首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper presents results obtained from numerical model experiments to show different patterns of mantle flow produced by lithospheric movement in subduction zones. Using finite element models, based on Maxwell rheology (relaxation time ∼ 1011S), we performed three types of experiments: Type 1, Type 2 and Type 3. In Type 1 experiments, the lithospheric slab subducts into the mantle by translational movement, maintaining a constant subduction angle. The experimental results show that the flow perturbations occur in the form of vortices in the mantle wedge, irrespective of subduction rate and angle. The mantle wedge vortex is coupled with another vortex below the subducting plate, which tends to be more conspicuous with decreasing subduction rate. Type 2 experiments take into account a flexural deformation of the plate, and reveal its effect on the flow patterns. The flexural motion induces a flow in the form of spiral pattern at the slab edge. Density-controlled lithospheric flexural motion produces a secondary flow convergence zone beneath the overriding plate. In many convergent zones the subducting lithospheric plate undergoes detachment, and moves down into the mantle freely. Type 3 experiments demonstrate flow perturbations resulting from such slab detachments. Using three-dimensional models we analyze lithospheric stresses in convergent zone, and map the belts of horizontal compression and tension as a function of subduction angle.  相似文献   

2.
Subduction is a fundamental mechanism of material exchange between the planetary interior and the surface. Despite its significance, our current understanding of fluctuating subducting plate area and slab volume flux has been limited to a range of proxy estimates. Here we present a new detailed quantification of subduction zone parameters from the Late Triassic to present day (230–0 Ma). We use a community plate motion model with evolving plate topologies to extract trench-normal convergence rates through time to compute subducting plate areas, and we use seafloor paleo-age grids to estimate the thickness of subducting lithosphere to derive the slab flux through time. Our results imply that slab flux doubled to values greater than 500 km3/yr from 180 Ma in the Jurassic to 130 Ma in the mid-Cretaceous, subsequently halving again towards the Cretaceous-Paleogene boundary, largely driven by subduction zones rimming the Pacific ocean basin. The 130 Ma spike can be attributed to a two-fold increase in mid-ocean ridge lengths following the break-up of Pangea, and a coincident increase in convergence rates, with average speeds exceeding 10 cm/yr. With one third of the total 230 - 0 Ma subducted volume entering the mantle during this short ∼50 Myr period, we suggest this slab superflux drove a surge in slab penetration into the lower mantle and an associated increase in the vigour of mantle return flow. This mid-Cretaceous event may have triggered, or at least contributed to, the formation of the Darwin Rise mantle superswell, dynamic uplift of the South African Plateau and the plume pulse that produced the Ontong-Java-Hikurangi-Manihiki and Kerguelen plateaus, among others.The models presented here contribute to an improved understanding of the time-evolving flux of material consumed by subduction, and suggest that slab superflux may be a general feature of continental dispersal following supercontinent breakup. These insights may be useful for better understanding how supercontinent cycles are related to transient episodes of Large Igneous Province and superswell formation, and the associated deep cycling of minerals and volatiles, as well as leading to a better understanding of tectonic drivers of long-term climate and icehouse-to-greenhouse transitions.  相似文献   

3.
《Gondwana Research》2014,25(3-4):936-945
Body wave seismic tomography is a successful technique for mapping lithospheric material sinking into the mantle. Focusing on the India/Asia collision zone, we postulate the existence of several Asian continental slabs, based on seismic global tomography. We observe a lower mantle positive anomaly between 1100 and 900 km depths, that we interpret as the signature of a past subduction process of Asian lithosphere, based on the anomaly position relative to positive anomalies related to Indian continental slab. We propose that this anomaly provides evidence for south dipping subduction of North Tibet lithospheric mantle, occurring along 3000 km parallel to the Southern Asian margin, and beginning soon after the 45 Ma break-off that detached the Tethys oceanic slab from the Indian continent. We estimate the maximum length of the slab related to the anomaly to be 400 km. Adding 200 km of presently Asian subducting slab beneath Central Tibet, the amount of Asian lithospheric mantle absorbed by continental subduction during the collision is at most 600 km. Using global seismic tomography to resolve the geometry of Asian continent at the onset of collision, we estimate that the convergence absorbed by Asia during the indentation process is ~ 1300 km. We conclude that Asian continental subduction could accommodate at most 45% of the Asian convergence. The rest of the convergence could have been accommodated by a combination of extrusion and shallow subduction/underthrusting processes. Continental subduction is therefore a major lithospheric process involved in intraplate tectonics of a supercontinent like Eurasia.  相似文献   

4.
Free conductive flows in the asthenosphere, layer C, and subduction zone are considered on the basis of experimental and theoretical simulation. The main forces acting on the oceanic lithospheric plate in the subduction zone are described. The horizontally directed forces arising due to free convection in the asthenosphere and transferring the oceanic lithospheric plate toward subduction zone have been estimated. These are friction force Fa and force of gravitational sliding F rd. Thermogravitational force F tg, which is created because the subducting lithospheric plate has a lower average temperature than the ambient mantle, is estimated. The force created owing to phase transitions in the subducted plate has been estimated as well. The tangential stress at the contact of the subducting plate with the continental lithosphere and underlying upper mantle has been determined. The horizontal force arising due to different lateral temperature gradients in the upper mantle on the left and on the right of the subducting plate has been estimated. The results of experimental modeling of the effect exerted upon subduction by counter free convective flows developing in the asthenosphere are considered. The experiments show that the position of the descending free convective flow and thus of the subduction zone depends on the ratio of the thermal power of astehnospheric countercurrents. The pressure arising near the 670 km boundary gives rise to spreading of the subducting plate over this boundary.  相似文献   

5.
Hafnium isotopes of zircon represent a well-dated proxy for the evolution of magmatic systems through Earth history. Time series analysis on the hafnium isotopes of zircon reveals a hierarchy of statistically significant periodic signals spanning multiple orders of magnitude (106–109 year cycles). We attribute the hierarchy of cyclicity to organizing mechanisms of mantle and lithospheric convection at various time scales, ranging from short-term cycles in magmatism and subduction to long-term cycles related to oceans, supercontinents, and superoceans. A ∼600-Myr supercontinent cycle is the strongest signal in the global hafnium database and the phase relationship implies elevated mantle-derived magmatism during supercontinent tenure and elevated crustal reworking during plate reorganization, as expected. A half-supercontinent cycle (Wilson cycle) and a double-supercontinent cycle (superocean cycle) are also present, harmonic with the supercontinent cycle, and related to each other by amplitude modulation. Analysis of local magmatic systems of the circum-Pacific subduction girdle surrounding Pangaea reveal similar significant and harmonic cycles of ∼6 and ∼20 Myr attributed to magmatic cycles and ∼60, ∼120, and ∼240 Myr attributed to subduction cycles. All subduction systems reveal a prevalent ∼60 Myr cycle attributed to an upper mantle convective cycle that has two phase relationships, suggesting that advancing and retreating arc systems can be identified with time series analysis. The harmonic hierarchy of geodynamic cycles identified herein controlled by mantle convection on long time scales and lithospheric convection on short time scales arguably completes the picture of cyclicity in the Earth system, complimenting well-known orbital, oceanic, and astronomical cycles.  相似文献   

6.
Subduction of lithosphere, involving surficial materials, into the deep mantle is fundamental to the chemical evolution of the Earth. However, the chemical evolution of the lithosphere during subduction to depth remains equivocal. In order to identify materials subjected to geological processes near the surface and at depths in subduction zones, we examined B and Li isotopes behavior in a unique diamondiferous, K-rich tourmaline (K-tourmaline) from the Kokchetav ultrahigh-pressure metamorphic belt. The K-tourmaline, which includes microdiamonds in its core, is enriched in 11B relative to 10B (δ11B = −1.2 to +7.7) and 7Li relative to 6Li (δ7Li = −1.1 to +3.1). It is suggested that the K-tourmaline crystallized at high-pressure in the diamond stability field from a silicate melt generated at high-pressure and temperature conditions of the Kokchetav peak metamorphism. The heavy isotope signature of this K-tourmaline differs from that of ordinary Na-tourmalines in crustal rocks, enriched in the light B isotope (δ11B = −16.6 to −2.3), which experienced isotope fractionation through metamorphic dehydration reactions. A possible source of the heavy B-isotope signature is serpentine in the subducted lithospheric mantle. Serpentinization of the lithospheric mantle, with enrichment of heavy B-isotope, can be produced by normal faulting at trench-outer rise or trench slope regions, followed by penetration of seawater into the lithospheric mantle. Serpentine breakdown in the lithospheric mantle subducted in subarc regions likely provided fluids with the heavy B-isotope signature, which was acquired during the serpentinization prior to subduction. The fluids could ascend and cause partial melting of the overlying crustal layer, and the resultant silicate melt could inherit the heavy B-isotope signature. The subducting lithospheric mantle is a key repository for modeling the flux of fluids and associated elements acquired at a near the surface into the deep mantle.  相似文献   

7.
Basanites and alkali basalts from Mahabad in the West Azerbaijan province of Iran are part of a widespread series of Late Miocene–Quaternary mantle-derived magmas erupted within the Turkish–Iranian orogenic plateau, itself part of the active Arabia–Eurasia collision zone. New elemental and Sr–Nd isotopic results are combined with geophysical and geological constraints to suggest that these lavas formed predominantly by small degrees of partial melting of the thick (≫100 km) Eurasian lithospheric mantle within the garnet facies. Samples are highly enriched in large ion lithophile elements (LILE) and the light rare earth elements (LREE), up to 600 times chondritic values. They mostly possess negative primitive mantle-normalised Rb, K, Nb–Ta, Zr–Hf and Ti anomalies, with an overall signature that indicates a mantle source metasomatised by fluids or melts derived from crust during continental collision or the Tethyan oceanic subduction that preceded it. Sr–Nd isotopic values are similar to other Quaternary centres in NW Iran; 87Sr/86Sr is slightly depleted with respect to Bulk Silicate Earth, at ∼0.7045, and 143Nd/144Nd is slightly enriched, at ∼0.5127. Crustal contamination does not appear to be an important process in the chemistry of these samples. Possible triggers for melting may include: breakdown of hydrous phases during lithospheric thickening; hydration of the mantle lithosphere by underthrusting of the Arabian passive margin; small-scale sub-lithospheric convection due to a significant thickness gradient in the Zagros lithosphere. Such processes may account for small-volume syn-collisional mantle-derived magmatism elsewhere in regions of thick lithosphere where recent slab break-off or lithospheric delamination cannot be proven.  相似文献   

8.
Numerical models on thermal structure, convective flow of solid, generation and transportation of H2O-rich fluid in subduction zones are consolidated to have a comprehensive view of the subduction zone processes: heat balance, circulation of H2O magmatism–metamorphism, growth of arcs and continental margins. A large scale convection model with steady subduction of a cold old slab (130 Myr old) predicts rapid ( 100 Myr) cooling of subduction zones, resulting in cessation of magmatism. The model also predicts that the mantle temperature beneath arcs and continental margins is greatly affected by the effective temperature of the subducting slab, i.e., the age of the subducting slab. If subduction of a young hot slab, including ridge subduction, occurs every 60 to 120 Myr as is suggested for eastern Asia, the average temperature beneath arcs is increased by about 300 °C, which may explain the long-lasting magmatism in eastern Asia. Associated with subduction of young slabs and ridges, thermal structure and circulation of H2O are greatly modified to cause a transition from (1) normal arc magmatism, (2) forearc mantle melting, to (3) slab melting to produce a significant amount (100 km3) of granitic melts, associated with both high-P/T and low-P/T type metamorphism. The last stage of (3) can result in formation of a granitic batholith belt and a paired metamorphic belts. Synthesis of the numerical models and observations suggest that episodic subduction of young slabs and ridges can explain heat source for generating a large amount of granitic magmas of batholiths, synchronous formation of batholith and regional metamorphic belts, and PT conditions of the paired metamorphism. Even the high-P/T metamorphism requires an elevated geothermal structure in the forearc region, associated with ridge subduction. Although the emplacement of the batholiths and the regional metamorphic belts, and the mass balance in subduction zones are not well constrained at present, the episodic event associated with ridge subduction is thought to be essential for net growth of arcs and continental margins, as well as for the long-term heat balance in subduction zones.  相似文献   

9.
Garnet‐bearing peridotite lenses are minor but significant components of most metamorphic terranes characterized by high‐temperature eclogite facies assemblages. Most peridotite intrudes when slabs of continental crust are subducted deeply (60–120 km) into the mantle, usually by following oceanic lithosphere down an established subduction zone. Peridotite is transferred from the resulting mantle wedge into the crustal footwall through brittle and/or ductile mechanisms. These ‘mantle’ peridotites vary petrographically, chemically, isotopically, chronologically and thermobarometrically from orogen to orogen, within orogens and even within individual terranes. The variations reflect: (1) derivation from different mantle sources (oceanic or continental lithosphere, asthenosphere); (2) perturbations while the mantle wedges were above subducting oceanic lithosphere; and (3) changes within the host crustal slabs during intrusion, subduction and exhumation. Peridotite caught within mantle wedges above oceanic subduction zones will tend to recrystallize and be contaminated by fluids derived from the subducting oceanic crust. These ‘subduction zone peridotites’ intrude during the subsequent subduction of continental crust. Low‐pressure protoliths introduced at shallow (serpentinite, plagioclase peridotite) and intermediate (spinel peridotite) mantle depths (20–50 km) may be carried to deeper levels within the host slab and undergo high‐pressure metamorphism along with the enclosing rocks. If subducted deeply enough, the peridotites will develop garnet‐bearing assemblages that are isofacial with, and give the same recrystallization ages as, the eclogite facies country rocks. Peridotites introduced at deeper levels (50–120 km) may already contain garnet when they intrude and will not necessarily be isofacial or isochronous with the enclosing crustal rocks. Some garnet peridotites recrystallize from spinel peridotite precursors at very high temperatures (c. 1200 °C) and may derive ultimately from the asthenosphere. Other peridotites are from old (>1 Ga), cold (c. 850 °C), subcontinental mantle (‘relict peridotites’) and seem to require the development of major intra‐cratonic faults to effect their intrusion.  相似文献   

10.
A dense nationwide seismic network recently constructed in Japan has resulted in the production of a large amount of high-quality data that have enabled the high-resolution imaging of deep seismic structures in the Japanese subduction zone. Seismic tomography, precise locations of earthquakes, and focal mechanism research have allowed the identification of the complex structure of subducting slabs beneath Japan, revealing that the subducting Philippine Sea slab underneath southwestern Japan has an undulatory configuration down to a depth of 60–200 km, and is continuous from Kanto to Kyushu without disruption or splitting, even within areas north of the Izu Peninsula. Analysis of the geometry of the Pacific and Philippine Sea slabs identified a broad contact zone beneath the Kanto Plain that causes anomalously deep interplate and intraslab earthquake activity. Seismic tomographic inversions using both teleseismic and local events provide a clear image of the deep aseismic portion of the Philippine Sea slab beneath the Japan Sea north of Chugoku and Kyushu, and beneath the East China Sea west of Kyushu down to a depth of ∼450 km. Seismic tomography also allowed the identification of an inclined sheet-like seismic low-velocity zone in the mantle wedge beneath Tohoku. A recent seismic tomography work further revealed clear images of similar inclined low-velocity zones in the mantle wedge for almost all other areas of Japan. The presence of the inclined low-velocity zones in the mantle wedge across the entirety of Japan suggests that it is a common feature to all subduction zones. These low-velocity zones may correspond to the upwelling flow portion of subduction-induced convection systems. These upwelling flows reach the Moho directly beneath active volcanic areas, suggesting a link between volcanism and upwelling.  相似文献   

11.
There are, in principle, direct relations between several important phenomena associated with subduction zones: the depth of oceanic trenches, the magnitude of the net force from trenches acting on subducting plates, the distribution and fault plane orientations of earthquakes, the magnitude of stresses on subduction faults, the bathymetry of back-arc regions, and the magnitudes of gravity and geoid anomalies. These phenomena are related through the stresses transmitted through surface and subducted lithosphere, and are associated with the mass anomaly of the subducted lithosphere. Quantitative estimates suggest that observed trench depths imply a trench pull force on subducting plates which is comparable to the ridge push force but much less than the excess weight of the subducted lithospheric slab. It is further suggested that either the mass anomaly of subducted lithosphere is much less than would be expected on the basis of conventional thermal and compositional models or that (a) a large resistance acts on the upper part of slabs due to high-stress corner flow, and (b) the mass anomaly of the slab is 70–90% compensated either by a broad 1 km-deep back-arc depression or a low density mantle wedge above the slab or both.  相似文献   

12.
D. Arcay  M.-P. Doin  E. Tric  R. Bousquet   《Tectonophysics》2007,441(1-4):27-45
At continental subduction initiation, the continental crust buoyancy may induce, first, a convergence slowdown, and second, a compressive stress increase that could lead to the forearc lithosphere rupture. Both processes could influence the slab surface PT conditions, favoring on one side crust partial melting or on the opposite the formation of ultra-high pressure/low temperature (UHP-LT) mineral. We quantify these two effects by performing numerical simulations of subduction. Water transfers are computed as a function of slab dehydration/overlying mantle hydration reactions, and a strength decrease is imposed for hydrated mantle rocks. The model starts with an old oceanic plate ( 100 Ma) subducting for 145.5 Myr with a 5 cm/yr convergence rate. The arc lithosphere is thermally thinned between 100 km and 310 km away from the trench, due to small-scale convection occuring in the water-saturated mantle wedge. We test the influence of convergence slowdown by carrying on subduction with a decreased convergence rate (≤ 2 cm/yr). Surprisingly, the subduction slowdown yields not only a strong slab warming at great depth (> 80 km), but also a significant cooling of the forearc lithosphere at shallower depth. The convergence slowdown increases the subducted crust temperature at 90 km depth to 705 ± 62 °C, depending on the convergence rate reduction, and might thus favor the oceanic crust partial melting in presence of water. For subduction velocities ≤ 1 cm/yr, slab breakoff is triggered 20–32 Myr after slowdown onset, due to a drastic slab thermal weakening in the vicinity of the interplate plane base. At last, the rupture of the weakened forearc is simulated by imposing in the thinnest part of the overlying lithosphere a dipping weakness plane. For convergence with rates ≥ 1 cm/yr, the thinned forearc first shortens, then starts subducting along the slab surface. The forearc lithosphere subduction stops the slab surface warming by hot asthenosphere corner flow, and decreases in a first stage the slab surface temperature to 630 ± 20 °C at 80 km depth, in agreement with PT range inferred from natural records of UHP-LT metamorphism. The subducted crust temperature is further reduced to 405 ± 10 °C for the crust directly buried below the subducting forearc. Such a cold thermal state at great depth has never been sampled in collision zones, suggesting that forearc subduction might not be always required to explain UHP-LT metamorphsim.  相似文献   

13.
Type I spinel peridotite xenoliths from Simcoe Volcano, southern Washington (USA), are from lithospheric mantle approximately 65 km inboard from the axis of the subduction-related Cascade Range. Oxygen fugacities calculated from contents of Fe3+/ΣFe in Simcoe spinels, determined by Mössbauer spectroscopy, are up to 1.4 log units more oxidizing than the FMQ buffer. These are among the most oxidized mantle xenoliths reported, with fugacities substantially higher than those calculated for mantle beneath most of western North America. These results, together with those from amphibole-bearing spinel peridotites from Ichinomegata, Japan (Wood and Virgo, 1989), provide evidence that the mantle above subduction zones is more oxidized than is oceanic or ancient cratonic mantle. We suggest that oxidation was accomplished by an agent ranging in composition from solute-rich hydrous fluid to water-bearing silicate melt. A qualitative model relating extent of oxidation, duration of the oxidation process, and proportion of the available water (derived from subducting slabs) that oxidizes Fe in subarc mantle peridotite, suggests that such an agent can easily produce the observed extents of oxidation over timescales similar to the typical lifespans of subduction zones. For the Cascade arc with a duration of 50 Ma, the observed oxidation in the Simcoe peridotites can be achieved by reacting about 6–11 % of the available water with the mantle. These results demonstrate that water can make an efficient oxidizing agent, and because of the comparatively low ferric iron contents reported for mantle peridotites from other tectonic settings, oxidation of the mantle by water is mostly restricted to subduction zones where water is recycled from the surface and transferred into the mantle wedge.  相似文献   

14.
The lower plate is the dominant agent in modern convergent margins characterized by active subduction,as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight.This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle.As geological and geochemical data seem inconsistent with the existence of modernstyle ridges and arcs in the Archaean,a periodically-destabilized stagnant-lid crust system is proposed instead.Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle,perturbing Earth's heat generation/loss balance,eventually triggering mantle overturns.Archaean basalts were derived from fertile mantle in overturn upwelling zones(OUZOs),which were larger and longer-lived than post-Archaean plumes.Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods,allowing basal crustal cannibalism,garnetiferous crustal restite delamination,and coupled development of continental crust and sub-continental lithospheric mantle.Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB(mid-ocean ridge basalt)mantle.Only after the start of true subduction did sequestration of subducted slabs at the coremantle boundary lead to the development of the depleted MORB mantle source.During Archaean mantle overturns,pre-existing continents located above OUZOs would be strongly reworked;whereas OUZOdistal continents would drift in response to mantle currents.The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion,imbrication,subcretion and anatexis of unsubductable oceanic lithosphere.As Earth cooled and the background oceanic lithosphere became denser and stiffer,there would be an increasing probability that oceanic crustal segments could founder in an organized way,producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga.Plate tectonics today is constituted of:(1)a continental drift system that started in the Early Archaean,driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons;(2)a subduction-driven system that started near the end of the Archaean.  相似文献   

15.
《地学前缘(英文版)》2020,11(4):1219-1229
We investigate the effect of the westerly rotation of the lithosphere on the active margins that surround the Americas and find good correlations between the inferred easterly-directed mantle counterflow and the main structural grain and kinematics of the Andes and Sandwich arc slabs.In the Andes,the subduction zone is shallow and with low dip,because the mantle flow sustains the slab;the subduction hinge converges relative to the upper plate and generates an uplifting doubly verging orogen.The Sandwich Arc is generated by a westerly-directed SAM(South American) plate subduction where the eastward mantle flow is steepening and retreating the subduction zone.In this context,the slab hinge is retreating relative to the upper plate,generating the backarc basin and a low bathymetry single-verging accretionary prism.In Central America,the Caribbean plate presents a more complex scenario:(a) To the East,the Antilles Arc is generated by westerly directed subduction of the SAM plate,where the eastward mantle flow is steepening and retreating the subduction zone.(b) To the West,the Middle America Trench and Arc are generated by the easterly-directed subduction of the Cocos plate,where the shallow subduction caused by eastward mantle flow in its northern segment gradually steepens to the southern segment as it is infered by the preexisting westerly-directed subduction of the Caribbean Plateau.In the frame of the westerly lithospheric flow,the subduction of a divergent active ridge plays the role of introducing a change in the oceanic/continental plate's convergence angle,such as in NAM(North American)plate with the collision with the Pacific/Farallon active ridge in the Neogene(Cordilleran orogenic type scenario).The easterly mantle drift sustains strong plate coupling along NAM,showing at Juan de Fuca easterly subducting microplate that the subduction hinge advances relative to the upper plate.This lower/upper plate convergence coupling also applies along strike to the neighbor continental strike slip fault systems where subduction was terminated(San Andreas and Queen Charlotte).The lower/upper plate convergence coupling enables the capture of the continental plate ribbons of Baja California and Yakutat terrane by the Pacific oceanic plate,transporting them along the strike slip fault systems as para-autochthonous terranes.This Cordilleran orogenic type scenario,is also recorded in SAM following the collision with the Aluk/Farallon active ridge in the Paleogene,segmenting SAM margin into the eastwardly subducting Tupac Amaru microplate intercalated between the proto-LiquineOfqui and Atacama strike slip fault systems,where subduction was terminated and para-autochthonous terranes transported.In the Neogene,the convergence of Nazca plate with respect to SAM reinstalls subduction and the present Andean orogenic type scenario.  相似文献   

16.
Carlo Doglioni 《Tectonophysics》2009,463(1-4):208-213
The Schellart's [Schellart, W.P., 2007, The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle. Tectonophysics, 445, 363–372.] paper uses slab dip and upper plate extension for testing the westward drift. His analysis and discussion are misleading for the study of the net rotation of the lithosphere since the first 125 km of subduction zones are sensitive also to other parameters such upper plate thickness, geometry and obliquity of the subduction zone with respect to the convergence direction. The deeper (> 125 km) part cannot easily be compared as well because E- or NE-directed subduction zones have seismic gaps between 270–630 km. Moreover the velocity of subduction hinge cannot be precisely estimated and it does not equal to backarc spreading due to accretionary prism growth and asthenospheric intrusion at the subduction hinge. It is shown here that hinge migration in the upper plate or lower plate reference frames supports a general global polarization of the lithosphere in agreement with the westward drift of the lithosphere. The W-directed subduction zones appear controlled by the slab–mantle interaction with slab retreat imposed by the eastward mantle flow. The opposite E-NE-directed subduction zones seem rather mainly controlled by the convergence rate, plus density, thickness and viscosity of the upper and lower plates. Finally, the geological and geophysical asymmetries recorded along subduction and rift zones as a function of their polarity with respect to the tectonic mainstream are not questioned in the Schellart's paper, but they rather represent the basic evidence for the westward drift of the lithosphere.  相似文献   

17.
This paper reports a new 1° × 1° global thermal model for the continental lithosphere (TC1). Geotherms for continental terranes of different ages (> 3.6 Ga to present) constrained by reliable data on borehole heat flow measurements (Artemieva, I.M., Mooney, W.D. 2001. Thermal structure and evolution of Precambrian lithosphere: a global study. J. Geophys. Res 106, 16387–16414.), are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low-quality heat flow data (ca. 60% of the continents). These data are supplemented by cratonic geotherms based on electromagnetic and xenolith data; the latter indicate the existence of Archean cratons with two characteristic thicknesses, ca. 200 and > 250 km. A map of tectono-thermal ages of lithospheric terranes complied for the continents on a 1° × 1° grid and combined with the statistical age relationship of continental geotherms (z = 0.04  t + 93.6, where z is lithospheric thermal thickness in km and t is age in Ma) formed the basis for a new global thermal model of the continental lithosphere (TC1). The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle, with the strongest lateral temperature variations (as large as 800 °C) in the shallow mantle. A map of the depth to a 550 °C isotherm (Curie isotherm for magnetite) in continental upper mantle is presented as a proxy to the thickness of the magnetic crust; the same map provides a rough estimate of elastic thickness of old (> 200 Ma) continental lithosphere, in which flexural rigidity is dominated by olivine rheology of the mantle.Statistical analysis of continental geotherms reveals that thick (> 250 km) lithosphere is restricted solely to young Archean terranes (3.0–2.6 Ga), while in old Archean cratons (3.6–3.0 Ga) lithospheric roots do not extend deeper than 200–220 km. It is proposed that the former were formed by tectonic stacking and underplating during paleocollision of continental nuclei; it is likely that such exceptionally thick lithospheric roots have a limited lateral extent and are restricted to paleoterrane boundaries. This conclusion is supported by an analysis of the growth rate of the lithosphere since the Archean, which does not reveal a peak in lithospheric volume at 2.7–2.6 Ga as expected from growth curves for juvenile crust.A pronounced peak in the rate of lithospheric growth (10–18 km3/year) at 2.1–1.7 Ga (as compared to 5–8 km3/year in the Archean) well correlates with a peak in the growth of juvenile crust and with a consequent global extraction of massif-type anorthosites. It is proposed that large-scale variations in lithospheric thickness at cratonic margins and at paleoterrane boundaries controlled anorogenic magmatism. In particular, mid-Proterozoic anorogenic magmatism at the cratonic margins was caused by edge-driven convection triggered by a fast growth of the lithospheric mantle at 2.1–1.7 Ga. Belts of anorogenic magmatism within cratonic interiors can be caused by a deflection of mantle heat by a locally thickened lithosphere at paleosutures and, thus, can be surface manifestations of exceptionally thick lithospheric roots. The present volume of continental lithosphere as estimated from the new global map of lithospheric thermal thickness is 27.8 (± 7.0) × 109 km3 (excluding submerged terranes with continental crust); preserved continental crust comprises ca. 7.7 × 109 km3. About 50% of the present continental lithosphere existed by 1.8 Ga.  相似文献   

18.
Oceanic plateaus, aseismic ridges or seamount chains all have a thickened crust and their subduction has been proposed as a possible mechanism to explain the occurrence of flat subduction and related absence of arc magmatism below Peru, Central Chile and at the Nankai Trough (Japan). Their extra compositional buoyancy could prohibit the slab from sinking into the mantle. With a numerical thermochemical convection model, we simulated the subduction of an oceanic lithosphere that contains an oceanic crustal plateau of 18-km thickness. With a systematic variation, we examined the required physical parameters to obtain shallow flat subduction. Metastability of the basaltic crust in the eclogite stability field is of crucial importance for the slab to remain buoyant throughout the subduction process. In a 44-Ma-old subducting plate, basalt must be able to survive a temperature of 600–700 °C to keep the plate buoyant sufficiently long to cause a flat-slab segment. We found that the maximum yield stress in the slab must be limited to about 600 MPa to allow for the necessary bending to the horizontal. Young slabs show flat subduction for larger parameter ranges than old slabs, since they are less gravitationally unstable and show less resistance against bending. Hydrous weakening of the mantle wedge area and lowermost continent are required to allow for the necessary deformation of a change in subduction style from steep to flat. The maximum flat slab extent is about 300 km, which is sufficient to explain the observed shallow flat subduction near the Nankai Trough (Japan). However, additional mechanisms, such as active overthrusting by an overriding continental plate, need to be invoked to explain the flat-slab segments up to 500 km long below Peru and Central Chile.  相似文献   

19.
Laboratory and numerical experiments and boundary layer analysis of the entrainment of buoyant asthenosphere by subducting oceanic lithosphere implies that slab entrainment is likely to be relatively inefficient at removing a buoyant and lower viscosity asthenosphere layer. Asthenosphere would instead be mostly removed by accretion into and eventual subduction of the overlying oceanic lithosphere. The lower (hot) side of a subducting slab entrains by the formation of a ∼10–30 km‐thick downdragged layer, whose thickness depends upon the subduction rate and the density contrast and viscosity of the asthenosphere, while the upper (cold) side of the slab may entrain as much by thermal ‘freezing’ onto the slab as by mechanical downdragging. This analysis also implies that proper treatment of slab entrainment in future numerical mantle flow experiments will require the resolution of ∼10–30 km‐thick entrainment boundary layers.  相似文献   

20.
The North China Craton (NCC) provides one of the classic examples of craton destruction, although the mechanisms and processes of its decratonization are yet to be fully understood. Here we integrate petrological, geochemical, geochronological and geophysical information from the NCC and conclude that the destruction of the craton involved multiple events of circum-craton subduction, which provided the driving force that destabilized mantle convection and tectonically eroded the lithospheric mantle beneath the craton. Furthermore, subducted-slab-derived fluids/melts weakened the subcontinental lithospheric mantle and facilitated thermo-mechanical and chemical erosion of the lithosphere. The more intense destruction beneath the eastern part of the NCC reflects the crucial contribution of Pacific plate subduction from the east that overprinted the mantle lithosphere modified during the early subduction processes. Our study further establishes the close relationship between lithospheric modification via peridotite–melt reactions induced by oceanic plate subduction and cratonic destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号