首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
含U副矿物的原位微区U-Pb定年方法   总被引:3,自引:0,他引:3  
同位素地质年代学是解决地质体时、空演化及大陆动力学等地学研究的基础,而副矿物U-Pb年代学是常用的定年方法之一。含U副矿物广泛分布于各种类型的岩石中,其U[CD*2]Pb年龄可提供地质体演化过程中所发生的地质事件的时代,而传统的热电离质谱全溶年代学分析只能提供样品年龄信息的平均值。随着仪器科学和分析技术的进步,副矿物的原位微区U-Pb测年方法成为近年来U-Pb同位素地质年代学发展的主导趋势。与锆石相比,其它副矿物的U-Pb同位素体系相对比较复杂,经常含较高的普通Pb。在仔细阅读相关文献的基础上,结合近年来相关研究工作,综述副矿物原位微区U-Pb定年以及普通Pb校正方法研究的最新进展,以期推动我国副矿物原位微区U-Pb定年方法相关研究及其在地质学中的应用。  相似文献   

2.
莫海拉亨铅锌矿地处三江北段成矿带北缘的结多弧后前陆盆地,含矿层位主要为下石炭统杂多群碳酸盐组,赋矿地层及北西西向断裂为重要的控矿因素,矿石矿物主要为方铅矿、闪锌矿、褐铁矿等。对研究区铅同位素研究显示,铅石矿μ多为9.27~9.77,μ平均值小于9.58,ω平均值为39.99,铅同位素组成具有正常铅演化特征;铅石矿206Pb/204Pb一般为18.51~18.92,208Pb/204Pb平均为38.64,具稳定同位素组成的特性;在Zartman铅同位素构造模式图中,铅成矿物质具有壳幔演化的特征。由上所述,莫海拉亨铅锌矿主要赋存于厚-巨厚层状碳酸盐岩中,且成矿与岩浆活动无直接关系,反映研究区Pb来源于上地壳含矿建造,赋矿地层或次级断裂构造交汇部位是成矿或找矿的有利部位。  相似文献   

3.
固体质谱计,以其高精度和可靠性度,在同位素年代学和同位素地球化学的研究领域的应用依然前景广阔。近年来,微量样品测试手段已经成为地质科学和环境科学等领域极其重要的研究方法,促使国际国内地球化学实验室对固体热电离质谱计更新换代。中国科学院地质与地球物理研究所固体同位素地球化学实验室于2004年引进英国GV公司的IsoProbe-T固体热电离质谱计,具有较宽质量谱带,装备多通道离子计数接收器,高灵敏度高精度,易于操作等特点。该类型仪器将是今后的同位素年代学和同位素地球化学研究的主导之一。该质谱计配置了9个法拉第接收器、1个戴利接收器和7个离子计数器(图1)。它的运行将有望大幅度地促进年代学和同位素地球化学在壳幔相互作用与深部物质成分、古大陆形成与演化、流体与成矿等主要领域研究工作的应用。本文主要介绍采用IsoProbe-T质谱计测定单颗粒错石U-Pb和Pb-Pb蒸发年龄方法和应用。传统的锆石Pb-Pb蒸发法定年原理是将锆石单颗粒包裹于铼灯丝中并加热,将锆石中铅蒸发至另一铼灯丝上,之后加热电离沉淀于该灯丝上的铅样品,采用单个离子计数器动态方式测量铅同位素组成,从而获得207Pb/206Pb比值和对应的年龄。这一方法技术简单但极为耗时。采用IsoProbe-T质谱计的多个离子计数器测量,可以克服耗时缺点。方法是将包裹于铼灯丝的锆石颗粒加热,采用静态方式直接测量蒸发出来的铅同位素组成,获得207Pb/206Pb年龄。该方法简便省时,同时可以直观地观测到锆石内部铅同位素组成的变化,如207Pb/206Pb比值,指示锆石中Th/U比值的变化,或207Pb/206Pb比值变化,直接反映出继承锆石的存在与否。离子计数器之间的效率差别可以采用测定铅标准溶液同位素比值来校正。尽管该方法不能与SHRIMP微区U-Pb定年媲美,却可以获得成因单一锆石高精度207Pb/206Pb年龄且节省经费。应用该方法测定内蒙古渣尔泰群沉积岩中碎屑错石,获得的年龄与采用传统错石Pb-Pb蒸发法和U-Pb稀释法获得的年龄一致,集中分布于2.4~2.5 Ga.多个离子计数器测量技术也可以应用于单颖粒错石U-Pb年代学方法,该方法所获得的数据可靠性主要地取决于实验流程U和Pb本底情况。为了降低流程本底,笔者采用低本底的蒸汽法高温高压条件下溶解错石,(图2)。将错石和205Pb-235U混合稀释剂加于小溶样杯内,HF酸置于Teflon焖罐底部,在高温高压条件下加热,完全溶解错石。采用该溶样方法和高纯度水和试剂,获得小于5 pg和10 pg的全流程U和Pb本底。应用该方法测定了苏鲁地区南部海州群单颗粒锆石U-Pb年龄。3个云母石英片岩样品中的错石大部分具有振荡环带内部结构,指示岩浆成因,退晶化程度也较明显。采用铀-铅同位素稀释法和铅-铅蒸发法分析,获得错石年龄范围为801-787Ma。时代上,海州群云母石英片岩的原岩可与大别-苏鲁超高压变质带内超高压和高压变质岩的原岩对比,可能代表与晚元古代Rodima超大陆裂解有关的岩浆作用的产物。  相似文献   

4.
天柱大河边重晶石矿床铅同位素特征及来源探讨   总被引:12,自引:0,他引:12  
对取自天柱大河边重晶石矿床的重晶石样品和含方铅矿黑色页岩样品进行了铅同位素测定与研究.结果表明,在 Zartman铅构造模式图中,重晶石矿石、含方铅矿黑色页岩和黑色页岩有大致相同的铅同位素分布区,均沿上地壳铅演化线分布,表明它们之间具有同源关系;重晶石矿石及其赋矿黑色页岩的铅同位素组成与基底地层的铅同位素组成在 Zartman铅构造模式图中具有完全不同的分布范围,表明重晶石矿石中的铅不大可能来源于基底地层;结合重晶石矿石及其赋矿黑色页岩的铅同位素组成在 Zartman铅构造模式图和Δγ-Δβ铅来源分类图的分布,天柱大河边重晶石矿床的铅主要具上地壳铅、壳幔混合的俯冲带铅和热水沉积作用铅的混合来源特点,这为天柱大河边重晶石矿床的热水沉积成因提供了铅同位素证据.  相似文献   

5.
石堤铅锌矿位于重庆市秀山县境内,紧邻湖南花垣铅锌矿,矿体赋存于中寒武统平井组碳酸盐岩中。本文对该矿床矿石进行了系统的硫、铅同位素研究,探讨了成矿物质来源。研究表明,石堤铅锌矿矿石中硫化物δ34S值变化范围为10.8‰~15.6‰,平均13.52‰,主要为海相硫酸盐的还原产物,硫酸盐的还原机制为热化学还原作用。矿石铅206Pb/204Pb为18.319~18.422,207Pb/204Pb为15.740~15.784,208Pb/204Pb为38.355~38.511,铅同位素组成较为均一,显示正常铅的组成特征,在Zartman铅同位素图解中,主要位于上地壳演化线之上,在Δβ-Δγ图解中,总体落入上地壳与地幔混合的俯冲带铅和上地壳铅的过渡范围内,因此认为石堤铅锌矿床成矿物质主要来源于上地壳物质,下寒武统牛蹄塘组黑色页岩可能是石堤铅锌矿床成矿物质的重要来源。  相似文献   

6.
那更康切尔银矿是东昆仑造山带的大型热液脉型独立银矿床,有望达到超大型规模。以矿区地质特征为研究基础,开展硫化物硫-铅同位素、二长花岗岩和花岗闪长岩铅同位素研究,探讨成矿物质来源及两类岩体与成矿的关系。矿区硫化物样品(黄铁矿、方铅矿和闪锌矿)的δ34S值介于-6.1‰~3.9‰之间,主体δ34 S值介于-4‰~2.1‰之间,数值集中,指示成矿物质硫源具有深源岩浆硫的特征。矿石铅同位素组成中206 Pb/204 Pb、207 Pb/204 Pb、208 Pb/204 Pb的变化范围分别为18.28~18.62、15.6~15.73、38.38~39.1,矿石铅具有壳幔混合源的特点。矿区内二长花岗岩LA-ICP-MS锆石U-Pb年龄为239±1 Ma,(206Pb/204Pb)i、(207Pb/204Pb)i、(208Pb/204Pb)i值分别为18.389~18.585、15.638~15.648、38.288~38.558;花岗闪长岩LA-ICP-MS锆石U-Pb年龄为252±1 Ma,(206Pb/204Pb)i、(207Pb/204Pb)i、(208Pb/204Pb)i值分别为18.348~18.447、15.625~15.629、38.394~38.412,铅同位素组成投图显示成矿与2类岩浆岩关系较弱,与区域上鄂拉山组火山岩呈较明显的线性相关。那更康切尔银矿与邻区哈日扎铅锌银矿床具有相似的成矿物质来源,硫源具有同一性,且矿石铅同位素组成表现出很明显的线性关系,表明2个矿床的成矿物质具有相近或相似的源区或演化过程。成矿地质条件、成矿物质来源及成矿流体特征均表明两者属中-低温热液脉型矿床。综合本文及前人对那更康切尔银矿床的研究,构建了成矿模式和找矿模型,为区域内同类型银矿床的找矿工作提供了指导作用。  相似文献   

7.
西秦岭李坝金矿床地质、同位素地球化学及其成因探讨   总被引:1,自引:0,他引:1  
李坝金矿床位于西秦岭造山带中的礼-岷矿集区内,赋矿围岩为泥盆系浅变质细碎屑岩,矿床产于中川岩体的外侧热接触变质带内,矿体主要受断裂破碎带控制。本文在李坝金矿床地质特征研究的基础上,对赋矿围岩、花岗斑岩岩脉、矿石硫化物进行了LA-MC-ICPMS原位微区硫同位素测试及化学溶样法分析,对不同地质体的铅同位素进行了系统测定与示踪,测定了成矿流体的氢-氧同位素组成,并对与矿体相伴产出花岗斑岩脉进行了LA-ICP-MS锆石U-Pb定年。研究表明,李坝金矿床花岗斑岩脉中黄铁矿δ34S值范围为8.19‰~10.06‰,赋矿围岩中金属硫化物δ34S值范围为4.94‰~9.81‰,矿石硫化物的δ34S值范围为4.94‰~10.82‰,矿石硫化物的硫同位素组成与矿区花岗斑岩及赋矿围岩的硫同位素组成相似,暗示成矿流体中的硫源主要来自受改造或变质的地层岩石与岩浆热液硫的混合。不同地质体的铅同位素组成变化范围较小,在Zartman铅构造模式图解中,样品投影点均落于造山带与上地壳演化线附近,矿石铅投影点与赋矿围岩及矿区岩脉的投影点重合,表明矿石中的铅可能来源于赋矿围岩和岩浆作用的混合。氢-氧同位素研究表明,成矿流体可能为变质流体、岩浆流体及地层建造水的混合热流体。矿区花岗斑岩脉与矿体相伴产出,花岗斑岩的LA-ICP-MS锆石U-Pb年龄为223 Ma,与金矿化时间一致,暗示成矿作用与岩浆活动同时发生。李坝金矿床与矿区岩浆岩同为造山作用的产物,并且其矿床地质特征、同位素地球化学特征与造山型金矿床相似,为形成于秦岭造山带由碰撞向伸展转变环境下成矿物质来源复杂的造山型金矿床。  相似文献   

8.
安徽铜陵焦冲金-硫矿床S、Pb同位素组成 及其指示意义   总被引:2,自引:1,他引:1  
安徽铜陵焦冲金硫矿床位于长江中下游铜陵矿集区内,矿(化)体主要赋存于二叠系下统栖霞组(P1q)中。在分析该矿床成矿地质条件的基础上,系统研究了矿石S、Pb同位素组成特征,探讨了矿床成矿物质来源。矿石硫化物的S同位素组成变化范围较窄,成矿热液δ34SΣS在4.0‰左右,反映其来源与岩浆硫密切相关。矿石Pb同位素组成变化范围较大,经同位素组成特征及特征参数法判断矿石Pb为异常Pb。通过Zartman铅构造坏境演化图解和Δγ-Δβ成因分类图解,确定矿床物质来源与岩浆作用密切相关,其源于上地壳物质与地幔的混合。通过成矿物质来源的研究,期望为铜陵地区寻找与花岗闪长斑岩有关的矿床提供帮助。  相似文献   

9.
刘雪敏  陈岳龙  王学求 《现代地质》2012,26(5):1104-1116
通过研究两个已知隐伏矿床(新疆金窝子金矿床、内蒙古拜仁达坝—维拉斯托多金属矿床)不同介质(地气、细粒级土壤、围岩、矿石)中的铅、硫同位素特征,探讨铅、硫同位素对地气、土壤中异常物质来源的示踪,得到以下结论:(1)两矿床的介质从地气、矿石、围岩到土壤,铅同位素比值(208Pb/204Pb、207Pb/204Pb、206Pb/204Pb)一般依次增加;土壤异常区相对土壤背景区,δ34S偏高。但对两个矿床背景区、异常区地气中的铅同位素组成、土壤中的铅、硫同位素组成进行方差分析后发现,数据均没有明显的差异,从统计学的角度初步证明研究区不适宜用铅、硫同位素示踪地气、土壤中异常物质的来源。(2)两个矿床的矿石、围岩中铅同位素组成均有明显差异,即围岩中明显有放射成因铅的积累。但这种差异没有显著地反映到背景区、异常区的地气中,原因有待进一步查证。仅从捕获剂的角度初步探讨了其原因。用土壤全量中铅、硫同位素组成特征来示踪土壤异常源,并没有成功,建议采用偏提取的方法测量其中活动态中的铅、硫同位素组成,在深穿透地球化学研究中更合理。  相似文献   

10.
通过对闹牛山铜金矿床硫、铅同位素的系统研究,探讨了其成矿物质的来源。同位素测试结果表明,δ(~(34)S)=2.0×10~(-3)~3.5×10~(-3),均为正值,呈塔式分布,峰值出现在2.0×10~(-3)~2.5×10~(-3),具幔源硫和陨石硫的特征;矿石铅~(206)Pb/~(204)Pb=18.169~18.510,~(207)Pb/~(204)Pb=15.484~15.646,~(208)Pb/~(204)Pb=37.877~38.431,铅同位素组成较为均一,具正常铅的组成特点;且μ值和ω值偏低,表明矿石铅源区富钍亏铀。在Zartman铅同位素构造模式图解中,投点主要落于地幔与造山带之间和造山带演化线附近;在Δβ—Δγ成因分类图解上,12件测试样品落入上地壳与地幔混合的俯冲带岩浆作用成因铅同位素源区,4件样品落入地幔源铅的范围内,但与两源区界限临近。由此认为,闹牛山铜金矿床的成矿物质主要来源于地幔,并有上地壳物质的混染,这种认识对研究大兴安岭中南段铜多金属矿带的成矿规律具有指导意义。  相似文献   

11.
珲春河流域砂金中微量铅同位素组成及其来源   总被引:1,自引:0,他引:1  
砂金中的微量铅同位素分析具有特殊的意义。可根据Pb同位素的μ、v、ω等值确定砂金的来源及可能的原生金矿体,本文测试了珲春河流域中的砂金及附近岩石和矿物Pb同位素,为寻找原始金矿和岩体提供了极其重要的同位素地质依据。砂金中铅的化学分离是采用阴阳离子交换技术,以甲醇作为载体进行砂金中微量铅的富集、分离纯化,使铅与金彻底分离,以达到高精度和准确的铅同位素测定。  相似文献   

12.
金顶矿床是世界著名的超大型铅锌矿床,其巨量的金属堆积引起许多学者对成矿金属来源的关注。前人通过铅同位素示踪研究,提出了成矿金属来自地幔、上地壳、下地壳及不同端员混合等不同认识。理论分析表明,这些观点认识的差异可能源于不同作者分析铅同位素数据存在测试误差。基于此,笔者在金顶矿床选择了7个代表性硫化物样品,再次进行了铅同位素分析。结果显示,矿床铅同位素组成为~(206)Pb/~(204)Pb=18.3945~18.4429、~(207)Pb/~(204)Pb=15.6412~15.6583、~(208)Pb/~(204)Pb=38.6266~38.6772,在铅同位素演化模式图解(Zartman et al.,1979)中数据点分布集中,处于"造山带"和"上地壳"演化曲线之间,未显示出明显的线性分布特点,表明金顶矿床成矿金属来源主要为壳源;区域对比表明,金顶矿床明显比白秧坪矿带铅锌矿床贫放射性成因铅,而与区域VMS型矿床铅同位素组成更为接近,这表明金顶矿床与白秧坪矿带矿床有着不同的金属物源区,其金属可能来自盆地底部晚三叠世火山岩或其内早期的VMS矿化。  相似文献   

13.
蓬莱金矿区位于胶东三大金矿带中的栖霞-蓬莱金矿带内。本文系统研究了该金矿化集中区内的黑岚沟、大柳行和河西金矿的 S、Pb、Rb-Sr 同位素地球化学特征,并与招远-掖县成矿带中的玲珑金矿化集中区内的大型-超大型金矿床进行了对比研究。蓬莱金矿区δ~(34)S 值总体变化为6.3‰~9.5‰,平均值为7.5‰。其中河西金矿δ~(34)S 值为7.4‰~8.5‰,黑岚沟金矿δ~(34)S 值为6.3‰~9.5‰,大柳行金矿δ~(34)S 值为6.4‰~8.2‰。不同矿床的硫同位素组成差异十分小,并与玲珑金矿区的硫同位素组成相近(δ~(34)S=6.4‰~8.6‰,平均值为7.6‰)。蓬莱金矿区的铅同位素组成变化小,其中河西金矿~(206)Pb/~(204)Pb 为17.3086~17.4799,~(207)Pb/~(204)Pb 为15.5264~15.5543,~(208)pb/~(204)Pb 为38.0642~38.3698;大柳行金矿~(206)Pb/~(204)Pb 为17.3653~ 17.5037.~(207)Pb/~(204)Pb 为15.5142~15.5355,~(208)Pb/~(204)Pb 为38.1249~38.31 36:黑岚沟金矿~(206)Pb/~(204)Pb 为17.3558~17.5958,~(207)Ph/~(204)Pb 为15.5105~15.5746,~(208)Pb/~(204)Pb为38.0749~38.4361。投影到 Zartman and Doe(1981)铅构造模式图上,成分点落在造山带演化线附近。蓬莱金矿区与玲珑金矿区的铅同位素组成基本一致,部分数据与矿区内煌斑岩的铅同位素组成相近,而与赋矿围岩郭家岭花岗岩相差甚远,表明矿体中的铅可能与煌癍岩有相同的源区。矿石铅呈线性趋势分布,它正好位于煌斑岩与一个极具放射成因铅的胶东群地层的铅同位素组成之间,很可能说明矿石铅是壳幔混合的产物。对蓬莱金矿区黄铁矿的 Rb-Sr 同位素分析结果表明,河西金矿的成矿年龄为122.3±3.1Ma(MSWD=1.7),初始~(87)Sr/~(86)Sr 比值为0.71208;黑岚沟和大柳行金矿的成矿年龄为117.8±6.5Ma(MSWD=17),初始~(87)Sr/~(86)Sr 比值为0.71085。说明蓬莱金矿区具有与玲珑金矿区相近的成矿时代,两者均为120Ma 左右。锶同位素初始比值也说明成矿物质具有壳慢混合的特征。从蓬莱金矿区具有与玲珑金矿区一致的地质、地球化学和年代学特征可知,蓬莱金矿区具有产出大型一超大型金矿的巨大远景。  相似文献   

14.
微区原位同位素分析是近年来同位素地球化学研究的前沿领域。其中,激光剥蚀系统与多接收电感耦合等离子体质谱联用技术(LA-MC-ICP-MS)被广泛应用于不同同位素体系和不同天然矿物的微区原位同位素测定。铅同位素作为有效的地球化学示踪手段被广泛用于岩石成因和演化、成矿时代、成矿物质来源、环境污染物源示踪和考古学等研究。目前多利用LA-MC-ICP-MS测定硅酸盐矿物、硫化物矿物和包裹体Pb同位素组成。该方法省略了冗长的化学处理流程,提高了工作效率,并且通过对不同矿物或同一矿物中不同结构部位进行微区原位Pb同位素分析,可揭示微米尺度上的Pb同位素组成变化,为解决地质问题提供了重要的证据。本文评述了近年来地质样品中LA-MC-ICP-MS测定Pb同位素的方法改进及其在部分地球科学研究中的应用。  相似文献   

15.
位于中印度洋脊23°52’S的Edmond热液区发现于2000年,属于典型的以玄武岩为宿主的活动热液区。首次测得了Edmond热液区9件硫化物的铅同位素和6件样品的硫同位素组成,结果表明:硫化物矿石的206Pb/204Pb为17.879~17.970,207Pb/204Pb为15.433~15.550,208Pb/204Pb为37.743~38.130。Pb-Pb图解表明,Edmond热液区硫化物的铅同位素数据与中印度洋脊玄武岩的铅同位素组成较一致,与印度洋沉积物和锰结壳相比具较低放射性成因铅的特征,说明硫化物中的铅主要来源于地幔(玄武岩),海水的贡献微弱。硫化物的δ34S为5.7‰~7.2‰,明显高于玄武岩的硫同位素组成(δ34S≈0‰),认为Edmond热液区硫化物中的硫除地幔的贡献外,海水中硫酸盐还原作用产生的硫的贡献可能超过30%。中印度洋脊Edmond热液区存在非常活跃的浅循环系统,可能是造成硫化物中硫同位素组成偏重的主要原因。  相似文献   

16.
张十八铅锌矿床位于江西彭山地区,铅锌矿床赋存震旦系硐门组地层中,区内出露有二云母碱长花岗岩与黑云母二长花岗岩组成的复式岩体。矿石铅同位素^206Pb/^204Pb的变化范围在16.756~17.936,平均为17.519,^207Pb/^201Pb的变化范围在14.809~15.620,平均为15.484。矿石铅的M值在9.47~9.65内窄幅波动。铅同位素的Doe和Zartman的模式图解以及△α-△β-△γ图解中所显示的矿石铅特征表明,矿床铅不是单一来源的正常铅,而是混合型多来源的异常铅,主要富上地壳铅的特征,又部分具有少量深源铅的特征,并且具有造山带铅的特点,成矿作用与燕山晚期的板块作用所产生的岩浆作用关系密切。  相似文献   

17.
现阶段砂岩型铀矿床成矿年龄测定主要有铀矿物U- Th- Pb表观年龄、全岩(铀矿物)样品等时线年龄、铀矿物微区原位U- Pb年龄等方法。综合各方法的原理及优缺点,认为砂岩型铀矿床的铀矿物通常颗粒细小且缺少可供扣除初始铅的伴生矿物存在,除等时线年龄方法外,铀矿物的选取及初始铅同位素的扣除均存在极大的不确定性;U- Pb等时线年龄方法的优点是可利用全岩样品分析数据及忽略初始铅的影响,但由于砂岩型铀矿床阶段性成矿的特点,时常会导致所得到的铀铅同位素数据在等时线图解中散乱分布无法成线或所得到的等时线年龄无实际地质意义等问题。本文主要是结合砂岩型铀矿床“幕式”成矿的特点,从改进砂岩型铀矿床等时线年龄拟合的理论基础入手,提出了利用“平行”等时线方法计算矿石最后一次富集成矿年龄的方法,并提出了利用238U- 206Pb等时线年龄、 235 U- 207 Pb等时线年龄、 206 Pb/ 204 Pb- 207 Pb/ 204 Pb图解及初始铅同位素组成等指标对成矿年龄地质意义进行综合判定的方法。以哈达图、蒙其古尔和扎吉斯坦三个铀矿床全岩样品数据进行了实例计算,等时线年龄计算结果表明上述理论方法可行,能够准确计算砂岩型铀矿床的成矿年龄。“平行”等时线方法无需考虑铀矿石矿化次数及最后一次成矿时铅同位素含量及组成,在理论上可应用于其它类型铀矿床成矿年龄计算。  相似文献   

18.
曲晓明  李佑国等 《地质通报》2002,21(11):768-776
近年来发现青藏高原南部冈底斯岩浆弧中发育了一条潜力很大的斑岩型铜(钼、金)多金属成矿带。通过野外地质调查和岩石地球化学、S-Pb同位素示踪及Re-Os同位素定年研究,发现该带的铜多金属矿化与喜马拉雅晚期碰撞后地壳松弛阶段形成的晚造山花岗质斑岩体有关。本文资料显示,该带的含矿斑岩和矿石硫化物具有完全一致的S、Pb同位素组成。δ34S在-3.8‰~ 2.4‰之间,具幔源硫特征;206Pb/204Pb、207Pb/204Pb及208Pb/204Pb分别变化于18.106~18.752、15.501~15.638和37.394~39.058之间,富含放射成因铅,反映了物质来源上的同一性。空间上该铜矿带铅同位素具有明显的变化规律,由成矿带东段的地壳铅经中段的造山带铅向西段的地幔铅演化,在Pb构造模式图上构成很好的等时线,在源区端元图上清楚地落在印度洋MORB与印度洋沉积物两个端元之间。化学分析结果表明,这些斑岩体高度富集大离子不相容元素Rb、K、U、Th、Sr、Pb,强烈亏损高场强元素Nb、Ta、Ti和重稀土元素Yb,缺少Eu异常。  相似文献   

19.
板厂铜多金属矿床是东秦岭造山带近年来找矿取得重大突破的一处以铜为主的多金属矿床,其上部发育脉状铜铅锌银矿化,下部发育铜钼矿化.通过对矿石中辉钼矿开展Re-Os同位素定年、对花岗岩进行锆石U-Pb定年,结合硫化物的硫、铅同位素特征,讨论了矿床的成矿时代、矿床成因及成矿动力学背景.6件辉钼矿Re-Os模式年龄为149.8±2.4 Ma~151.5±2.3 Ma,加权平均年龄为150.7±1.9 Ma,等时线年龄为151.0±4.6 Ma,显示成矿作用发生于晚侏罗世.矿区南部纸坊沟花岗斑岩体的锆石U-Pb年龄为148±1 Ma,说明区域上存在成矿期的花岗岩浆活动.11件硫化物硫同位素δ34SV-CDT值介于-1.2‰~1.2‰,显示深源岩浆硫的特征,206Pb/204Pb值为17.178~17.709,207Pb/204Pb值为15.430~15.528,208Pb/204Pb值为37.476~37.847,与北秦岭燕山期花岗岩和南秦岭地壳基底具一致的铅同位素组成,明显不同于北秦岭地层的铅同位素,成矿物质来源于燕山期岩浆岩.结合矿床地质特征,研究表明板厂铜多金属矿床为与燕山期岩浆有关的类矽卡岩型-热液脉型铜多金属矿床,属岩浆热液成矿系统,形成于岩石圈减薄的构造背景.   相似文献   

20.
绿纱铜钴矿床位于世界著名的中非铜成矿带内,矿体赋存于新元古代加丹加岩系下部的罗安群中。选择绿纱矿床中黄铜矿、黄铁矿为研究对象,针对硫、铅同位素分析及其地质意义研究。结果显示,矿床δ34S值变化范围较大且较分散(-9.8‰~23.1‰),反应了沉积型矿床的特点。矿石中的硫值分别集中于-9.8‰~-4.2‰和4.6‰~23.1‰两个区间,研究认为矿床主要的硫源为海相硫酸盐,并在海浸事件中遭受还原作用,还原机制包括热化学及生物作用两种方式。研究区矿石矿物的~(206)Pb/~(204)Pb值变化于17.885~20.869,207Pb/204Pb值变化于15.557~15.788,~(208)Pb/204Pb值变化于37.564~39.311,铅同位素的组成特征反映铅来源具壳幔混合特点,且与岩浆活动有关,矿石中含有过剩的放射性成因的J型铅,且构成了铅二次等时线,计算获得的铅源区年龄(735 Ma)与罗安群的形成年龄一致,暗示成矿物质主要来自罗安群地层。综合硫、铅同位素特征及相关的地球化学研究成果,认为绿纱铜钴矿床为受D2阶段热液活动改造的沉积变质-叠加改造层状铜矿床,具有成矿多期、多阶段和成矿物质多来源的"3多"特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号