首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
R. W. RENAUT 《Sedimentology》1993,40(2):271-301
Late Quaternary fluviolacustrine siltstones, mudstones and claystones (Loboi Silts) on the northern margins of the saline, alkaline Lake Bogoria in the Kenya Rift Valley contain up to c. 40% authigenic analcime and minor natrolite. The zeolitic sediments are reddish brown and up to 1 m thick. The amount of analcime increases upward in the profile, but decreases with distance from the lake. The altered sediments show many pedogenic features including zeolitic root mats, rootmarks, concretions and carbonate rhizoliths. Residual patches of calcrete locally cap the zeolitic rocks. The profile is interpreted as an exhumed palaeosol and land surface on the former margins of the lake. The analcime occurs as submicroscopic (0–5–2–5 μ.m) subhedral and euhedral crystals, which have an average Si/A 1 ratio of 2–33 (as determined by X-ray microanalysis) or 2–18 (d-value of 639 analcime peak). The analcime formed in lake marginal sediments (soils) by reaction of silicate detritus with Na2CO3 rich pore waters concentrated close to the land surface by evaporative pumping and evapotranspiration. Poorly ordered clay minerals were probably the main reactants. Authigenic illite may have been a by-product of the reactions. Chemical analyses suggest that pore waters supplied some of Na+, and possibly K+ and SiO2. The associated calcrete and rhizoliths were formed during or shortly after the main period of zeolitic alteration. The Ca2+ may have originated from infiltrating dilute runoff and groundwater. Authigenic smectite was precipitated in open porosity following analcime formation. The zeolitic alteration at Lake Bogoria provides a relatively recent analogue for lake marginal zeolites found in many ancient saline, alkaline lake sediments.  相似文献   

2.
The dissolved silica concentration in waters of Lake Superior probably is in a steady state because it is not influenced significantly by man, and the climate, topography and vegetation in the drainage area of the lake have been stable for the past 4000 years. Therefore the rate at which dissolved silica is introduced to the lake should equal the output rate.The primary inputs are: tributaries (4.1–4.6 × 108kgSiO2/yr), diffusion from sediment pore waters (0.21?0.78 × 108kgSiO2/yr) and atmospheric loading (0.26 × 108kgSiO2/yr). Silica is lost from the lake waters by: outflow through the St. Marys River, diatom deposition, adsorption onto particulates in the sediments, and authigenic formation of new silicate minerals. Tributary outflow accounts for less than one half the annual input of silica, and diatom deposition and silica adsorption withdraw less than 10% of the annual input. Therefore the formation of new silicate phases must be the dominant sink for dissolved silica in Lake Superior. The specific phases formed are not identified in the bottom sediments. X-ray diffraction studies suggest that smectite is one product, and amorphous ferroaluminum silicates may be another product.Mathematical modeling of the dissolved silica response to lake eutrophication suggests that the phosphate loading to Lake Superior would have to increase by about 250-fold to cause a silica depletion rate equal to that reported for Lake Michigan, assuming no change in the rate of upwelling of deep waters.  相似文献   

3.
From June 2004 to December 2004, Lake Dianchi, which had large scale of cyanobacterial blooms was investigated in order to study P-fractionation in the suspended matter and the sediment. The investigation improves our understanding of phosphorus in Lake Dianchi and the relationship between phosphorus and cyanobacterial blooms. It contributes to the available literature on the behavior of P in hypertrophic lakes. The distribution of P-fractions in Lake Dianchi was not uniform from northwest to south, but was closely related to the trophic status of the whole lake. The concentrations of total phosphorus, labile P (NH4Cl-P), Organic P (NaOH-NRP) and loss on ignition in suspended matter were positively correlated with the strength of cyanobacterial blooms. Total phosphorus in suspended matter was relatively stable for almost half an year and closely related to Chl. a concentration. The main content of organic phosphorus is in the cyanobacterial blooms. The concentrations of phosphorus bound to metal oxides and carbonates (NaOH-SRP and HCl-P) in sediment were similar to NaOH-SRP and HCl-P in the corresponding suspended matter. The latter two forms of P in suspended matter were not affected by cyanobacterial blooms, indicating that the inorganic phosphorus is derived from the sediment after resuspension from the sediment due to wind and wave action. The contribution of the different P-fractions to TP in sediment and in suspended matter indicates that NH4Cl-P in the suspended matter is an important buffer for maintaining dissolved phosphorus in water.  相似文献   

4.
The global carbon cycle, one of the important biogeochemical cycles controlling the surface environment of the Earth, has been greatly affected by human activity. Anthropogenic nutrient loading from urban sewage and agricultural runoff has caused eutrophication of aquatic systems. The impact of this eutrophication and consequent photosynthetic activity on CO2 exchange between freshwater systems and the atmosphere is unclear. In this study, we focused on how nutrient loading to lakes affects their carbonate system. Here, we report results of surveys of lakes in Japan at different stages of eutrophication. Alkalization due to photosynthetic activity and decreases in PCO2 had occurred in eutrophic lakes (e.g., Lake Kasumigaura), whereas in an acidotrophic lake (Lake Inawashiro) that was impacted by volcanic hot springs, nutrient loading was changing the pH and carbon cycling. When the influence of volcanic activity was stronger in the past in Lake Inawashiro, precipitation of volcanic-derived iron and aluminum had removed nutrients by co-precipitation. During the last three decades, volcanic activity has weakened and the lake water has become alkalized. We inferred that this rapid alkalization did not result just from the reduction in acid inputs but was also strongly affected by increased photosynthetic activity during this period. Human activities affect many lakes in the world. These lakes may play an important part in the global carbon cycle through their influence on CO2 exchange between freshwater and the atmosphere. Biogeochemical changes and processes in these systems have important implications for future changes in aquatic carbonate systems on land.  相似文献   

5.
Perennial ice covers on many Antarctic lakes have resulted in high lake inorganic carbon contents. The objective of this paper was to evaluate and compare the brine and CO2 chemistries of Lake Vida (Victoria Valley) and West Lake Bonney (Taylor Valley), two lakes of the McMurdo Dry Valleys (East Antarctica), and their potential consequences during global warming. An existing geochemical model (FREZCHEM-15) was used to convert measured molarity into molality needed for the FREZCHEM model, and this model added a new algorithm that converts measured DIC into carbonate alkalinity needed for the FREZCHEM model. While quite extensive geochemical information exists for ice-covered Taylor Valley lakes, such as West Lake Bonney, only limited information exists for the recently sampled brine of >25 m ice-thick Lake Vida. Lake Vida brine had a model-calculated pCO2 = 0.60 bars at the field pH (6.20); West Lake Bonney had a model-calculated pCO2 = 5.23 bars at the field pH (5.46). Despite the high degree of atmospheric CO2 supersaturation in West Lake Bonney, it remains significantly undersaturated with the gas hydrate, CO2·6H2O, unless these gas hydrates are deep in the sediment layer or are metastable having formed under colder temperatures or greater pressures. Because of lower temperatures, Lake Vida could start forming CO2·6H2O at lower pCO2 values than West Lake Bonney; but both lakes are significantly undersaturated with the gas hydrate, CO2·6H2O. For both lakes, simulation of global warming from current subzero temperatures (?13.4 °C in Lake Vida and ?4.7 °C in West Lake Bonney) to 10 °C has shown that a major loss of solution-phase carbon as CO2 gases and carbonate minerals occurred when the temperatures rose above 0 °C and perennial ice covers would disappear. How important these Antarctic CO2 sources will be for future global warming remains to be seen. But a recent paper has shown that methane increased in atmospheric concentration due to deglaciation about 10,000 years ago. So, CO2 release from ice lakes might contribute to atmospheric gases in the future.  相似文献   

6.
Deltaic environments are commonly assumed to be relatively minor sites of biogenic silica burial because of the small quantities of opaline silica detected by most operational analytical techniques. Rapid conversion of biogenic silica into authigenic silicates is also often discounted as a significant control on oceanic silica budgets. A variety of evidence for extensive early diagenetic alteration of biogenic silica in rapidly accumulating Amazon delta sediments indicates that both of these general assumptions are unjustified. Apparent lack of significant biogenic silica storage in deltaic environments, particularly in the tropics, may be largely an artifact of operational definitions that do not include early diagenetic products of biogenic silica. Biogenic silica particles buried in suboxic Amazon delta deposits can be unaltered, partially dissolved, covered with aluminosilicate or metal-rich coatings, or completely reconstituted into authigenic K-Fe-rich aluminosilicate minerals. Pore water (K, Mg, F, Si) and solid-phase distributions, direct observations of particles, laboratory experiments, and depositional context indicate that authigenic clays form rapidly (<1 yr) in the seasonally reworked surface layer (∼ 0.5-2 m) of the delta topset and are disseminated during sediment remobilization. Fe, Al-oxide rich debris derived from the tropical drainage basin is an abundant reactant, and thus the supply of biogenic silica is a major control on the amount of clay formed.The mild 1% Na2CO3 alkaline leach procedure commonly used to estimate biogenic silica was modified to include an initial mild leach step with 0.1N HCl to remove metal oxide coatings and to activate poorly crystalline authigenic phases for alkaline dissolution. Well-crystallized clays are not significantly affected by this modification nor is bulk Amazon River bed sediment. The two-step procedure indicates that ∼90% of the biogenic silica originally present in deposits is converted to clay or otherwise altered, raising the effective quantity of biogenic silica stored from ∼33 to ∼296 μmol Si g−1 (∼1.8% SiO2). Biogenic Si stored in the delta increases away from the river mouth, across shelf and along the dispersal system where primary production is highest. The K/Si ratio of labile authigenic material is ∼0.19 mol mol−1, far higher than Amazon River suspended matter (∼0.07 mol mol−1). Diagenetic models indicate formation rates in the mobile sediment layer of ∼2.8 μmol K g−1 yr−1 (∼16 μmol Si g−1 yr−1). Inclusion of authigenic alteration products of biogenic silica in estimates of reactive Si burial increases the deltaic storage of riverine Si to ∼22% of the Amazon River input. The rapid formation of aluminosilicates from biogenic SiO2, seawater solutes, and remobilized Fe, Al-oxides represents a form of reverse weathering. Rapid reverse weathering reactions in tropical muds and deltaic deposits, the largest sediment depocenters on Earth, confirms the general importance of these processes in oceanic elemental cycles.  相似文献   

7.
8.
Holocene stromatolites are described from Lake Walyungup, a coastal hyposaline lake in south-western Australia. At summer low water, this groundwater-fed depression comprises two permanent shallow water bodies and an ephemeral southern pool, set within an areally extensive littoral zone of variably cemented carbonate crust. Up to 5 m of organic-rich carbonate mud has been deposited within each of these basins in less than 7000 years. Stromatolites rim the water bodies with individual columns up to 2 m tall. Stromatolite-capped tepee structures in subparallel alignment are widespread in the littoral crust, suggesting a linkage between stromatolite growth and zones of groundwater discharge. Lake Walyungup stromatolites, regardless of external morphology and setting, are coarsely laminated and have aragonitic mesoclot microfabrics. These microfabrics are similar to those from lithified portions of active thrombolitic microbialites from nearby Lake Clifton. Hydromagnesite is a minor to subdominant phase (up to 47 wt%) of the carbonate mineral assemblage in Lake Walyungup. It occurs mainly in the littoral zone as a diagenetic replacement of precursor aragonite, particularly within the mesoclot fabric of stromatolites, but also in sediments (strandline and dune sand, crusts) derived mainly from erosion of stromatolites. In contrast with nonreplaced and impermeable inorganic aragonitic cements, stromatolite mesoclots are microper- meable. Micropermeability is inferred to facilitate hydromagnesite diagenesis. Dolomite is also present in minor amounts as a pore fill in stromatolites, and as a subdominant to dominant (up to 100 wt%) phase in thin, mudcracked micrite layers within the crust package. The layered dolomite may be precipitated directly from the lake water. Major element abundance of the lake water is: Na+ > Mg2+ » K+ > Ca2+ for cations, and Cl? » SO42? ≈ HCO3? > CO32? for anions. Compared to other nearby coastal lakes, Lake Walyungup has a high pH (> 9·0), and an extremely high molar Mg/Ca ratio of > 90. Groundwater in the area has a Mg/Ca ratio generally less than 1. The unusual Mg/Ca ratio in Lake Walyungup is partially a result of in-lake processes with additional minor contribution of Mg2+ sourced from basal marine sand because no Mg-rich bedrock source has been found in the region.  相似文献   

9.
Dianchi Lake is one of the lakes with the richest phosphorus source in the world, in which the P2O5 content in the bottom sediments reaches averagely 0.51 wt % and maximally 1.92%. Studies indicate that this: extremely P-rich state is attributed mainly to the large volume (as high as hundred thousands of tons) of phosphatic matter coming into the lake as many rivers feeding the lake pass through a vast area of phosphate-mining districts, which then undergo weathering and particularly some human activities, including waste water discharge. When phosphatic matter enters the lake, its grained parts are firstly decomposed by phosphorus-decomposing bacteria, and finally accumulated in some geographically special parts of the lake, such as a bay area where water flow is much more slower than elsewhere in the lake. With the involvement of phosphorus-concentrating bacteria, the accumulated phosphates in the bottom sludge ultimately form phosphate minerals through deep-burial diagenesis.  相似文献   

10.
Saline alkaline lakes that precipitate sodium carbonate evaporites are most common in volcanic terrains in semi‐arid environments. Processes that lead to trona precipitation are poorly understood compared to those in sulphate‐dominated and chloride‐dominated lake brines. Nasikie Engida (Little Magadi) in the southern Kenya Rift shows the initial stages of soda evaporite formation. This small shallow (<2 m deep; 7 km long) lake is recharged by alkaline hot springs and seasonal runoff but unlike neighbouring Lake Magadi is perennial. This study aims to understand modern sedimentary and geochemical processes in Nasikie Engida and to assess the importance of geothermal fluids in evaporite formation. Perennial hot‐spring inflow waters along the northern shoreline evaporate and become saturated with respect to nahcolite and trona, which precipitate in the southern part of the lake, up to 6 km from the hot springs. Nahcolite (NaHCO3) forms bladed crystals that nucleate on the lake floor. Trona (Na2CO3·NaHCO3·2H2O) precipitates from more concentrated brines as rafts and as bottom‐nucleated shrubs of acicular crystals that coalesce laterally to form bedded trona. Many processes modify the fluid composition as it evolves. Silica is removed as gels and by early diagenetic reactions and diatoms. Sulphate is depleted by bacterial reduction. Potassium and chloride, of moderate concentration, remain conservative in the brine. Clastic sedimentation is relatively minor because of the predominant hydrothermal inflow. Nahcolite precipitates when and where pCO2 is high, notably near sublacustrine spring discharge. Results from Nasikie Engida show that hot spring discharge has maintained the lake for at least 2 kyr, and that the evaporite formation is strongly influenced by local discharge of carbon dioxide. Brine evolution and evaporite deposition at Nasikie Engida help to explain conditions under which ancient sodium carbonate evaporites formed, including those in other East African rift basins, the Eocene Green River Formation (western USA), and elsewhere.  相似文献   

11.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (?1‰ to ?2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (?7‰ to ?8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between ?1‰ and ?5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg–calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg–calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

12.
The carbon cycle of global inland waters is quantitatively comparable to other components in the global carbon budget. Among inland waters, a significant part is man-made lakes formed by damming rivers. Man-made lakes are undergoing a rapid increase in number and size. Human impacts and frequent algae blooms lead to it necessary to make a better constraint on their carbon cycles. Here, we make a primary estimation on the air–water CO2 transfer flux through an algae bloom year for a subtropical man-made lake—Hongfeng Lake, Southwest China. To do this a new type of glass bottles was designed for content and isotopic analysis of DIC and other environmental parameters. At the early stage of algae bloom, CO2 was transferred from the atmosphere to the lake with a net flux of 1.770 g·C·m?2. Later, the partial pressure (pCO2) of the aqueous CO2 increased rapidly and the lake outgassed to the atmosphere with a net flux of 95.727 g·C·m?2. In the remaining days, the lake again took up CO2 from the atmosphere with a net flux of 14.804 g·C·m?2. As a whole, Lake Hongfeng released 4527 t C to the atmosphere, accounting for one-third of the atmosphere/soil CO2 sequestered by chemical weathering in the whole drainage. With an empirical mode decomposition method, we found air temperature plays a major role in controlling water temperature, aqueous pCO2 and hence CO2 flux. This work indicates a necessity to make detailed and comprehensive carbon budgets in man-made lakes.  相似文献   

13.
The oxygen isotopic composition of carbonate in lakes has been used as a useful indicator in Palaeolimnological research, and has made some important contributions to our understanding of lacustrine systems. For modern lakes in arid or cold areas, however, there are few data available to test the effect of lake salinity and temperature on the oxygen isotopic composition of various carbonate sources such as ostracod, bulk carbonate, and fine-grained carbonate (< 60 μm). Here we examined the oxygen isotopic composition of ostracods, bulk carbonate, and fine-grained carbonates, as well as that of coexisting water from Lake Qinghai and the smaller surrounding lakes and ponds on the Qinghai–Tibet Plateau. Our investigation highlights three key effects. First, the oxygen isotopic composition of ostracods, bulk carbonate, and fine-grained carbonate in the lakes and ponds shows a clear response to lake water δ18O values, and these vary with water salinity. The relationship between lake water δ18O and salinity is not only dominated by the evaporation/freshwater input ratios, but is also controlled by the distance to the mouth of the major rivers supplying to the lake. Second, the ostracod, bulk carbonate, and fine-grained carbonate show similar isotopic change trends in the study area, and oxygen isotopic differences between ostracods and authigenic carbonate may be explained by the different water temperatures and very small ‘vital offsets’ of ostracods. Finally, the effect of water depth on temperature leads to increasing δ18O values in carbonates as water depth increases, both in benthic ostracods living on the lake bottom, as well as in bulk carbonate precipitated at the water surface.For arid, high-altitude Lake Qinghai, our results suggest that variations in the δ18O values of carbonate in Lake Qinghai are mainly controlled by the oxygen-isotope ratio of the lake water changing with water salinity. As a secondary effect, increasing water depth leads to cooler bottom and surface water, which may result in more positive δ18O values of ostracod and bulk carbonate.  相似文献   

14.
The authors have carried out scientific investigations of salt lakes on the Qinghai-Tibet Plateau since 1956 and collected 550 hydrochemical data from various types of salt lakes. On that basis, combined with the tectonic characteristics of the plateau, the hydrochemical characteristics of the salt lakes of the plateau are discussed. The salinity of the lakes of the plateau is closely related to the natural environment of lake evolution, especially the climatic conditions. According to the available data and interpretation of satellite images, the salinity of the lakes of the plateau has a general trend of decreasing from north and northwest to south and southeast, broadly showing synchronous variations with the annual precipitation and aridity (annual evaporation/annual precipitation) of the modern plateau. The pH values of the plateau salt lakes are related to both hydrochemical types and salinities of the lake waters, i.e., the pH values tend to decrease from the carbonate type → sodium sulfate subtype → magnesium sulfate subtype → chloride type; on the other hand, a negative correlation is observed between the pH and salinities of the lakes. Geoscientists and biological limnologists generally use main ions in salt lakes as the basis for the hydrochemical classification of salt lakes. The common ions in salt lakes are Ca2+, Mg2+, Na+, K+, Cl? SO4 2?, CO3 2?, and HCO3 ?. In this paper, the Kurnakov-Valyashko classification is used to divide the salt lakes into the chloride type, magnesium sulfate subtype, sodium sulfate subtype and carbonate type, and then according to different total alkalinities (K C = Na2CO3 + NaHCO3/total salt × 100%) and different saline mineral assemblages, the carbonate type is further divided into three subtypes, namely, strong carbonate subtype, moderate carbonate subtype and weak carbonate subtypes. According to the aforesaid hydrochemical classifications, a complete and meticulous hydrochemical classification of the salt lakes of the plateau has been made and then a clear understanding of the characteristics of N–S hydrochemical zoning and E-W hydrochemical differentiation has been obtained. The plateau is divided into four zones and one area. There is a genetic association between certain saline minerals and specific salt lake hydrochemical types: the representative mineral assemblages of the carbonate type of salt lake is borax (tincalconite) and borax-zabuyelite (L2CO3) and alkali carbonate-mirabilite; the representative mineral assemblages of the sodium sulfate subtype are mirabilite (thenardite)-halite and magnesium borate (kurnakovite, inderite etc.)-ulexite-mirabilite; the representative mineral assemblages of the magnesium sulfate subtype are magnesium sulfate (epsomite, bloedite)-halite, magnesium borate-mirabilite, and mirabilite-schoenite-halite, as well as large amount of gypsum; The representative mineral assemblages of the chloride type are carnallite-bischofite-halite and carnallite-halite, with antarcticite in a few individual salt lakes. The above-mentioned salt lake mineral assemblages of various types on the plateau have features of cold-phase assemblages. Mirabilite and its associated cold-phase saline minerals are important indicators for the study of paleoclimate changes of the plateau. A total of 59 elements have been detected in lake waters of the plateau now, of which the concentrations of Na, K, Mg, Ca, and Cl, and SO4 2?, CO3 2?, and HCO3 ? ions are highest, but, compared with the hydrochemical compositions of other salt lake regions, the plateau salt lakes, especially those in the southern Qiangtang carbonate type subzone (I2), contain high concentrations of Li, B, K, Cs, and Rb, and there are also As, U, Th, Br, Sr, and Nd positive anomalies in some lakes. In the plateau lake waters, B is intimately associated with Li, Cs, K and Rb and its concentration shows a general positive correlation with increasing salinity of the lake waters. The highest positive anomalies of B, Li, Cs, and K center on the Ngangla Ringco Lake area in the western segment of the southern Qiangtang carbonate type subzone (I2) and coincide with Miocene volcanic-sedimentary rocks and high-value areas of B, Li, and Cs of the plateau. This strongly demonstrates that special elements such as B, Li, and Cs on the plateau were related to deep sources. Based on recent voluminous geophysical study and geochemical study of volcanic rocks, their origin had close genetic relation to anatectic magmatism resulting from India–Eurasia continent–continent collision, and B–Li (-Ce) salt lakes in the Cordillera Plateau of South America just originated on active continental margins, both of which indicate that global specific tectonically active belts are the main cause for the high abundances of B, Li, and Cs (K and Rb) in natural water and mineralization of these elements.  相似文献   

15.
Two lakes, Lake Gänseweiher (LGW) and Lake Fechenheimer Weiher (LFW) occupy groundwater filled abandoned gravel pits which serve as fishing grounds and are part of recreational areas, respectively.Both lakes are cut into a near-surface groundwater aquifer, which is located in the pleistocene River Main gravel terrace t6. They are sealed at the base by miocene clays and above by overlying flood deposits of the River Main. The latter provide protection from pollutants derived from wet and dry deposition of atmospheric contaminants.Groundwater chemistry determines the pool of dissolved constituents in lake water. The temporal and spatial distribution patterns of chemical compounds in lake water are brought about by endo-biogenic processes, of which the indicators are nitrate-nitrogen and dissolved silica. The latter illustrates an instantaneous response to pulses of diatom blooms.Both lakes are eutrophic (polytrophic) according to the classification guidelines presented in literature.  相似文献   

16.
This paper gives an account of the implementation of hydrochemical and isotopic techniques to identify and explain the processes that govern solute exchange in two groundwater-dependent shallow lakes in the Southeastern Pampa Plain of Argentina. Water samples (lakes, streams, spring water and groundwater) for hydrochemical and stable isotopic determination were collected and the main physical–chemical parameters were measured. The combination of stable isotope data with hydrogeochemical techniques was used for the identification of sources and preferential recharge areas to these aquatic ecosystems which allowed the explanation of the lake water origin. The hydrochemical processes which explain Los Padres Lake water chemistry are evaporation from groundwater, CO2 input, calcite dissolution, Na+ release by Ca2+ and Mg2+ exchange, and sulfate reduction. The model that best aligns with La Brava Lake hydrochemical constraints includes: mixing, CO2 and calcite dissolution, cationic exchange with Na+ release and Mg2+ adsorption, and to a lesser extent, Ca/Na exchange. This model suggests that the fractured aquifer contribution to this water body is greater than 50 %. An isotopic-specific fingerprint for each lake was identified, finding a higher evaporation rate for La Brava Lake compared to Los Padres Lake. Isotopic data demonstrate the importance of these shallow lakes as recharge areas to the regional aquifer, becoming areas of high groundwater vulnerability. The Tandilia Range System, considered in many hydrogeological studies as the impermeable bedrock of the Pampean aquifer, acts as a fissured aquifer in this area, contributing to low salinity waters and with a fingerprint similar to groundwater isotopic composition.  相似文献   

17.
The characteristics and formation mechanism of calcite cements in the tight sandstone of the Jurassic Lianggaoshan Formation in the northeastern Central Sichuan Basin were analysed using petrographic and isotopic techniques. In the tight sandstone of the Lianggaoshan Formation, cements are mostly calcite and occur as poikilitic, pore-filling, fracture-filling and replacement of clastic particles. Contents of Al, Si, Fe and Mn in the poikilitic calcites are significantly less than that in the dissolution pore-filling and metasomatic calcites. Three stages (early, middle and late) of authigenic calcites correspond to temperature ranges of <60, 60–100 and ≥100?°C, respectively, with most calcite cements formed under lower temperature (<100?°C) conditions. The δ18O values of the early–middle authigenic calcites are in equilibrium with connate water, and the δ18O values of late calcites are depleted in 18O indicating equilibrium at higher temperatures. The early authigenic calcites precipitated in a relatively open system associated with CO2 from bacterial fermentation at an immature to low-mature stage, and a Ca2+- and alkaline-rich environment owing to hydration–hydrolysis and dissolution of silicate minerals during phase A of eodiagenesis. The middle–late authigenic calcites precipitated in a relatively closed system with CO2 from decarboxylation of organic acids and Ca2+ from dissolution of silicate minerals and transformation of clay minerals during phase B of eodiagenesis to mesodiagenesis. Calcite cements mainly occur in the medium and fine sandstones of sand flats and beach bars. Authigenic calcite dissolution is extremely weak, and calcite cementation is pore-space destructive.  相似文献   

18.
The Lake Chany complex and nearby lakes in western Siberia (Russian Federation) were studied to constrain the S cycle in these terrestrial lake environments. Surface water chemistry was characterized by Na–SO4–Cl composition, comparable to other inland basins in semi-arid climatic zones associated with marine evaporite-bearing formations at depth. Dissolved sulfates showed elevated δ34S (up to +32.3‰). These values are quite distinct from those in similar saline lakes in northern Kazakhstan, the Aral Sea, Lake Barhashi, and a gypsum deposit in the Altai Mountains. The localized distribution of such a unique S isotopic signature in dissolved SO4 negates both aeolian and catastrophic flooding hypotheses previously suggested for the genesis of the dissolved salts. The probable source of the dissolved SO4 in Lake Chany basin is inherited from hidden saline groundwaters (whose location and origins remain unclear) from eastern Paleozoic ranges with Upper Devonian formations with heavy S isotope values. Post-depositional enrichment of heavy S in the dissolved SO4 from saline sediments may be caused by local activity of SO4-reducing bacteria under the ambient supply of electron donors (dissolved river load organic matter and decaying bacterial mats) in the lake complex. Such microbial processes can remove up to ca. 60% of SO4 from the system. Extensive and intensive evaporation of lake fluids, ca. 40%, was indicated by the progressive enrichment of δ18O values in meteoric water samples collected along the river and lake system. This evaporation process compensates the microbial loss of SO4 dissolved in the incoming river water.  相似文献   

19.
湖泊沉积物是不同地质、气候、水文条件下各类碎屑、黏土、自生/生物成因矿物以及有机物质等的综合体。沉积矿物蕴含着丰富区域和全球环境演变信息,如湖水的化学组成、流域构造、气候、水文以及人类活动的相互作用等。相关信息可以赋存在矿物外部微形貌、内部微结构、化学组成、物理和化学性质、同位素组成、谱学特征、成因以及共生组合等方面。因此,湖泊科学的许多关键课题都离不开矿物学,特别是在利用湖泊沉积物进行区域及过去全球变化研究中,深入的机理研究归根到底都要涉及矿物学,如流域化学风化作用、粒度组成、生物壳体化学组成、测年材料的选择等。然而,由于湖泊沉积物中矿物的多源性、复杂性,如何有效提取和解译其中的环境信息,是一项长期困扰研究者的课题,湖泊沉积矿物学的研究往往被许多研究者所忽视,中国的相关研究也较为薄弱。笔者综述了湖泊沉积物中碎屑、黏土、自生/生物矿物的矿物组合、特征、成因在(古)环境反演中的作用及最新研究进展,提出除了继续加强对湖泊沉积物中矿物来源、成因和古环境示踪的深入研究以外,矿物相间的转变及其对湖水和孔隙水组成的响应、一些非晶质或隐晶质及低丰度矿物相在湖泊化学和动力学中的作用也是很有潜力的研究领域,最后提出了研究中存在的一些问题、面对的挑战以及对研究前景的展望。  相似文献   

20.
The Coniacian Arnager Limestone Formation is exposed on the Danish island of Bornholm in the Baltic Sea. It is composed of mound-bedded siliceous chalk, and X-ray diffraction and scanning electron microscopy indicate a content of 30–70% insoluble minerals, including authigenic opal-CT, quartz, clinoptilolite, feldspars, calcite, dolomite, and barite. Opal-CT and clinoptilolite are the most common and constitute 16–53% and 2–9%, respectively. The content of insoluble minerals varies laterally both within the mounds and in planar beds, and the opal-CT content varies by up to 10% vertically. The mounds consist of two microfacies, spiculitic wackestone and bioturbated spiculitic wackestone, containing 10–22% and 7–12% moulds after spicules, respectively.Subsequent to deposition and shallow burial, dissolution of siliceous sponge spicules increased the silica activity of the pore water and initiated precipitation of opal-CT. The opal-CT formed at temperatures around 17 °C, the precipitation lowered the silica activity and the Si/Al ratio of the pore water, resulting in precipitation of clinoptilolite, feldspar and smectite. Calcite formed synchronously with the latest clinoptilolite. Minor amounts of quartz precipitated in pore water with low silica activity during maximum burial, probably to depths of 200–250 m. The dissolution of sponge spicules and decomposition of the sponge tissue also resulted in the release of Ba2+, Sr2+, Mg2+, Ca2+ and CO32?, facilitating precipitation of barite and dolomite. Precipitation of especially opal-CT reduced the porosity to an average of 40% and cemented the limestone. The study highlights the diagenetic pathways of bio-siliceous chalk and the effects on preservation of porosity and permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号