou segment of YBSMF. A trench across this escarpment reveals three paleo-earthquake events on two active faults. One fault ruptured at about 9ka for the first time, and then faulted again at about 7.3ka, causing the formation and synchronous activity of another fault. Finally, they faulted for the third time, but we cannot determine the faulting time due to the lack of relevant surface deposition. The accumulative vertical displacement of these three events is about 8.1m. We estimate that the average recurrence period of the piedmont fault is about 1.7ka, and the average slip rate of the piedmont fault is about 1.6mm/a. We also estimate the reference magnitude of each event according to the empirical formula.  相似文献   

18.
The Langshan range-front fault (LRF)is a Holocene active normal fault that bounds the Langshan Mountain and Hetao Basin at the northwest corner of the Ordos Plateau. Paleoseismic trenching research at three sites, Dongshen Village trench (TC1), Qingshan trench (TC2)and Wulanhashao trench (TC3)from north to south was performed in this study to reveal the seismic hazard risk in Hetao Basin. The paleoevents ED1, ED2, ED3 from TC1 can be constrained to have occurred (6±1.3)ka, (9.6±2)ka and (19.7±4.2)ka respectively, while the paleoevent EQ1 from TC2 occurred about (6.7±0.1)ka and the paleoevents EW1, EW2, EW3 at TC3 took place about (2.3±0.4)ka, (6±1)ka and before 7ka respectively. In combination with paleoseismic results of previous researchers, the Holocene earthquake sequence of the LRF could be established as 2.3~2.43ka BP (E1), 4.41~3.06ka BP (E2), 6.71~6.8ka BP (E3), 7.6~9.81ka BP (E4), and (19.7±4.2)ka BP (E5). Although the possibility of missing events cannot totally be ruled out, based on the analysis on faulted geomorphology at Wulanhashao site, we argue the paleoearthquake history of the LRF during Holocene may be complete with an average recurrent interval about 2500 yrs. The apparent displacements associated with events E1, E3 and E4 are significantly larger than that of event, E2, that suggests that they might be great events with magnitudes 7.5 to even over 8 that ruptured the entire LRF, while the event E2 may be a smaller event that only ruptured a segment of the fault. The magnitude of event E2 might be about M7. This poses a significant seismic hazard to the area of the Linhe depression in the western Hetao graben region. With the further limitation of previous radiocarbon dating result near our trench site at Wulanhashao, the slip rate at Wulanhashao should be not smaller than, but close to 0.66mm/a since 15ka BP. And the slip rate at Qingshan site is supposed to be about 1.4~1.6mm/a since 6.8ka BP. Both our combined most recent paleoseismic cognition and current tectonic geomorphologic research results supports to reveal that the Langshan range-front fault now is an unsegmented fault, preferring to rupture the whole fault in a surface-rupture event. Considering the most recent event E1 and fault slip rate obtained above, the accumulated strain on the LRF could be estimated as about 1.52~3.94m. Given the ~2500a recurrent interval, we argue that the elapsed time since last major quake, E1, is approaching or even over the recurrence, and the seismic risk for another major quake is imminent, at least cannot be ignored.  相似文献   

19.
The Yumen Fault lies on the west segment of the north Qilian Fault belt and adjacent to the Altyn-Tagh Fault,in the north margin of the Tibet Plateau.The tectonic location of the Yumen fault is special,and the fault is the evidence of recent activity of the northward growth of Tibetan plateau.In recent twenty years,many researches show the activity of the Yumen Fault became stronger from the early Pleistocene to the Holocene.Because the Yumen Fault is a new active fault and fold belt in the Qilian orogenic belt in the north margin of the Tibet Plateau,it is important to ascertain its slip rate and the recurrence interval of paleoearthquakes since the Late Pleistocene.Using the satellite image interpretation of the Beida river terrace,the GPS measurement of alluvial fans in front of the Yumen Fault and the trench excavation on the fault scarps,two conclusions are obtained in this paper.(1) The vertical slip rate of the Yumen Fault is about 0.41~0.48mm/a in the Holocene and about 0.24~0.30mm/a in the last stage of the late Pleistocene.(2) Since the Holocene epoch,four paleoearthquakes,which happened respectively in 6.12~10.53ka,3.6~5.38ka,1.64~1.93ka and 0.63~1.64ka,ruptured the surface scarps of the Yumen Fault.Overall,the recurrence interval of the paleoseismic events shortens gradually and the activity of the Yumen Fault becomes stronger since the Holocene.Anther characteristic is that every paleoearthquake probably ruptured multiple fault scarps at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号