首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In actual engineering, soft clay foundations are in drained or partial drained conditions, it would be useful to establish reasonable constitutive relationship and provide guidance for engineering projects. A hollow cylinder apparatus is used to investigate the anisotropic deformation behavior of natural soft marine clay influenced by intermediate principal stress coefficient b and principal stress direction α. Tests were conducted by maintaining a fixed principal stress direction α relative to the vertical direction, while keeping the intermediate principal stress coefficient b constant. It was found that the anisotropic deformation behavior of natural soft clay is merely influenced by major principal stress direction α, but significantly influenced by intermediate principal stress coefficient b.  相似文献   

2.
In this article, the mechanical behavior of a Jiangsu marine clay was investigated by drained triaxial tests, traixial rheological tests, and one-dimensional compression and swelling tests. A visco-plastic model, the Bingham model combining two yield surfaces model, was proposed to describe the time-dependent deformation behaviors of the marine clay. The governing equation of Biot's consolidation theory for the visco-plastic soil is solved using a finite element code which incorporates the visco-plastic model. Using the finite element method, settlements of a typical embankment on the Lianxu expressway in China are calculated. Settlement calculations using the visco-plastic model are in agreement with the measured settlements in the field. The results demonstrate that the visco-plastic model is appropriate for calculating the visco-plastic deformations of Jiangsu marine clay. Theoretical and experimental studies show that the visco-plastic deformation of Jiangsu marine clay is substantial.  相似文献   

3.
This article presents a case history of the performance of a full-scale test embankment constructed on a marine soft clay deposit improved by prefabricated vertical drains (PVDs) in the east of China. For analyzing the subsoil behavior, a 2D FEM model is established, in which the PVD-improved effect is considered by a simplified method of equivalent vertical hydraulic conductivity. The calculated results can predict the settlement behavior well; however, the FEM gives an underestimate for the value of excess pore pressures and it predicts similar values for the dissipation rate of excess pore pressures. The measured undrained shear strength of subsoil, Cu, is compared with the predicted value based on Ladd’s empirical equation and the Modified Cam-Clay model (MCC). The shear strength predicted by Ladd’s equation agrees well with the measured value, whereas the MCC overestimates the ability to improve subsoil shear strength during consolidation. The undrained shear strength of subsoil, Cu, increased as the construction progressed, and the shear strength incremental ratio, ΔCup′, decreased slightly with the degree of consolidation, U.  相似文献   

4.
Although extensive research has been performed on the mechanical properties of cement-stabilized clays, quite a few attempts have been made on the compression behavior of remolded cement-admixed clays. The results from oedometer tests have been discussed to investigate the compressibility of remolded cement-admixed clays, taking into consideration cement amount and curing time. The findings show that the difference in shape and position of compression curves is attributed to cement amount and curing time. Most compression index (Cc) values of remolded cement-admixed clays are greater than those of untreated clay due to the presence of remolded yield stress σ′yr that is closely related to initial water content and clay fabric. Based on the obtained test data, the relationships of Cc vs. e0, Cc vs. w0, Cc vs. e1, Cc vs. eyr, and σ′yr vs. eyr are preliminarily discussed and quantitatively established. Especially, an important divergence of void index Iv at effective stress σ′v less than remolded yield stress σ′yr can be observed at different cement amounts and curing durations. Being independent on cement amount, curing time, and initial state of soil, an excellent convergence occurs at stress σ′v greater than yield stress σ′yr. The normalized compression curves of Iv vs. σ′v at σ′v?>?σ′y can be expressed by a unique line that agrees well with intrinsic compression line (ICL) and extended ICL.  相似文献   

5.
The use of the piezocone penetration test (CPTU) in a geotechnical site investigation offers direct field measurement on stratigraphy and soil behavior. Compared with some traditional investigation methods, such as drilling, sampling and field inspecting method or laboratory test procedures, CPTU can greatly accelerate the field work and hereby reduce corresponding operation cost. The undrained shear strength is a key parameter in estimation of the stability of natural slopes and deformation of embankments in soft clays. This paper provides the measurements of in situ CPTU, field vane testing and laboratory undrained triaxial testing of Lianyungang marine clay in Jiangsu province of China. Based on the literature review of previous interpretation methods, this paper presents a comparison of field vane testing measurements to CPTU interpretation results. The undrained shear strength values from both the field vane tests and cone penetration resistances are lowest at the mid-depths of the marine clay layers, and the excess pore water pressures are highest at the mid-depths of the marine clay layers, indicating that the marine clay layer is underconsolidated.  相似文献   

6.
It has been well documented that natural marine Ariake clays are sensitive clays. In this study, extensive data of marine Ariake clays are obtained to investigate the gravitational compression behavior for sensitive clays. Analysis results indicate that the compression behavior of remolded Ariake clays is not different from that of other remolded/reconstituted soils. But natural Ariake clays do not follow the gravitational compression pattern reported by Skempton (1970) for natural sedimentary soils. At a given value of effective overburden pressure, the void ratios of natural Ariake clays are almost independent of liquid limits. Most natural Ariake clays lie above the sedimentation compression line proposed by Burland (1990). When the liquid limit is larger than 90% and the ratio of natural water content over liquid limit ranges 0.8-1.1, the natural Ariake clays lie around the sedimentation compression line. In addition, the natural Ariake clay with higher value of the ratio of natural water content over liquid limit lies above the natural Ariake clay with lower value of the ratio of natural water content over liquid limit. Salt removal is the most probable cause for such a phenomenon.  相似文献   

7.
Marine fine-grained soils are well known for their compressibility, which is typically measured and reported in terms of compression index, Cc. The difficulties associated with measuring Cc have resulted in growing research interest in statistics-based estimates (i.e., correlation equations). Although many empirical and semiempirical correlations exist for estimating Cc, most available correlations are based on either data from nonmarine soils or data collected from Japanese and Korean marine clays. Thus, there are few correlations for marine clays from other parts of the world. In the present study, two independent databases which contain a total of 1,000 data points from 170 different sites worldwide are used to build and validate statistically significant correlations for estimating compression index of marine soils. The results of this study suggest that (1) the proposed correlation equations provide quite good estimates of Cc for marine soils with different stress histories and sensitivities and (2) most of the existing models have unacceptable performance when they are applied to marine soils.  相似文献   

8.
Based on the geotechnical investigation data of artificial island at Dalian Offshore Airport, the spatial distribution of the physical and mechanical properties of deposit soils was statistically analyzed. The field investigation revealed that the deposit soils could be subdivided into three strata, i.e., the top marine deposit stratum, middle marine-continental deposit stratum, and deep continental deposit stratum. Field and laboratory test results demonstrated that the marine deposit soils had high water content (31.2% < wn < 63.10%), large void ratio (0.88 < e0 < 1.75), low permeability (kv < 10?6 cm/s), flow-plastic state (IL > 1), under consolidated (OCR < 1), high compressibility (Es < 4 MPa), low shear strength (11.7 kPa < cu < 43.7 kPa), and low bearing capacity (0 < fak < 120 kPa), they could not be used as natural foundation. The marine-continental and continental deposits were normally consolidated to over-consolidated (OCR ≥ 1), medium compressibility (4 MPa < Es < 20 MPa), high shear strength (29.7 kPa < cu < 73.7 kPa), and high bearing capacity (fak > 120 kPa). In addition, regression analysis results showed that the compression ratio was positively correlated with the natural water content, the coefficient of vertical consolidation was negatively correlated with the plasticity index, and the coefficient of vertical permeability was positively correlated with the initial void ratio. The results of the field and laboratory tests were synthesized to provide a basis for reclamation design.  相似文献   

9.
Abstract

One method straightforwardly describing the creep degradation behavior of soft marine clay is proposed and applied to the embankment modeling. Based on the experimental phenomena, the evolution of creep coefficient of soft structured clay is identified comparing with reconstituted clay, and formulated using the creep coefficient of reconstituted clay and a creep-based structure parameter relating to the inter-particle bonding. The contributions of inter-particle bonding and debonding to creep coefficient are thus considered and the creep degradation behavior is then captured straightforwardly. The creep coefficient is extended to 3D and incorporated into a newly developed elasto-viscoplastic model to describe the creep degradation in a direct way. Based on the correlations, the liquid limit is adopted as the viscosity related input parameter. The model is derived using Newton–Raphson algorithm and implemented into a Finite Element code for coupled consolidation analysis. The general applicability on creep degradation of the model is validated by simulating 1D creep, 1D CRS (constant strain rate) and 3D undrained creep tests. Finally, the enhanced model considering creep degradation is applied and validated by simulating one test embankment and one test fill on marine deposited soft sensitive clays.  相似文献   

10.
A very soft ground constructed by dredging and hydraulic fill has characteristics such as high water content, high initial void ratio, and very little effective stress. Estimating, with thorough considerations about consolidation properties and the initial stress associated with each layer's distinctive stress history, is essential in order to predict a reasonable consolidation settlement of soft ground. By investigating a construction project for national industrial complexes at a coastal area in southern Korea that experienced reclamation and ground improvement adapting PVD, various laboratory tests to find consolidation properties were performed with undisturbed samples collected from the entire depth of the marine clay fill layer and original clay layer. Through the investigation, this report suggests relationships of heterogeneity of permeability in both vertical and horizontal directions, void ratio-effective stress, and void ratio-permeability. Considering the fact that the original clay layer was under the process of consolidation by load due to hydraulic fill from the top, estimating the appropriate initial stress of each layer is critical to predict the future process of consolidation settlement determined by time. In order to obtain the initial stresses of two layers with different stress histories related to consolidation, cone penetration and dissipation tests were conducted.  相似文献   

11.
Nansha clay is an interactive marine and terrestrial deposited soft clay that is widely spread in Guangzhou, Pearl River Delta, China. To avoid excessive settlement after construction, there is a need for better quantifying the time-dependent deformation of the soft clay. This paper presents a preliminary study to predict the one-dimensional compression of Nansha clay using fractional derivatives. A fractional Merchant model was introduced to describe the time-dependent settlement, and analytical solutions were obtained in terms of the Mittag-Leffler function. The oedometer test results were presented to validate this model. Compared with classical rheological models, the fractional derivative-based model enabled close estimation of the one-dimensional compression with fewer parameters. The meaning of the order of fractional derivative and its relationship with the clay physical properties were explored. It shows that a smaller value of this order corresponded to a higher coefficient of consolidation and a lower coefficient of secondary consolidation. The amplitude of both the primary and secondary consolidation of clay may be estimated quantitatively by the order of fractional derivative. Taken together, these results may open up new avenues for theoretical and empirical modeling of rheological phenomena in clay using fractional derivatives.  相似文献   

12.
卞夏  钱森  丁建文 《海洋工程》2015,29(5):745-755
The observations on compressibility of reconstituted clays show that the compression line with a higher initial water content lies above the compression line with a lower initial water content for a given clay. Hence there exists additional void ratio due to initial water contents among virgin compression lines (VCLs) of reconstituted clays. In this paper, the difference in void ratio caused by different initial water contents is investigated based on the empirical equation proposed by Liu and Carter (2000) for describing the differential void ratio at the same stress between natural and reconstituted clays. The mechanism of compressibility of reconstituted clays, when the stress level is larger than the remolded yield stress, is also discussed.  相似文献   

13.
Abstract

It has been observed that earthquake‐induced settlement depends on the excess pore water pressure accumulated during an earthquake. In particular, in the case where a clay layer is overconsolidated, excess pore water pressure is produced and settlement occurs by dissipation of the excess pore water pressure, which is very large in comparison with the coefficient of secondary compression. Therefore, if the settlement of clay ground induced by secondary compression becomes a serious problem, careful consideration of the earthquake‐induced settlement is needed. In this article, the settlement characteristics of a clay layer induced by cyclic shear are discussed, including the effects of loading period, the threshold shear strain below which no excess pore pressure or no settlement takes place, and the relationships between uniform shear strain cycles and irregular strain‐time histories. Then a calculation procedure for estimating the earthquake‐induced settlement is developed and applied to three soil profile cases, including the clay layers in Mexico City and Osaka Bay in Japan. In the case of a soil profile in Mexico City, settlements of about 0–3 cm are estimated and these values agree reasonably with the leveling results for the Mexico City earthquake of 1985. Furthermore, it is pointed out that the settlement induced by earthquakes is considerably affected by differences in the accelerograms.  相似文献   

14.
Abstract

This paper presents a novel elasto-viscoplastic constitutive formulation based on the isotache concepts and the Nishihara model. Incorporating a novel viscoelastic body to include the delay elastic deformation of marine soft clays under the external load, the proposed model is used to evaluate the theories of consolidation-creep coupling, strain rate dependency and stress relaxation of saturated marine soft clays, and hence, the methodology used to determine the parameters of the model is discussed. Ningbo marine soft clay is selected as an example to interpret the determination of the model parameters on a field scale. A series of conventional oedometer tests are conducted as well. Eventually, we utilize the model to simulate several kinds of rheological tests, including one-dimensional (1-D) long-term compression tests on Ningbo marine soft clays, 1-D constant rate of strain (CRS) tests on Batiscan clays and 1-D stress relaxation tests on Hong Kong marine deposits. These findings indicate good agreement between the computational and experimental results, suggesting the given model can provide reliable forecasts for the rheological characteristics of marine soft clays.  相似文献   

15.
Abstract

In the coastal area, nearshore and offshore structures have been or will be built in marine soft clay deposits that have experienced long-term cyclic loads. Therefore, the mechanical behavior of marine clay after long-term cyclic loading needs to be investigated. In this research, a series of monotonic and cyclic triaxial tests were carried out to investigate the postcyclic mechanical behavior of the marine soft clay. The postcyclic water pore pressure, shear strength and secant stiffness are discussed by comparing the results with the standard monotonic test (without cyclic loading). It is very interesting that the postcyclic behavior of marine soft clay specimen is similar to the behavior of overconsolidated specimen, that is, the specimen shows apparent overconsolidation behavior after long-term cyclic loading. Then relationship between the overconsolidation ratio and the apparent overconsolidation ratio is established on the basis of the theory of equivalent overconsolidation. Finally, a validation formula is proposed which can predict the postcyclic undrained shear strength of marine soft clay.  相似文献   

16.
Undrained shear strength is a fundamental parameter for estimating the stability of soft soils. This study explores the relationship between undrained shear strength, void ratio, and shear wave velocity for saturated and normally consolidated clay specimens. The undrained shear strength void ratio-shear wave velocity relationship was correlated to empirically determined parameters of selected marine clay specimens. To verify the proposed relationship between undrained shear strength and shear wave velocity, in situ flat dilatometer tests were used for determining the undrained shear strength, and downhole tests were used to assess the shear wave velocity on a natural soil deposit at various depths. The undrained shear strength estimated from the in situ shear wave velocities was compared to the undrained shear strength obtained in the field. The results show that the inferred undrained shear strength yield similar values and follow the same trends as the in situ undrained shear strength data. This method using shear wave velocity can help to nondestructively estimate the undrained shear strength of soft soils in the field and be used in both on-shore and off-shore geotechnical engineering projects.  相似文献   

17.
The deformation behavior and shear strength of soft marine clays subjected to wave or traffic loads are different from that in triaxial loading due to the changes of major principal stress direction β and intermediate principal stress coefficient b. To investigate the anisotropy affected by β and b in natural soft marine clay, a series of drained tests were conducted by hollow cylinder apparatus. The principal stress direction relative to vertical direction were maintained constant under an increasing shear stress, with fixed intermediate principal stress coefficient b. The influence of the b and β on anisotropy of typically Wenzhou intact clay is discussed. It was found that octahedral stress–strain relationships expressed anisotropy with different b and β. The friction angle and deviator stress ratio with different b and β were presented to provide guidance for engineering projects in the coastal zone.  相似文献   

18.
Abstract

Vacuum preloading with plastic vertical drains has been applied widely to accelerating consolidation of dredger fills. As a result of nonlinear variations in permeability and compression during the process of dredger fill consolidation, an axisymmetric consolidation method for dredger fill treatment using PVD with vacuum is proposed with varied Ru. The effects of Cc/Ck and the loading ratio on the proposed method are discussed. It is found that the difference between the traditional method and proposed method is obvious in the case of large loading ratio (such as dredger fill treated with vacuum preloading). The degree of consolidation in the early phase of consolidation obtained using the proposed method was less than that obtained using the traditional method and the degree of consolidation in the later phase of consolidation obtained using the modified expression was larger than that obtained using the traditional method, as Cc/Ck?<?1. However, opposite trends were observed when Cc/Ck?>?1, the proposed method was closer to the actual situation. The applicability of the proposed method was verified by laboratory and field tests. For the consolidation of dredger fill with high water content, we recommend the adoption of the proposed method for calculating the degree of consolidation.  相似文献   

19.
A remarkable combined dry jet mixing (DJM) and prefabricated vertical drains (PVDs) method was used to enhance the performance for soft ground improvement. In the combined method, PVDs are first installed and then DJM columns are installed between the PVDs at larger spacing. This combined method improves the effectiveness of the ground improvement and creates a more economical solution. This paper presents a case study of the combined method for marine clay improvement in Lianyugang of China. The excess pore water pressure in soils created by the installation of DJM columns with and without PVDs was monitored and compared. In situ standard penetration tests were conducted in the DJM columns and before-and-after piezocone penetration tests were performed in soils surrounding the columns. Long-term settlement monitoring under embankment loading was carried out for the ground improved by combined method and DJM method alone. The field tests, settlement monitoring and economic benefit analysis results demonstrated that the DJM-PVD method is technologically sound and cost-effective as compared with the conventional DJM method.  相似文献   

20.
This article presents a case history of determination of effective depth of prefabricated vertical drains (PVDs) under embankment loading on a very soft clay deposit in central China, near Jiujiang, Jiangxi Province. The height of the embankment was 5.3 m and construction time was about one year. The PVDs were installed to a depth of 8.5 m at a spacing of 1.5 m in a triangular pattern. Field observations and the finite element method (FEM) were employed to analyze the performance of the soft deposit during embankment construction. The influential depth of the embankment loading was evaluated based on settlement, excess pore pressure, and stress increase in subsoil, both from the observed data and FEM analysis. The effective PVD depth was determined in the following ways: (1) the depth of 5% subsoil settlement of surface settlement; (2) vertical stress increase in subsoil of 25% in-situ stress; and (3) consolidation time/PVD depth relation by FEM. Based on the analysis, the effective depth of PVDs was determined to be between 10 and 12.8 m for this field case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号