首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Abstract

Geophysical evidence indicating the presence of gas hydrate has been found in the Ulleung Basin, which lies off the east coast of the Korean Peninsula; however, hydrate distribution in the basin is not well understood. Logging-while-drilling data for 13 sites in the Ulleung Basin, East Sea, were obtained to investigate the distribution pattern of gas hydrate. Most of the sites yielded log data indicating the presence of gas hydrate. Prominent fractures (both resistive and conductive fractures) were clearly identified on the resistivity borehole images, particularly at seismic chimney sites. Resistive fractures, which contain large amounts of gas hydrate, are prominent in the seismic chimney sites. The strike and dip of each fracture was calculated and displayed on a stereographic plot and rosette diagram. From the fracture orientations on the stereographic plots, the maximum horizontal stress is NW–SE, reflecting the regional stress regime around the Ulleung Basin, although the fracture orientations are broadly distributed, indicating that the fracture pattern is not well-ordered on the rosette diagram. The fracture dips are between 36.46° and 63.66°; the range of dip azimuths is 0.94°–359°, and exhibit little change with depth. The dip azimuths are generally westerly to southwesterly.  相似文献   

2.
Knowledge of the full present-day stress tensor and pore pressure has significant applications in the exploration and production of conventional and unconventional hydrocarbon reservoirs. The Darling Basin of New South Wales, Australia, is an old sedimentary basin (Late Cambrian/Silurian to Early Carboniferous) in which there was limited information about the present-day stress field prior to this study. In this paper we evaluate the contemporary stress field of the Darling Basin using a dataset from recent exploration wells and perform a geomechanical risk assessment with respect to borehole stability, fracture/fault generation and reactivation. Our interpretations of borehole failures in borehole image logs reveal a prevailing east-west orientation of the maximum horizontal stress throughout the Darling Basin. The estimates of the magnitudes for the vertical, minimum and maximum horizontal stress in the studied wells indicate a transition between thrust and strike-slip faulting stress regime at 600–700 m depths, where the magnitude of vertical stress and minimum horizontal stress are close to each other. However, the presence of borehole breakouts and drilling-induced tensile fractures, that we observe in the image logs at greater depths (900–2100 m) indicate a transition into a strike-slip tectonic stress regime below a depth range of approximately 700–900 m. These findings are in agreement with overcoring stress measurements east and west of the investigated wells. Furthermore, there are several Neogene-to-Recent geological structures in the study area that indicate thrust faulting with an east-west oriented maximum horizontal stress orientation around this old sedimentary basin. The consistency between the orientation of maximum horizontal stress determined from wellbore data and neotectonic structures is significant, and implies that horizontal stress orientations derived from very recent geological features may be valuable inputs to geomechanical models in the absence of wellbore or other data. However, the recent surface geological structures suggest a thrust faulting stress regime that is in slight contrast to the transition between thrust and strike-slip stress regime (SH > Sh ∼ Sv) indicated by petroleum data, and highlights a potential pitfall of using neotectonic structures in geomechanical models. In particular, careful attention and verification should be made when using neotectonic structures for input, calibration or confirmation of geomechanical models, especially in intraplate tectonic settings such as Australia.  相似文献   

3.
New interest in the potential for shale gas in the United Kingdom (UK) has led to renewed exploration for hydrocarbons in the Carboniferous age Bowland–Hodder shales under Central and Northern England. Following an incidence of induced seismicity from hydraulic fracturing during 2010 at Preese Hall, Lancashire, the publically available databases quantifying the in-situ stress orientation of the United Kingdom have shown to be inadequate for safe planning and regulation of hydraulic fracturing. This paper therefore reappraises the in-situ stress orientation for central and northern England based wholly on new interpretations of high-resolution borehole imaging for stress indicators including borehole breakouts and drilling-induced tensile fractures. These analyses confirm the expected north northwest – south southeast orientation of maximum horizontal in-situ stress identified from previous studies (e.g. Evans and Brereton, 1990). The dual-caliper data generated by Evans and Brereton (1990) yields a mean SHmax orientation of 149.87° with a circular standard deviation of 66.9°. However the use of borehole imaging without incorporation of results from older dual-caliper logging tools very significantly decreases the associated uncertainty with a mean SHmax orientation of 150.9° with a circular standard deviation of 13.1°.The use of high-resolution borehole imaging is thus shown to produce a more reliable assessment of in-situ stress orientation. The authors therefore recommend that the higher resolution of such imaging tools should therefore be treated as a de-facto standard for assessment of in-situ stress orientation prior to rock testing. Use of borehole imaging should be formally instituted into best practice or future regulations for assessment of in-situ stress orientation prior to any hydraulic fracturing operations in the UK.  相似文献   

4.
Gas hydrate saturation estimates were obtained from an Archie-analysis of the Logging-While-Drilling (LWD) electrical resistivity logs under consideration of the regional geological framework of sediment deposition in the Ulleung Basin, East Sea, of Korea. Porosity was determined from the LWD bulk density log and core-derived values of grain density. In situ measurements of pore-fluid salinity as well as formation temperature define a background trend for pore-fluid resistivity at each drill site. The LWD data were used to define sets of empirical Archie-constants for different depth-intervals of the logged borehole at all sites drilled during the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2). A clustering of data with distinctly different trend-lines is evident in the cross-plot of porosity and formation factor for all sites drilled during UBGH2. The reason for the clustering is related to the difference between hemipelagic sediments (mostly covering the top ∼100 mbsf) and mass-transport deposits (MTD) and/or the occurrence of biogenic opal. For sites located in the north-eastern portion of the Ulleung Basin a set of individual Archie-parameters for a shallow depth interval (hemipelagic) and a deeper MTD zone was achieved. The deeper zone shows typically higher resistivities for the same range of porosities seen in the upper zone, reflecting a shift in sediment properties. The presence of large amounts of biogenic opal (up to and often over 50% as defined by XRD data) was especially observed at Sites UBGH2-2_1 and UBGH2-2_2 (as well as UBGH1-9 from a previous drilling expedition in 2007). The boundary between these two zones can also easily be identified in gamma-ray logs, which also show unusually low readings in the opal-rich interval. Only by incorporating different Archie-parameters for the different zones a reasonable estimate of gas hydrate saturation was achieved that also matches results from other techniques such as pore-fluid freshening, velocity-based calculations, and pressure-core degassing experiments. Seismically, individual boundaries between zones were determined using a grid of regional 2D seismic data. Zoning from the Archie-analysis for sites in the south-western portion of the Ulleung Basin was also observed, but at these sites it is linked to individually stacked MTDs only and does not reflect a mineralogical occurrence of biogenic opal or hemipelagic sedimentation. The individual MTD events represent differently compacted material often associated with a strong decrease in porosity (and increase in density), warranting a separate set of empirical Archie-parameters.  相似文献   

5.
The Gas Hydrate Research and Development Organization (GHDO) of Korea successfully accomplished both coring (hydraulic piston and pressure coring) and logging (logging-while-drilling, LWD, and wireline logging) to investigate the presence of gas hydrate during the first deep drilling expedition in the Ulleung Basin, East Sea of Korea (referred to as UBGH1) in 2007. The LWD data from two sites (UBGH1-9, UBGH1-10) showed elevated electrical resistivity (>80 Ω-m) and P-wave velocity (>2000 m/s) values indicating the presence of gas hydrate. During the coring period, the richest gas hydrate accumulation was discovered at these intervals. Based on log data, the occurrence of gas hydrate is primarily controlled by the presence of fractures. The gas hydrate saturation calculated using Archie’s relation shows greater than 60% (as high as ∼90%) of the pore space, although Archie’s equation typically overestimates gas hydrate saturation in near-vertical fractures. The saturation of gas hydrate is also estimated using the modified Biot-Gassmann theory (BGTL) by Lee and Collett (2006). The saturation values estimated rom BGTL are much lower than those calculated from Archie’s equation. Based on log data, the hydrate-bearing sediment section is approximately 70 m (UBGH1-9) to 130 m (UBGH1-10) in thickness at these two sites. This was further directly confirmed by the recovery of gas hydrate samples and pore water freshening collected from deep drilling core during the expedition. LWD data also strongly support the interpretation of the seismic gas hydrate indicators (e.g., vent or chimney structures and bottom-simulating reflectors), which imply the probability of widespread gas hydrate presence in the Ulleung Basin.  相似文献   

6.
《Marine and Petroleum Geology》2012,29(10):1979-1985
The Gas Hydrate Research and Development Organization (GHDO) of Korea successfully accomplished both coring (hydraulic piston and pressure coring) and logging (logging-while-drilling, LWD, and wireline logging) to investigate the presence of gas hydrate during the first deep drilling expedition in the Ulleung Basin, East Sea of Korea (referred to as UBGH1) in 2007. The LWD data from two sites (UBGH1-9, UBGH1-10) showed elevated electrical resistivity (>80 Ω-m) and P-wave velocity (>2000 m/s) values indicating the presence of gas hydrate. During the coring period, the richest gas hydrate accumulation was discovered at these intervals. Based on log data, the occurrence of gas hydrate is primarily controlled by the presence of fractures. The gas hydrate saturation calculated using Archie’s relation shows greater than 60% (as high as ∼90%) of the pore space, although Archie’s equation typically overestimates gas hydrate saturation in near-vertical fractures. The saturation of gas hydrate is also estimated using the modified Biot-Gassmann theory (BGTL) by Lee and Collett (2006). The saturation values estimated rom BGTL are much lower than those calculated from Archie’s equation. Based on log data, the hydrate-bearing sediment section is approximately 70 m (UBGH1-9) to 130 m (UBGH1-10) in thickness at these two sites. This was further directly confirmed by the recovery of gas hydrate samples and pore water freshening collected from deep drilling core during the expedition. LWD data also strongly support the interpretation of the seismic gas hydrate indicators (e.g., vent or chimney structures and bottom-simulating reflectors), which imply the probability of widespread gas hydrate presence in the Ulleung Basin.  相似文献   

7.
Gas hydrate was discovered in the Krishna–Godavari (KG) Basin during the India National Gas Hydrate Program (NGHP) Expedition 1 at Site NGHP-01-10 within a fractured clay-dominated sedimentary system. Logging-while-drilling (LWD), coring, and wire-line logging confirmed gas hydrate dominantly in fractures at four borehole sites spanning a 500 m transect. Three-dimensional (3D) seismic data were subsequently used to image the fractured system and explain the occurrence of gas hydrate associated with the fractures. A system of two fault-sets was identified, part of a typical passive margin tectonic setting. The LWD-derived fracture network at Hole NGHP-01-10A is to some extent seen in the seismic data and was mapped using seismic coherency attributes. The fractured system around Site NGHP-01-10 extends over a triangular-shaped area of ∼2.5 km2 defined using seismic attributes of the seafloor reflection, as well as “seismic sweetness” at the base of the gas hydrate occurrence zone. The triangular shaped area is also showing a polygonal (nearly hexagonal) fault pattern, distinct from other more rectangular fault patterns observed in the study area. The occurrence of gas hydrate at Site NGHP-01-10 is the result of a specific combination of tectonic fault orientations and the abundance of free gas migration from a deeper gas source. The triangular-shaped area of enriched gas hydrate occurrence is bound by two faults acting as migration conduits. Additionally, the fault-associated sediment deformation provides a possible migration pathway for the free gas from the deeper gas source into the gas hydrate stability zone. It is proposed that there are additional locations in the KG Basin with possible gas hydrate accumulation of similar tectonic conditions, and one such location was identified from the 3D seismic data ˜6 km NW of Site NGHP-01-10.  相似文献   

8.
Analysis of CTD data from four CREAMS expeditions carried out in summers of 1993–1996 produces distinct T-S relationships for the western and eastern Japan Basin, the Ulleung Basin and the Yamato Basin. T-S characteristics are mainly determined by salinity as it changes its horizontal pattern in three layers, which are divided by isotherms of 5°C and 1°C; upper warm water, intermediate water and deep cold water. Upper warm water is most saline in the Ulleung Basin and the Yamato Basin. Salinity of intermediate water is the highest in the eastern Japan Basin. Deep cold water has the highest salinity in the Japan Basin. T-S curves in the western Japan Basin are characterized by a salinity jump around 1.2–1.4°C in the T-S plane, which was previously found off the east coast of Korea associated with the East Sea Intermediate Water (Cho and Kim, 1994). T-S curves for the Japan Basin undergo a large year-to-year variation for water warmer than 0.6°C, which occupies upper 400 m. It is postulated that the year-to-year variation in the Japan Basin is caused by convective overturning in winter. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Mass-transport-deposits (MTDs) and hemipelagic mud interbedded with sandy turbidites are the main sedimentary facies in the Ulleung Basin, East Sea, offshore Korea. The MTDs show similar seismic reflection characteristics to gas-hydrate-bearing sediments such as regional seismic blanking (absence of internal reflectivity) and a polarity reversed base-reflection identical to the bottom-simulating reflector (BSR). Drilling in 2007 in the Ulleung Basin recovered sediments within the MTDs that exhibit elevated electrical resistivity and P-wave velocity, similar to gas hydrate-bearing sediments. In contrast, hemipelagic mud intercalated with sandy turbidites has much higher porosity and correspondingly lower electrical resistivity and P-wave velocity.At drill-site UBGH1-4 the bottom half of one prominent MTD unit shows two bands of parallel fractures on the resistivity log-images indicating a common dip-azimuth direction of about ∼230° (strike of ∼140°). This strike-direction is perpendicular to the seismically defined flow-path of the MTD to the north-east. At Site UBGH1-14, the log-data suggest two zones with preferred fracture orientations (top: ∼250°, bottom: ∼130°), indicating flow-directions to the north-east for the top zone, and north-west for the bottom zone. The fracture patterns may indicate post-depositional sedimentation that gave rise to a preferred fracturing possibly linked to dewatering pathways. Alternatively, fractures may be related to the formation of pressure-ridges common within MTD units.For the interval of observed MTD units, the resistivity and P-wave velocity log-data yield gas hydrate concentrations up to ∼10% at Site UBGH1-4 and ∼25% at Site UBGH1-14 calculated using traditional isotropic theories such as Archie's law or effective medium modeling. However, accounting for anisotropic effects in the calculation to honor observed fracture patterns, the gas hydrate concentration is overall reduced to less than 5%. In contrast, gas hydrate was recovered at Site UBGH1-4 near the base of gas hydrate stability zone (GHSZ). Log-data predict gas hydrate concentrations of 10–15% over an interval of 25 m above the base of GHSZ. The sediments of this interval are comprised of the hemipelagic mud and interbedded thin sandy turbidites, which did contain pore-filling gas hydrate as identified from pore-water freshening and core infra-red imaging. Seismically, this unit reveals a coherent parallel bedding character but has overall faint reflection amplitude. This gas-hydrate-bearing interval can be best mapped using a combination of regular seismic amplitude and seismic attributes such as Shale indicator, Parallel-bedding indicator, and Thin-bed indicator.  相似文献   

10.
北黄海盆地是海域油气勘探新区,经历了多期次的构造演化,地质条件复杂、勘探难度大.利用声电成像测井资料对该盆地东部坳陷某区块的岩性、层理类型、裂缝、古水流及地应力方向进行了分析研究.结果表明:区内中生界岩性主要为砂砾岩、细砂岩、粉砂岩和泥岩;泥岩段水平层理发育,砂岩段则多见楔状交错层理、板状交错层理、小型波状层理;下白垩统、侏罗系的古水流方向在不同并区差异小,总体上呈东偏南向;中生界裂缝不甚发育,多数集中在侏罗系,倾角普遍较大,主要分布于泥岩或泥质粉砂岩,多属无效缝;地应力分析结果指示,研究区最大水平主应力为近东西向.上述研究为该区进一步勘探部署提供了可靠的基础资料.  相似文献   

11.
Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.  相似文献   

12.
A perturbation model is presented for a velocity field of a bottom current flowing over a sinusoidal topography or an obstacle. The model extends existing theory by taking into account the three-dimensional Coriolis vector and an initial horizontal velocity vector at any orientation. One possible mechanism of the development of sedimentary waves in the vicinity of an obstacle by an arbitrarily oriented initial horizontal current is analyzed in detail. Space-stationary fluid particle oscillations are initiated on the downstream side of an obstacle, which can result in sedimentary waves. The model shows that their wavelength depends on latitude, water depth, obstacle width and orientation as well as the initial current direction and intensity. The model defines intervals for current velocities normal to the wave crest, for which the sedimentary waves grow (or are destroyed) or migrate in a certain direction. Information derived from bathymetric and seismic surveys, such as wavelength, height, orientation and migration direction of mudwaves, can be used to calculate the velocity component across the wave crest and to estimate the current direction, as is demonstrated for an example from the Argentine Basin (Project MUDWAVES, Site 5).  相似文献   

13.
The East Sea(Sea of Japan)is a marginal,semi-closed sea in the northwestern Pacific.The Ulleung Basin area,which is located near the subpolar front of the East Sea,is known to have high primary production and good fisheries in spring season.After episodic wind-driven events during the spring of 2017,horizontal and vertical profiles of physical chemical biological factors were investigated at 29 stations located in the Ulleung Basin area.In addition,growth responses of phytoplankton communities to nutrient additions were evaluated by bioassay experiments to understand the fluctuation of phytoplankton biomass.Because of strong northwestern wind,phytoplankton biomass was scattered and upwelling phenomenon might be suppressed in this season.The phytoplankton abundances in the coastal stations were significantly higher than offshore and island stations.In contrast,the nutrient and chlorophyll a(Chl a)concentrations and the phytoplankton biomass were quite low in all locations.Bacillariophyceae was dominated group(>75.1%for coastal,40.0%for offshore and 43.6%for island stations).In the algal bioassays,the phytoplankton production was stimulated by N availability.The in vivo Chl a values in the+N and+NP treatments were significantly higher than the values in the control and the+P treatments.Based on the field survey,the higher nutrients in coastal waters affected the growth of diatom assemblages,however,little prosperity of phytoplankton was observed in the offshore waters despite the injection of sufficient nutrients in bioassay experiments.The growth of phytoplankton depended on the initial cell density.All of results indicated that a dominant northwestern wind led to a limited nutrients condition at euphotic layers,and the low level of biomass supply from the coasts resulted in low primary production.Both supplying nutrients and introducing phytoplankton through the currents are critical to maintain the high productivity in the Ulleung Basin area of the East Sea.  相似文献   

14.
A seamount chain with an approximately WNW trend is observed in the northeastern Ulleung Basin. It has been argued that these seamounts, including two islands called Ulleung and Dok islands, were formed by a hotspot process or by ridge related volcanism. Many geological and geophysical studies have been done for all the seamounts and islands in the chain except Anyongbok Seamount, which is close to the proposed spreading ridge. We first report morphological characteristics, sediment distribution patterns, and the crustal thickness of Anyongbok Seamount using multibeam bathymetry data, seismic reflection profiles, and 3D gravity modeling. The morphology of Anyongbok Seamount shows a cone shaped feature and is characterized by the development of many flank cones and flank rift zones. The estimated surface volume is about 60 km3, and implies that the seamount is smaller than the other seamounts in the chain. No sediments have been observed on the seamount except the lower slope, which is covered by more than 1,000 m of strata. The crustal structure obtained from a 3D gravity modeling (GFR = 3.11, SD 3.82 = mGal) suggests that the seamount was formed around the boundary of the Ulleung Plateau and the Ulleung Basin, and the estimated crustal thickness is about 20 km, which is a little thicker than other nearby seamounts distributed along the northeastern boundary of the Ulleung Basin. This significant crustal thickness also implies that Anyongbok Seamount might not be related to ridge volcanism.  相似文献   

15.
The Ulleung Basin is one of three deep basins that are contained within the East/Japan Sea. Current meter moorings have been maintained in this basin beginning in 1996. The data from these moorings are used to investigate the mean circulation pattern, variability of deep flows, and volume transports of major water masses in the Ulleung Basin with supporting hydrographic data and help from a high-resolution numerical model. The bottom water within the Ulleung Basin, which must enter through a constricted passage from the north, is found to circulate cyclonically—a pattern that seems prevalent throughout the East Sea. A strong current of about 6 cms−1 on average flows southward over the continental slope off the Korean coast underlying the northward East Korean Warm Current as part of the mean abyssal cyclonic circulation. Volume transports of the northward East Korean Warm Current, and southward flowing East Sea Intermediate Water and East Sea Proper Water are estimated to be 1.4 Sv (1 Sv=10−6 m3 s−1), 0.8 Sv, and 3.0–4.0 Sv, respectively. Deep flow variability involves a wide range of time scales with no apparent seasonal variations, whereas the deep currents in the northern East Sea are known to be strongly seasonal.  相似文献   

16.
During the Indian National Gas Hydrate Program (NGHP) Expedition 01, a series of well logs were acquired at several sites across the Krishna–Godavari (KG) Basin. Electrical resistivity logs were used for gas hydrate saturation estimates using Archie’s method. The measured in situ pore-water salinity, seafloor temperature and geothermal gradients were used to determine the baseline pore-water resistivity. In the absence of core data, Arp’s law was used to estimate in situ pore-water resistivity. Uncertainties in the Archie’s approach are related to the calibration of Archie coefficient (a), cementation factor (m) and saturation exponent (n) values. We also have estimated gas hydrate saturation from sonic P-wave velocity logs considering the gas hydrate in-frame effective medium rock-physics model. Uncertainties in the effective medium modeling stem from the choice of mineral assemblage used in the model. In both methods we assume that gas hydrate forms in sediment pore space. Combined observations from these analyses show that gas hydrate saturations are relatively low (<5% of the pore space) at the sites of the KG Basin. However, several intervals of increased saturations were observed e.g. at Site NGHP-01-03 (Sh = 15–20%, in two zones between 168 and 198 mbsf), Site NGHP-01-05 (Sh = 35–38% in two discrete zone between 70 and 90 mbsf), and Site NGHP-01-07 shows the gas hydrate saturation more than 25% in two zones between 75 and 155 mbsf. A total of 10 drill sites and associated log data, regional occurrences of bottom-simulating reflectors from 2D and 3D seismic data, and thermal modeling of the gas hydrate stability zone, were used to estimate the total amount of gas hydrate within the KG Basin. Average gas hydrate saturations for the entire gas hydrate stability zone (seafloor to base of gas hydrate stability), sediment porosities, and statistically derived extreme values for these parameters were defined from the logs. The total area considered based on the BSR seismic data covers ∼720 km2. Using the statistical ranges in all parameters involved in the calculation, the total amount of gas from gas hydrate in the KG Basin study area varies from a minimum of ∼5.7 trillion-cubic feet (TCF) to ∼32.1 TCF.  相似文献   

17.
Fracture and in-situ stress studies were conducted for unconventional prospect evaluation in the Silurian Qusaiba Shale, northern Saudi Arabia. Borehole image logs, oriented cores, seismic, and drilling observations were used in the studies. The fractures include natural fractures and induced fractures. The induced fractures were studied to assess the stress regime in terms of directions and magnitudes. The present day maximum horizontal in-situ stress trend varies from NNW-SSE to NNE-SSW, and shows a regional pattern dominated by Arabian plate tectonics. The relative magnitudes of the current day stresses are characteristic of an extensional to strike-slip regime. Natural fractures of microscopic (microfractures) to macroscopic (macrofractures) scales include extension fractures (joints/veins), and faults manifested as shear and hybrid (extensional-shear and compressional-shear) fractures. Joints clustering into zones are rare, unless when associated with fault zones. Over half of the faults (56%) show clustering into fault zones with their widths (thickness) varying by up to 5 orders of magnitude, and lengths and displacements varying by up to 4 orders of magnitudes respectively. The study identified five distinctive, regional, fracture sets: one gently dipping (bedding-parallel or at low angle to bedding) and up to four moderately to steeply dipping fracture sets: an easterly striking set is the oldest, followed by three younger major sets striking NNW-SSE, N-S, and NNE-SSW. The younger fractures are nearly parallel to the present day maximum horizontal in-situ stress. Crack-seal mechanism (natural hydrofracturing) dominates initial fracture growth, some with several phases of partial to complete mineralization or coating, dominated by calcite, quartz, and dolomite. Aqueous and hydrocarbon gaseous and fluid inclusions are common in the fractures' mineral filling. The regional nature of in-situ stresses and natural fractures means their occurrence, orientation, relative dominance, and relative age and relative apertures are easier to predict and manipulate for well planning and completion, including hydrofracturing. Forward modeling shows that natural fracture network are not critically stressed under reservoir conditions but when subjected to massive hydrofracture stimulation they and the bedding discontinuities form the seeds for the growth of a complex hydrofracture network that potentially grows out of presumed stress-barriers. Lack of stress rotation around faults in wells supports the modeling results. Microseismic monitoring gives time-lapse (incremental) microseismic events of two types; random and linear patterns parallel to maximum horizontal in-situ stress and the predominant natural fracture trend. Bulk microseismic cloud has no unique link to fault trends mapped from high resolution borehole images. This finding challenges the usability of uncalibrated microseimic monitoring of massive hydrofracturing to map faults.  相似文献   

18.
A review is made of circulation and currents in the southwestern East/Japan Sea (the Ulleung Basin), and the Korea/Tsushima Strait which is a unique conduit for surface inflow into the Ulleung Basin. The review particularly concentrates on describing some preliminary results from recent extensive measurements made after 1996. Mean flow patterns are different in the upstream and downstream regions of the Korea/Tsushima Strait. A high velocity core occurs in the mid-section in the upstream region, and splits into two cores hugging the coasts of Korea and Japan, the downstream region, after passing around Tsushima Island located in the middle of the strait. Four-year mean transport into the East/Japan Sea through the Korea/Tsushima Strait based on submarine cable data calibrated by direct observations is 2.4 Sv (1 Sv = 106 m3 s−1). A wide range of variability occurs for the subtidal transport variation from subinertial (2–10 days) to interannual scales. While the subinertial variability is shown to arise from the atmospheric pressure disturbances, the longer period variation has been poorly understood.Mean upper circulation of the Ulleung Basin is characterized by the northward flowing East Korean Warm Current along the east coast of Korea and its meander eastward after the separation from the coast, the Offshore Branch along the coast of Japan, and the anticyclonic Ulleung Warm Eddy that forms from a meander of the East Korean Warm Current. Continuous acoustic travel-time measurements between June 1999 and June 2001 suggest five quasi-stable upper circulation patterns that persist for about 3–5 months with transitions between successive patterns occurring in a few months or days. Disappearance of the East Korean Warm Current is triggered by merging the Dok Cold Eddy, originating from the pinching-off of the meander trough, with the coastal cold water carried Southward by the North Korean Cold Current. The Ulleung Warm Eddy persisted for about 20 months in the middle of the Ulleung Basin with changes in its position and spatial scale associated with strengthening and weakening of the transport through the Korea/Tsushima Strait. The variability of upper circulation is partly related to the transport variation through the Korea/Tsushima Strait. Movements of the coastal cold water and the instability of the polar front also appear to be important factors affecting the variability.Deep circulation in the Ulleung Basin is primarily cyclonic and commonly consists of one or more cyclonic cells, and an anticyclonic cell centered near Ulleung Island. The cyclonic circulation is conjectured to be driven by a net inflow through the Ulleung Interplain Gap, which serves as a conduit for the exchange of deep waters between the Japan Basin in the northern East Sea and the Ulleung Basin. Deep currents are characterized by a short correlation scale and the predominance of mesoscale variability with periods of 20–40 days. Seasonality of deep currents is indistinct, and the coupling of upper and deep circulation has not been clarified yet.  相似文献   

19.
本文分析了2009、2010和2013年期间采集于哥斯达黎加、厄瓜多尔、秘鲁和智利外海的茎柔鱼的角质颚下颚的δ13C和δ15N含量。各海区的稳定同位素含量反应了不同海区背景值的不同,海区间稳定同位素含量差异显著,其中厄瓜多尔外海最低,智利外海最高。δ13C和δ15N散点图显示,尽管秘鲁海区的同位素值与哥斯达黎加和智利的存在一定的重叠,但是δ13C和δ15N值可明显将各海区的样本明显分开。哥斯达黎加、厄瓜多尔和智利外海样本的δ13C和δ15N值分布相对集中以及三海区之间的δ13C和δ15N值差异显著说明,采自哥斯达黎加、厄瓜多尔和智利外海的茎柔鱼样本属于不同地理群体,它们的产卵起源不同,各自在相对狭小的地理区域内移动,相互之间没有种群交流。与之相比,δ13C和δ15N值变化范围广说明,秘鲁外海茎柔鱼样本的幼体是来自不同海区,经理不同的移动路线和索饵场。秘鲁和智利外海茎柔鱼样本的同位素值存在一定的重叠可能是由于两者之间存在一定的种群交流所致。总体来说,通过分析茎柔鱼角质颚稳定同位素的空间差异有助于我们了解其不同地理种群的迁徙策略以及相互之间的连通性。  相似文献   

20.
The Carboniferous and Permian sedimentary rocks (mainly the Shanxi and Taiyuan formations) in the Linxing region, eastern Ordos Basin, China, host a significant volume of unconventional gas resources (coalbed methane, shale gas and tight sandstone gas). Currently, the in-situ stress state is poorly understood but knowledge of this is extremely important for a range of applications, such as gas exploration and production, fracture stimulation and wellbore stability. The maximum horizontal stress (SHmax), minimum horizontal stress (Shmin) and vertical stress (Sv) magnitudes, and the SHmax orientation in the Linxing region were systematically analyzed for the first time in the present study, which can provide a reference for subsequent numerical simulation and hydraulic fracturing design. Based on borehole breakouts and drilling-induced tensile fractures interpreted from borehole imaging logs, the SHmax orientation rotates from ∼NEE-SWW-trending in the southern part to ∼ NWW-SEE-trending in the northern part of the Linxing region. Both conventional logs and extended leak-off tests were used for stress magnitude determination. The results revealed three types of in-situ stress fields (Sv > SHmax > Shmin, SHmax > Sv > Shmin and SHmax > Sv ≈ Shmin), and a dominant strike-slip stress regime (SHmax > Sv ≥ Shmin) was found for the entire well section in the target Shanxi Formation and Taiyuan Formation in the Linxing region. In addition, differential stress increased with depth in the Linxing region, which indicates that wellbore instability might be a potentially significant problem when drilling wells that are vertical or ∼ N-S-trending.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号