首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This article reports the response of embedded circular plate anchors to varying frequencies of cyclic loading. The effects of time period of loading cycles and pre-loading on movement of anchors and post-cyclic monotonic pullout behavior are studied using a model circular (80 mm diameter) plate anchor, buried at embedment ratio of six in a soft saturated clay. The frequencies of loading cycles have showed considerable effect on movement of anchors. For given duration of loading, higher frequency cycles cause more movement of anchor than lower frequency cycles. Pre-loading reduces the movement of anchors in subsequent loading stages. When anchors are recycled at a load ratio level less than the pre-cycling load, the movement of anchor in recycling phase are very much reduced, but if the recycling is done at a higher load ratio level, the effect is not that much pronounced and the anchors behave as if they were not subjected to any cycling load in the past. Anchor subjected to cyclic loading and then monotonic pullout shows an increase in initial stiffness, whereas the peak pullout load was found to decrease marginally over that of an anchor not subjected to any cyclic loading. For the present test conditions, the relative post-cyclic stiffness of anchors is found to vary from 1.169 to 1.327.  相似文献   

2.
Abstract

In the field of ocean engineering, anchors are used for several purposes. This article studies the behavior of a helical anchor embedded in soft marine clay under vertical repetitive loading. Helical anchors are simple steel shafts to which one or more helical plates are attached at regular intervals. The tests are conducted on a model helical anchor installed in a soft marine clay bed prepared in a test tank. Repetitive loading is applied using a pneumatic loading arrangement. Different cyclic load ratios and time periods are adopted. In each test, after the application of repetitive loading, poststatic‐pullout tests are conducted to observe the effect of repetitive loading on anchor behavior. From the test results, it is found that, up to a cyclic load ratio of 55%, there is no reduction in capacity. Instead, there seems to be a marginal increase in capacity and reduction in displacement. The reasons for this behavior are explained in terms of induced changes in strength and deformation behavior of marine clay under repetitive load. However, at higher cyclic load ratios, there seems to be reduction in pullout capacity of the anchor, and the reason for this is explained in terms of strain criteria. From this investigation, it can be concluded that the deep anchor is more suitable to a marine environment than a shallow anchor.  相似文献   

3.
This article presents a procedure to calculate the bearing capacity of suction anchors subjected to inclined average and cyclic loads at the optimal load attachment point using the undrained cyclic shear strength of soft clays based on the failure model of anchors proposed by Andersen et al. The constant average shear stress of each failure zone around an anchor is assumed and determined based on the static equilibrium condition for the procedure. The cyclic shear strength of each failure zone is determined based on the average shear stress. The cyclic bearing capacity is finally determined by limiting equilibrium analyses. Thirty-six model tests of suction anchors subjected to inclined average and cyclic loads were conducted, which include vertical and lateral failure modes. Model test results were predicted using the procedure to verify its feasibility. The average relative error between predicted and test results is 1.7%, which shows that the procedure can be used to calculate the cyclic bearing capacity of anchors with optimal loading. Test results also showed that the anchor was still in vertical failure mode under combined average and cyclic loads if an anchor was in vertical failure mode under static loads. The anchor failure would depend on the vertical resistance degradation under cyclic loads if an anchor was in lateral failure mode under static loads. Cyclic bearing capacities associated with the number of load cycles to failure of 1000 were about 75% and 80% of the static bearing capacity for vertical failure anchors and lateral failure anchors, respectively.  相似文献   

4.
Helical anchors are an effective option to support offshore floating structures with mooring and anchoring systems, where wave and tidal forces are the predominant load components leading to cyclic and inclined loading conditions. In this study, the cyclic and inclined pullout load carrying behavior of helical anchors was investigated. Large-deformation finite element (FE) analysis using the coupled Eulerian–Lagrangian (CEL) method was performed to simulate the cyclic pullout load response of helical anchors. Various configuration conditions of the helical anchor and loading direction, including the number and diameter of helical plate, plate arrangement and load inclination angle (θ), were considered in the analysis. Induced displacements were most significant during the first loading cycle, whereas those for subsequent loading cycles were relatively small. The geometry condition of the helical anchor less affected the pullout load carrying behavior as θ increased. The horizontal displacements (δh) were larger than the vertical displacements (δv) when θ was larger than 30°. When θ was smaller than 30°, δv was more dominant component. It was found that the configuration with top-down increasing diameter was more effective to enhance the pullout load carrying behavior than the conventional bottom-up increasing diameter configuration.  相似文献   

5.
王强  刘海笑  李洲 《海洋工程》2021,39(3):83-94
利用带误差控制的显式积分算法,将一种适用于饱和砂土排水循环动力分析的边界面塑性模型编写成可供有限元软件调用的用户自定义材料子程序。建立土体单元有限元数值模型对Toyoura砂的静、动排水三轴试验进行模拟,验证了模型具备合理描述砂土在不同荷载条件下力学响应的能力。建立饱和砂土中板锚循环承载分析的数值模型,针对板锚在砂土中的单调抗拔特性和循环承载特性进行数值分析,得到了与模型试验一致的荷载—位移响应规律。考察循环荷载要素对板锚循环承载特性的影响,结果发现,随着循环荷载的施加,板锚永久位移逐渐累积,循环荷载会导致板锚持续移动,循环幅值越大,初始位移和位移变化率越大;循环均值越大,初始位移越大,但位移变化率越小。  相似文献   

6.
A series of 1 g model tests was conducted to investigate the accumulated vertical pullout displacement and unloading stiffness of bucket foundations embedded in dry and saturated sands. The foundations were subjected to vertical pullout cyclic loading with different load amplitudes. Cyclic load was applied up to 104 cycles. Test results showed that the accumulated vertical pullout displacement increased with the increase in the number of load cycles and cyclic load amplitudes. The unloading stiffness of the bucket foundations decreased with the increase in load amplitude and number of cycles. Empirical equations were proposed based on the test results to evaluate the accumulated vertical pullout displacement and unloading stiffness of the bucket foundations in saturated sand. These equations can be used for the preliminary design of single or tripod bucket foundations.  相似文献   

7.
The uplift behavior of a plate anchor in a structured clay (soft Ariake clay) is investigated through a series of laboratory tests and method of finite element analysis. The tests are adopted to identify the factors influencing the behavior of the anchor, including the thixotropic nature of Ariake clay, consolidation time, and embedment ratio of the anchor. A finite element method (FEM) is used to analyze and predict the uplift behavior of the anchor plate well in the elastic region and the yield load. The results from both the laboratory tests and the FEM analysis suggest that the embedment ratio for a deep anchor in Ariake clay is close to 4. Further increase in embedment ratio improves the capacity to a lesser extent. FEM overestimates the failure load of the uplift anchor in soft Ariake clay by about 20%. This may be ascribed to the hypothesis in the FEM analysis that there is continuous contact between the clay and the anchor until failure. Vesic’s theory for deep anchors, which may be used to predict the ultimate pullout resistance of the plate anchor in reconstituted Ariake clay, is verified to be applicable. In this paper, the plastic flow zone around the anchor is discussed using FEM which makes the behavior of anchor more understandable during the design stage.  相似文献   

8.
Based on mesh regeneration and stress interpolation from an old mesh to a new one, a large deformation finite element model is developed for the study of the behaviour of circular plate anchors subjected to uplift loading. For the deterruination of the distributions of stress components across a clay foundation, the Recovery by Equilibrium in Patches is extended to plastic analyses. ABAQUS, a commercial finite element package, is customized and linked into our program so as to keep automatic and efficient running of large deformation calculation. The quality of stress interpolation is testified by evaluations of Tresca stress and nodal reaction forces. The complete pulling-up processes of plate anchors buried in homogeneous clay arc simulated, and typical pulling force-displacement responses of a deep anchor and a shallow anchor are compared. Different from the results of previous studies, large deformation analysis is of the capability of estimating the breakaway between the anchor bottom and soils. For deep anchors, the variation of mobilized uplift resistance with anchor settlement is composed of three stages, and the initial buried depths of anchors affect the separation embedment slightly. The uplift bearing capacity of deep anchors is usually higher than that of shallow anchors.  相似文献   

9.
K.D. Jones  Y. Cho 《Ocean Engineering》2007,34(16):2107-2114
An analytical solution has been developed to estimate the horizontal, vertical, and inclined loading pullout capacities of embedded suction anchors in sand. Validation of the analytical solution on pullout capacities has been made through comparisons with the centrifuge model test results. Primary variables for the centrifuge model tests are the depth to the loading point, the load inclination angle, and the addition of flanges. The results indicate that both the horizontal and vertical pullout capacities of the embedded suction anchor in sand increase, reach the peak and then start to decrease as the loading point moves downward. The inclined loading pullout capacity is very much dependent on the load inclination angle and the loading point. The effect of flanges on the pullout capacities is also found to be significant.  相似文献   

10.
Behaviour of rigid piles in marine clays under lateral cyclic loading   总被引:1,自引:0,他引:1  
In the field of ocean engineering, pile foundations are extensively used in supporting several structures. In many cases, piles are subjected to significant lateral loads. The environment prevalent in the ocean necessitates the piles to be designed for cyclic wave loading. In this investigation, the behaviour of rigid piles under cyclic lateral loading has been studied through an experimental programme carried out on model piles embedded in a soft marine clay. Static tests were also conducted on piles embedded in a clay bed prepared at different consistencies suitable to field situations. Cyclic load was applied by using a specially designed pneumatic controlled loading system. Tests were conducted on model piles made of mild steel (MS), aluminium and PVC with wide variation in pile soil relative stiffness. For cyclic load levels less than 50% of static lateral capacity, the deflections are observed to increase with number of cycles and cyclic load level and stabilise after a certain number of cycles. For cyclic load levels greater than 50% of static lateral capacity, the deflections are observed to increase enormously with number of cycles. The results of post-cyclic load tests indicate that the behaviour under static load can improve for cyclic load levels less than 40% of the static lateral capacity. The variations in the load capacity due to cyclic loading are explained in terms of the changes in strength behaviour of soil.  相似文献   

11.
Plate anchors are extensively used in civil engineering constructions as they provide an economical alternative to gravity and other embedded anchors. The rate of loading is one of the important factors that affects the magnitude of soil resistance as well as soil suction force. This article outlines the effect of pullout rate on uplift behavior of plate anchors (70 mm diameter) buried in soft saturated clay by varying the pullout rate from 1.4 mm/min to 21.0 mm/min. The variation of breakout force and suction force with embedment depth and rate of pull are presented. A correlation between the rate of increase of undrained strength of clay and anchor capacity with rate of strain has been established. Finally an empirical equation has been proposed that includes the rate of pull in the estimation of breakout capacity of anchors.  相似文献   

12.
Plate anchors are extensively used in civil engineering constructions as they provide an economical alternative to gravity and other embedded anchors. The rate of loading is one of the important factors that affects the magnitude of soil resistance as well as soil suction force. This article outlines the effect of pullout rate on uplift behavior of plate anchors (70 mm diameter) buried in soft saturated clay by varying the pullout rate from 1.4 mm/min to 21.0 mm/min. The variation of breakout force and suction force with embedment depth and rate of pull are presented. A correlation between the rate of increase of undrained strength of clay and anchor capacity with rate of strain has been established. Finally an empirical equation has been proposed that includes the rate of pull in the estimation of breakout capacity of anchors.  相似文献   

13.
Drag anchor is a widely used economical anchor option for offshore floating structures. The anchor behavior under unidirectional loading and combined loading is important for anchor selection. The anchor behavior under combined loading, characterized by the yield envelope, can also be used for the prediction of anchor installation, which is still an issue in anchor design. However, most existing studies on anchor capacity are for plate anchors which focused only on the anchor pullout capacity in soil with uniform shear strength. The behavior of drag anchor under unidirectional and combined loading in soil with linearly increasing shear strength profile is seldom investigated. The current 2D finite element studies investigate the anchor behavior for a horizontal anchor fluke in clay with linearly increasing shear strength under unidirectional vertical, horizontal and rotational loadings first. Then based on the results of anchor unidirectional loading behavior, the yield envelopes for anchor under combined loading for both shallow and deep embedded flukes are studied. The effect of anchor embedment depth, soil non- homogeneity, soil overburden pressure and the soil/anchor interface breakaway conditions are studied to provide insight for drag anchor design.  相似文献   

14.
The mechanical behavior of clay subjected to cyclic loading is important to consider in the design of the foundations of many types of structures that must resist cyclic loading, such as subgrades and offshore foundations, because clay undergoes greater settlement under cyclic loading than under static loading. The difference in settlement between these two loading patterns due to creep behavior is affected by the cyclic frequency and the cyclic stress ratio. This study investigated the effects of the frequency and cyclic stress ratio of cyclic loading on the creep behavior of a natural clay in China using stress-controlled triaxial tests. The assessed the following parameters: three frequencies, four cyclic stress ratios, and six vertical stresses. The test results indicate that the soft clay displays accelerated creep behavior under dynamic loads. A specific “limit frequency” (in this case, 0.2 Hz) and a “safe load” at which the strain of the soft clay increases very slowly were observed. The effect of the effective axial stress on the creep behavior increases with the increase in the cyclic stress ratio. Based on the tests, the critical cyclic stress ratio is 0.267 at a certain effective axial stress and frequency.  相似文献   

15.
In the field of ocean engineering, a beginning has been made in the use of large‐sized suction anchors for safe anchoring of large compliant structures. Suction anchors derive most of their uplift resistance from passive suction developed during the pullout movement. This article describes a set of laboratory tests on model suction anchors of three different embedment ratios to estimate the pullout behavior of suction anchors in soft clays typical of Indian marine clays. Tests were conducted on model anchors installed in soil beds prepared at four different consistencies in a test tank. This study shows the influence of soil consistency and embedment ratio (L/D) on the pullout behavior of suction anchors and on the variation of suction pressure at the top of the soil plug. The test results reveal that the behavior of suction anchors is much better than the behavior of open‐ended anchors from the considerations of both capacity and deformation. The consistent development of suction inside the anchor top confirms the plug formation and significant breakout resistance in the form of suction‐induced reversed end bearing. The results are further analyzed in terms of suction breakout factors. Further, the effect of burial depth of suction anchor on pullout behavior is shown.  相似文献   

16.
拖曳锚由于其承载性能和深水中便于安装被广泛应用于海洋工程系泊系统中,如:适用于悬链式系泊系统的传统拖曳锚和适用于绷紧式系泊系统的法向承力锚。拖曳锚安装过程中涉及诸多运动特性:锚板运动方向、系缆点处拖曳力和拖曳角及运动轨迹。基于大变形有限元分析技术耦合的欧拉-拉格朗日法,并引入缆绳方程,建立起锚-缆绳-海床土耦合作用的有限元分析模型;模拟了拖曳锚在均质和线性强度黏土中的嵌入安装过程,研究了锚板运动方向、系缆点处拖曳力和拖曳角及运动轨迹等运动特性;通过与已有的有限元分析方法及理论方法进行对比,验证了该分析模型的有效性;与已有的有限元分析方法相比,提出的分析模型有效地提高了计算效率。  相似文献   

17.
With the application of innovative anchor concepts and advanced technologies in deepwater moorings, anchor behaviors in the seabed are becoming more complicated and significantly affected by the anchor line. Based on the coupled Eulerian–Lagrangian (CEL) method, a numerical approach incorporating anchor line effects is developed to investigate comprehensive anchor behaviors in the soil, including penetration of drag anchors, keying of suction embedded plate anchors and diving of gravity installed anchors. Compared to the method directly incorporating the anchor line into the CEL analysis, the proposed method is computationally efficient. To examine the robustness and accuracy of the proposed method, numerical probe tests and then comparative studies are carried out. It is found that the penetration (or diving) and keying behaviors of anchors can be well simulated. A parametric study is also undertaken to quantify the effects of various factors on the behavior of OMNI-Max anchors, whose mechanisms are not yet fully understood. The maximum embedment loss of OMNI-Max anchors during keying is not influenced by the initial anchor embedment depth, whereas significantly increases with increasing drag angle at the embedment point. With decreasing initial anchor embedment depth or increasing soil strength gradient, drag angle at the embedment point and diameter of the anchor line, the behavior of OMNI-Max anchors could change from diving to pullout, which is undesirable in offshore engineering practice. If the drag angle increases over a certain limit, the anchor will fail similar to a suction anchor.  相似文献   

18.
Anchors in sand bed: delineation of rupture surface   总被引:4,自引:0,他引:4  
Anchors of very large uplift capacities are required to support offshore structures at great water depths. The capacities of plate and mushroom type anchors are generally estimated based on the shape of rupture surface. An attempt has been made in the present investigation to delineate the rupture surfaces of anchors embedded in submerged and dry sand beds at various depths. The results exhibited two different modes of failure depending on the embedment ratio, namely, shallow and deep anchor behaviour. The load–displacement curves exhibited three- and two-phase behaviours for shallow and deep anchors, respectively. Negative pore water pressures recorded in submerged sand also exhibited variation similar to that of pullout load versus anchor displacement.  相似文献   

19.
Considering the current disadvantages of present offshore wind turbine foundations, a novel anchor foundation with skirt and branches is proposed, called offshore umbrella suction anchor foundation (USAF). A series of experiments and numerical simulations were performed to explore the bearing capacity of the USAF under various kinds of loading modes. The bearing characteristics and the anchor–soil interactions are described in detail for horizontal static loading, horizontal cyclic loading, and an antidrawing (pullout) test in silty soil. In the static loading test, the load–deflection of the anchor under step loading was analyzed and the normalized curve of the load–deflection was obtained to determine the ultimate horizontal bearing capacity of the anchor under normal working conditions. Under horizontal cyclic loading, the relationship between the plastic cumulative deformation and cyclic number was determined. In addition, the responses of USAF were investigated for a low wave frequency and storm surges. In the drawing test, it was found that a “segmentation phenomenon” occurred during the test. Moreover, a method to identify the maximum antidrawing load of USAF was provided based on dynamic mechanics. The numerical results show that the use of anchor branches and skirt can enhance the bearing performance of USAF to a certain degree. However, the anchor branch has a slight positive influence on the bearing performance improvement. The USAF is not only similar to a stiff short pile, but a rotation occurs. The failure envelope under composite loading (V-M) was obtained and the changes associated with changes in the aspect ratio of the internal compartment were clarified.  相似文献   

20.
介绍了一种拥有自主知识产权的海工固结锚技术,描述了该新型锚的内部结构和工作原理;并在室内对不同设计参数和使用工况的锚开展了垂向上拔试验,初探了其抗拔能力。初步试验表明:该新型锚具有超高的抓重比;其次生固结体显著增加了锚体的剪切面积,从而大大提升了锚体的抗拔力;锚体结构上宜具有多个喷管且喷管管径较粗,安装过程中对固化剂的推进速度应较缓。该新型锚应具有良好的应用前景,但需对此进一步深入研究,以满足其设计和工程应用的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号