首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 739 毫秒
1.
It Naturally cemented soft clays have components of strength and stiffness, which cannot be accounted for by classical soil mechanics (Leroueil and Vaughan 1990). This stems from the influence of structure caused by cementation due to environmental factors. It is necessary to evaluate the cementation bond strength at preyield and postyield stress levels of loading, to understand comprehensively the observed response from micromechanic considerations. This helps to better understand and evolve approaches to model the constitutive behavior in a consistent manner, according to the physical phenomenon of formation of cementation as an additional component to what is otherwise normally regarded as frictional behavior arising only from particulate nature of clays. Comparing the behavior of deep deposits of Pusan soft clays under stress with corresponding response of the same clay in its remolded state, it has been possible to take into account particulate and nonparticulate responses. The evolution of cementation bonding is modeled for different Pusan clays with the yield stress in oedometer compression as a normalizing parameter for obtaining the generalized relationship of cementation bonding with increase in stress. The already established model for determining the remolded behavior is appropriately modified to assess the behavior influenced by cementation. The model proposed consists of parameters, which are determined in routine investigations.  相似文献   

2.
Natural Ariake clays are characterized by high sensitivity. In this study, the mechanism and the factors controlling undrained shear strengths of both undisturbed and remolded Ariake clays are discussed. A series of unconfined compressive tests were performed on undisturbed samples of natural Ariake clays. The remolded undrained shear strength is predicted using a quantitative expression derived from extensive data of remolded undrained shear strength for a number of soils compiled from resources in the literature. The sensitivity of natural Ariake clays derived from the ratio of half of unconfined compressive strength for undisturbed samples to remolded undrained shear strength is found to be affected by both natural water content and normalized water content that is defined as the ratio of natural water content to liquid limit. The smaller the natural water content, the higher the sensitivity is at the same normalized water content. At the same natural water content, the larger the normalized water content, the higher the sensitivity is.  相似文献   

3.
ABSTRACT

Natural Ariake clays are characterized by high sensitivity. In this study, the mechanism and the factors controlling undrained shear strengths of both undisturbed and remolded Ariake clays are discussed. A series of unconfined compressive tests were performed on undisturbed samples of natural Ariake clays. The remolded undrained shear strength is predicted using a quantitative expression derived from extensive data of remolded undrained shear strength for a number of soils compiled from resources in the literature. The sensitivity of natural Ariake clays derived from the ratio of half of unconfined compressive strength for undisturbed samples to remolded undrained shear strength is found to be affected by both natural water content and normalized water content that is defined as the ratio of natural water content to liquid limit. The smaller the natural water content, the higher the sensitivity is at the same normalized water content. At the same natural water content, the larger the normalized water content, the higher the sensitivity is.  相似文献   

4.
The axial friction response of subsea pipelines in soft clays is a very important aspect for designers of subsea pipelines but the response is not well understood so far. There is a pressing need for the comprehension of the response. In this paper, model tests are performed using full-scale pipes coated with polyethylene (PE) to study the effects of the set-up period, the pipe diameter, the buried depth of the pipe, the shear strength of soft clays and the loading rate on the axial friction response of pipelines in soft clays. The variations of the axial friction coefficient are analyzed using the effective stress method based on model test results. The results show that the axial friction resistance increases with the increasing pipe diameter but the effect of the pipe diameter on the axial friction coefficient can be neglected. The ultimate axial resistance also increases with the increase of the buried depth of pipelines, the undrained shear strength of soft clays and the loading rate. The axial friction coefficient increases with the increasing loading rate. However, the axial friction coefficient decreases with the increasing buried depth. The method to determine the axial friction coefficient is developed by analyzing model test results, which considers the effects of the diameter, the buried depth, the undrained shear strength of soft clays and the loading rate. The study results not only extend the industry data base but also supply a basis to determine the axial friction coefficient of PE-coated pipes in soft clays for ocean engineering geological investigations.  相似文献   

5.
It has been well documented that natural marine Ariake clays are sensitive clays. In this study, extensive data of marine Ariake clays are obtained to investigate the gravitational compression behavior for sensitive clays. Analysis results indicate that the compression behavior of remolded Ariake clays is not different from that of other remolded/reconstituted soils. But natural Ariake clays do not follow the gravitational compression pattern reported by Skempton (1970) for natural sedimentary soils. At a given value of effective overburden pressure, the void ratios of natural Ariake clays are almost independent of liquid limits. Most natural Ariake clays lie above the sedimentation compression line proposed by Burland (1990). When the liquid limit is larger than 90% and the ratio of natural water content over liquid limit ranges 0.8-1.1, the natural Ariake clays lie around the sedimentation compression line. In addition, the natural Ariake clay with higher value of the ratio of natural water content over liquid limit lies above the natural Ariake clay with lower value of the ratio of natural water content over liquid limit. Salt removal is the most probable cause for such a phenomenon.  相似文献   

6.
Chandler proposed the intrinsic strength line to correlate the undrained shear strength of samples one-dimensionally consolidated from slurry with the void index proposed by Burland. The undrained shear strength on the intrinsic strength line is different from the remolded undrained shear strength that is an important parameter for design and construction of land reclamation. The void index is used in this study for normalizing the remolded strength behavior of dredged deposits. A quantitative relationship between remolded undrained shear strength and void index is established based on extensive data of dredged deposits available from sources of literature. Furthermore, the normalized remolded undrained shear strength is compared with intrinsic strength line. The comparison result indicates that the ratio of undrained shear strength on the intrinsic strength line over remolded undrained shear strength increases with an increase in applied consolidated stress.  相似文献   

7.
Abstract

The use of soft clay and dredged marine clays as the construction material is challenging. This is because the high water content, high compressibility and low permeability of the clay causing the instability of ground and structure. This detrimental effect of soft clay can be improved by the cement solidification process, which is relatively cheap and efficient. This paper mainly focuses on the study of improvement on the mechanical behavior of cement mixed marine clay. The soil is reconstituted by using ordinary Portland cement of 5%, 10%, 15% and 20% by its mass. The study reveals that cementation of clay significantly improves the peak and residual strength of soil. Similarly, the primary yield stress of the soil is also improved from 16 to 275?kPa as cement content increases from 5% to 20%, respectively. By using statistical tools, the relationships between various parameters are established, which are very important to define the mechanical behavior of the clay. This study reveals that the yield surface of the solidified marine clay is not a smooth elliptical surface. Rather it is composed of two linear surfaces followed by a log-linear surface which can be modeled by using simple parameters obtained from triaxial tests.  相似文献   

8.
Remolded Undrained Strength of Soils   总被引:12,自引:6,他引:12  
1 .IntroductionManyresearchershaveillustratedthatthesoftmarineclayeysoilsgenerallyshowtheoverconsoli dationratiobeinglargerthanunity ,althoughthesitegeologyindicatesnormalconsolidation (e .g .,Zhangetal.,1 995;HongandTsuchida ,1 999) .Burland (1 990 )illustratedthatthem…  相似文献   

9.
The soft clay of Ariake Bay, in western Kyushu, Japan covers several hundred square kilometers. Ariake clay consists of the principal clay minerals namely smectite, illite, kaolinite and vermiculite, and other minerals in lesser quantity. The percentage of the principal clay mineral can vary significantly. The percent clay size fraction and the salt concentration can also vary significantly. In view of the importance of undrained shear strength in geotechnical engineering practice, its behavior has been studied with respect to variation in salt concentration. Basically two mechanisms control the undrained strength in clays, namely (a) cohesion or undrained strength is due to the net interparticle attractive forces, or (b) cohesion is due to the viscous nature of the double layer water. Concept (a) operates primarily for kaolinitic soil, and concept (b) dominates primarily for montmorillonitic soils. In Ariake clay, different clay minerals with different exchangeable cations and varying ion concentration in the pore water and varying nonclay size fraction are present. In view of this while both concepts (a) and (b) can coexist and operate simultaneously, one of the mechanisms dominates. For Isahaya clay, concept (a), factors responsible for an increase in level of flocculation and attractive forces result in higher undrained strength. Increase in salt concentration increases the remolded undrained strength at any moisture content. For Kubota and Kawazoe clays, concept (b) factors responsible for an expansion of diffuse double layer thickness, resulting in higher viscous resistance, increase the undrained shear strength, that is, as concentration decreases, the undrained strength increases at any moisture content. The liquid limit of Isahaya clay increases with increase in ion concentration and a marginal decrease is seen for both Kubota and Kawazoe clays, and their behavior has been explained satisfactorily.  相似文献   

10.
Despite a number of geotechnical investigations that have been carried out in the Busan new port area of South Korea, the local practicing engineers have been unable to deduce successfully the geotechnical properties of the clays due to their spatial variation. In the area, clay deposits, so-called Pusan clays, are unusually thick, varying from 20 m to 70 m in thickness. For this study, comprehensive geological and geotechnical investigations were carried out with sophisticated sampling techniques, in situ and laboratory tests as well as geological analyses at an additional three locations. As a result of the investigations, it was found that depositional environments are closely related to the relative changes in sea level and have different features depending on location and depth. The clays consist of soft and stiff clays in the upper and the lower layers, respectively, which are classified as normally consolidated and cemented clay. Moreover, most of the geotechnical properties undergo small changes due to their depositional environment. Information about these effects would be quite helpful to understand the spatial variation of geotechnical properties as well as the effect of sample disturbance. Some correlations which reflect the geological history of the deposts were conducted for physical indexes and mechanical properties.  相似文献   

11.
ABSTRACT

Despite a number of geotechnical investigations that have been carried out in the Busan new port area of South Korea, the local practicing engineers have been unable to deduce successfully the geotechnical properties of the clays due to their spatial variation. In the area, clay deposits, so-called Pusan clays, are unusually thick, varying from 20 m to 70 m in thickness. For this study, comprehensive geological and geotechnical investigations were carried out with sophisticated sampling techniques, in situ and laboratory tests as well as geological analyses at an additional three locations. As a result of the investigations, it was found that depositional environments are closely related to the relative changes in sea level and have different features depending on location and depth. The clays consist of soft and stiff clays in the upper and the lower layers, respectively, which are classified as normally consolidated and cemented clay. Moreover, most of the geotechnical properties undergo small changes due to their depositional environment. Information about these effects would be quite helpful to understand the spatial variation of geotechnical properties as well as the effect of sample disturbance. Some correlations which reflect the geological history of the deposts were conducted for physical indexes and mechanical properties.  相似文献   

12.
卞夏  钱森  丁建文 《海洋工程》2015,29(5):745-755
The observations on compressibility of reconstituted clays show that the compression line with a higher initial water content lies above the compression line with a lower initial water content for a given clay. Hence there exists additional void ratio due to initial water contents among virgin compression lines (VCLs) of reconstituted clays. In this paper, the difference in void ratio caused by different initial water contents is investigated based on the empirical equation proposed by Liu and Carter (2000) for describing the differential void ratio at the same stress between natural and reconstituted clays. The mechanism of compressibility of reconstituted clays, when the stress level is larger than the remolded yield stress, is also discussed.  相似文献   

13.
The deformation behavior and shear strength of soft marine clays subjected to wave or traffic loads are different from that in triaxial loading due to the changes of major principal stress direction β and intermediate principal stress coefficient b. To investigate the anisotropy affected by β and b in natural soft marine clay, a series of drained tests were conducted by hollow cylinder apparatus. The principal stress direction relative to vertical direction were maintained constant under an increasing shear stress, with fixed intermediate principal stress coefficient b. The influence of the b and β on anisotropy of typically Wenzhou intact clay is discussed. It was found that octahedral stress–strain relationships expressed anisotropy with different b and β. The friction angle and deviator stress ratio with different b and β were presented to provide guidance for engineering projects in the coastal zone.  相似文献   

14.
-A nonlinear model for the stress-strain behaviour of normally consolidated clays is presented based on the experimental results. It is indicated that the volume strain under pure shear is a power function of stress ratio and the normalized stress-strain curve is a standard hyperbola. According to the model, the coefficient of pore pressure induced by shear stress and the critical stress ratio which governs the influence of the negative dilatancy are suggested. It is shown by some triaxial tests that the proposed model can be used to study the negative dilatancy and to describe the stress-strain-pore pressure adequately for soft clays.  相似文献   

15.
A series of centrifuge tests were performed to investigate the response of a free-head monopile due to cyclic lateral loading in normally consolidated clay. By linking the maximum reaction-force point of the final cycles in all tests with various amplitudes, a postcyclic reaction-force curve is obtained, which can be used to assess the postcyclic remolded lateral stiffness. To numerically analyze the tests, a strength degradation model of the clay is calibrated by the T-bar cyclic test. However, this model is T-bar-dependent, which is unable to capture the degrading behavior of the monopile stiffness. Thus, a modification approach is proposed based on the upper bound theory, and the modified model is further combined with finite element analysis to simulate the cyclic behavior of the model pile. The simulation results show similar degrading trend and consistent postcyclic remolded lateral stiffness with the model tests. This further demonstrates that the remolded lateral stiffness mainly depends on the soil remolded strength, which is one of the parameters calibrated by the T-bar tests. Based on this finding, a simplified numerical analysis is proposed, which can predict the postcyclic reaction-force curve by performing one monotonic loading instead of modeling the whole process of cyclic loading.  相似文献   

16.
Abstract

This paper presents a novel elasto-viscoplastic constitutive formulation based on the isotache concepts and the Nishihara model. Incorporating a novel viscoelastic body to include the delay elastic deformation of marine soft clays under the external load, the proposed model is used to evaluate the theories of consolidation-creep coupling, strain rate dependency and stress relaxation of saturated marine soft clays, and hence, the methodology used to determine the parameters of the model is discussed. Ningbo marine soft clay is selected as an example to interpret the determination of the model parameters on a field scale. A series of conventional oedometer tests are conducted as well. Eventually, we utilize the model to simulate several kinds of rheological tests, including one-dimensional (1-D) long-term compression tests on Ningbo marine soft clays, 1-D constant rate of strain (CRS) tests on Batiscan clays and 1-D stress relaxation tests on Hong Kong marine deposits. These findings indicate good agreement between the computational and experimental results, suggesting the given model can provide reliable forecasts for the rheological characteristics of marine soft clays.  相似文献   

17.
Critical State Sedimentation Line of Soft Marine Clays   总被引:1,自引:4,他引:1  
HONG  Zhen-shun 《中国海洋工程》2003,17(4):631-640
The compression behavior responsible for unity sensitivity is very valuable in quantitative assessment of the effects of soil structure on the compression behavior of soft marine sediments. However, the quantitative assessment of such effects is not possible because of unavailability of the formula for the compression curve of marine sediments responsible for unit sensitivity. In this study, the relationship between the remolded state and the conventional critical state line is presented in the deviator stress versus mean effective stress plot. The analysis indicates that the remolded state is on the conventional critical state line obtained at a relatively small strain. Thus, a unique critical state sedimentation line for marine sediments of unit sensitivity is proposed. The comparison between the critical state sedimentation line proposed in this study and the existing normalized consolidation curves obtained from conventional oedometer tests on remolded soils or reconstituted soils explains well the  相似文献   

18.
Although extensive research has been performed on the mechanical properties of cement-stabilized clays, quite a few attempts have been made on the compression behavior of remolded cement-admixed clays. The results from oedometer tests have been discussed to investigate the compressibility of remolded cement-admixed clays, taking into consideration cement amount and curing time. The findings show that the difference in shape and position of compression curves is attributed to cement amount and curing time. Most compression index (Cc) values of remolded cement-admixed clays are greater than those of untreated clay due to the presence of remolded yield stress σ′yr that is closely related to initial water content and clay fabric. Based on the obtained test data, the relationships of Cc vs. e0, Cc vs. w0, Cc vs. e1, Cc vs. eyr, and σ′yr vs. eyr are preliminarily discussed and quantitatively established. Especially, an important divergence of void index Iv at effective stress σ′v less than remolded yield stress σ′yr can be observed at different cement amounts and curing durations. Being independent on cement amount, curing time, and initial state of soil, an excellent convergence occurs at stress σ′v greater than yield stress σ′yr. The normalized compression curves of Iv vs. σ′v at σ′v?>?σ′y can be expressed by a unique line that agrees well with intrinsic compression line (ICL) and extended ICL.  相似文献   

19.
鉴于海底浅表层软黏土强度测试精细化程度不足的现状,引入流体测试中的流变仪,对青岛海域海底浅表层软黏土开展多组原状和重塑试样的不排水剪切强度试验,通过对比静力触探和微型十字板测试结果,验证了流变仪测试方法的有效性。基于流变仪试验结果,揭示了海底软黏土原状和重塑状态下不排水剪切破坏模式,探讨了海底软黏土不排水剪切强度和灵敏度随埋深及液性指数的发展演变趋势,评价了软黏土的结构性特征。最后,引入含水率与液限之比对海底浅表层软黏土重塑不排水剪切强度进行了归一化分析,为近海海洋开发活动提供技术支撑。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号