首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Land use/cover change (LUCC) models are helpful tools for analyzing driving forces and processes of land use changes, assessing ecological impacts of land use change and decision-making for land use planning. However, no single model is able to capture all the essential key processes to explore land use change at different spatial-temporal scales and make a full assessment of driving factors and macro-ecological impacts. Taken Ganzhou District as a case study, this paper describes an integrated analysis (IA) approach by combining with system dynamics (SD) model, the Conversion of Land Use and its Effects at Small regional extent (CLUE-S) model and landscape indices method to analyze land use dynamics at different spatial-temporal scales. The SD model was used to calculate and predict demands for different land use types at the macro-scale as a whole during 2000–2035. The LUCC process was simulated at a high spatial resolution with the spatial consideration of land use spatial policies and restrictions to satisfy the balance between land use demand and supply by using the CLUE-S model, and Kappa values of the map simulation are 0.86 and 0.81 in 2000 and 2005, respectively. Finally, we evaluated the macro-ecological effect of LUCC and optimized scenario managements of land use by using landscape indices method. The IA approach could be used for better understanding the complexity of land use change and provide scientific support for land use planning and management, and the simulation results also could be used as a source data for scenario analysis of different hydrological and ecological processes based on different underlying surface of LUCC.  相似文献   

2.
Land cover change affects surface radiation budget and energy balance by changing surface albedo and further impacts the regional and global climate. In this article, high spatial and temporal resolution satellite products were used to analyze the driving mechanism for surface albedo change caused by land cover change during 1990–2010. In addition, the annual-scale radiative forcing caused by surface albedo changes in China's 50 ecological regions were calculated to reveal the biophysical mechanisms of land cover change affecting climate change at regional scale. Our results showed that the national land cover changes were mainly caused by land reclamation, grassland desertification and urbanization in past 20 years, which were almost induced by anthropogenic activities. Grassland and forest area decreased by 0.60% and 0.11%, respectively. The area of urban and farmland increased by 0.60% and 0.19%, respectively. The mean radiative forcing caused by land cover changes during 1990–2010 was 0.062 W/m2 in China, indicating a warming climate effect. However, spatial heterogeneity of radiative forcing was huge among different ecological regions. Farmland conversing to urban construction land, the main type of land cover change for the urban and suburban agricultural ecological region in Beijing-Tianjin-Tangshan region, caused an albedo reduction by 0.00456 and a maximum positive radiative forcing of 0.863 W/m2, which was presented as warming climate effects. Grassland and forest conversing to farmland, the main type of land cover change for the temperate humid agricultural and wetland ecological region in Sanjiang Plain, caused an albedo increase by 0.00152 and a maximum negative radiative forcing of 0.184 W/m2, implying cooling climate effects.  相似文献   

3.
Land cover change affects surface radiation budget and energy balance by chang- ing surface albedo and further impacts the regional and global climate. In this article, high spatial and temporal resolution satellite products were used to analyze the driving mechanism for surface albedo change caused by land cover change during 1990-2010. In addition, the annual-scale radiative forcing caused by surface albedo changes in China's 50 ecological regions were calculated to reveal the biophysical mechanisms of land cover change affecting climate change at regional scale. Our results showed that the national land cover changes were mainly caused by land reclamation, grassland desertification and urbanization in past 20 years, which were almost induced by anthropogenic activities. Grassland and forest area decreased by 0.60% and 0.11%, respectively. The area of urban and farmland increased by 0.60% and 0.19%, respectively. The mean radiative forcing caused by land cover changes during 1990-2010 was 0.062 W/m2 in China, indicating a warming climate effect. However, spatial heterogeneity of radiative forcing was huge among different ecological regions. Farmland conversing to urban construction land, the main type of land cover change for the urban and suburban agricultural ecological region in Beijing-Tianjin-Tangshan region, caused an albedo reduction by 0.00456 and a maximum positive radiative forcing of 0.863 WIm2, which was presented as warming climate effects. Grassland and forest conversing to farmland, the main type of land cover change for the temperate humid agricultural and wetland ecological region in Sanjiang Plain, caused an albedo increase by 0.00152 and a maximum negative radiative forcing of 0.184 W/m2, implying cooling climate effects.  相似文献   

4.
Based on GIS and statistical methods, with the help of searching historical literatures and calculating the landscape indices, the land use changes of Qian‘an County in both spatial and temporal aspects from 1945 to 1996 has been analyzed in this paper. And the driving forces of land use changes and their ecological effects are discussed too. The main findings of this study are as follows: (1) Land use changed greatly in Qian‘an during 1945-1996, characterized by a decrease in grassland, wetland and water bodies, and an increase in cultivated land, saline-alkali land, and the land for housing and other construction purposes. Grassland decreased by 175,828.66 ha, and cultivated land increased by 102,137.23 ha over the half century. Accordingly, the main landscape type changed from a steppe landscape to a managed agricultural ecosystem. (2) Results of correlation analysis show that the land use change in the study area was mainly driven by the socioeconomic factors. (3) The ecological effects of land use change in the area are characterized by serious salinization, degression of soil fertility and the weakening, of landscaoe suitability.  相似文献   

5.
Based on GIS and statistical methods, with the help of searching historical literatures and calculating the landscape indices, the land use changes of Qian'an County in both spatial and temporal aspects from 1945 to 1996 has been analyzed in this paper. And the driving forces of land use changes and their ecological effects are discussed too. The main findings of this study are as follows: (1) Land use changed greatly in Qian'an during 1945-1996, characterized by a decrease in grassland, wetland and water bodies, and an increase in cultivated land, saline-alkali land, and the land for housing and other construction purposes. Grassland decreased by 175,828.66 ha, and cultivated land increased by 102,137.23 ha over the half century. Accordingly, the main landscape type changed from a steppe landscape to a managed agricultural ecosystem. (2) Results of correlation analysis show that the land use change in the study area was mainly driven by the socioeconomic factors. (3) The ecological effects of land use change in the area are characterized by serious salinization, degression of soil fertility and the weakening of landscape suitability.  相似文献   

6.
The spatially explicit reconstruction of historical land-cover datasets plays an important role in studying the climatic and ecological effects of land-use and land-cover change(LUCC). Using potential natural vegetation(PNV) and satellite-based land use data, we determined the possible maximum distribution extent of forest cover in the absence of human disturbance. Subsequently, topography and climate factors were selected to assess the suitability of land for cultivation. Finally, a historical forest area allocation model was devised on the basis of the suitability of land for cultivation. As a case study, we used the historical forest area allocation model to reconstruct forest cover for 1780 and 1940 in Northeast China with a 10-km resolution. To validate the model, we compared satellite-based forest cover data with our reconstruction for 2000. A one-sample t-test of absolute bias showed that the two-tailed significance was 0.12, larger than the significant level 0.05, suggesting that the model has strong ability to capture the spatial distribution of forests. In addition, we calculated the relative difference of our reconstruction at the county scale for 1780 in Northeast China. The number of counties whose relative difference ranged from-30% to 30% is 99, accounting for 74.44% of all counties. These findings demonstrated that the provincial forest area could be transformed into forest cover maps well using the model.  相似文献   

7.
Explicitly identifying the spatial distribution of ecological transition zones(ETZs) and simulating their response to climate scenarios is of significance in understanding the response and feedback of ecosystems to global climate change. In this study, a quantitative spatial identification method was developed to assess ETZ distribution in terms of the improved Holdridge life zone(iHLZ) model. Based on climate observations collected from 782 weather stations in China in the T0(1981–2010) period, and the Intergovernmental Panel on Climate Change Coupled Model Intercomparison Project(IPCC CMIP5) RCP2.6, RCP4.5, and RCP8.5 climate scenario data in the T1(2011–2040), T2(2041–2070), and T3(2071–2100) periods, the spatial distribution of ETZs and their response to climate scenarios in China were simulated in the four periods of T0, T1, T2, and T3. Additionally, a spatial shift of mean center model was developed to quantitatively calculate the shift direction and distance of each ETZ type during the periods from T0 to T3. The simulated results revealed 41 ETZ types in China, accounting for 18% of the whole land area. Cold temperate grassland/humid forest and warm temperate arid forest(564,238.5 km~2), cold temperate humid forest and warm temperate arid/humid forest(566,549.75 km~2), and north humid/humid forest and cold temperate humid forest(525,750.25 km~2) were the main ETZ types, accounting for 35% of the total ETZ area in China. Between 2010 and 2100, the area of cold temperate desert shrub and warm temperate desert shrub/thorn steppe ETZs were projected to increase at a rate of 4% per decade, which represented an increase of 3604.2, 10063.1, and 17,242 km~2 per decade under the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The cold ETZ was projected to transform to the warm humid ETZ in the future. The average shift distance of the mean center in the north wet forest and cold temperate desert shrub/thorn grassland ETZs was generally larger than that of other ETZs, with the mean center moving to the northeast and the shift distance being more than 150 km during the periods from T0 to T3.In addition, with a gradual increase of temperature and precipitation, the ETZs in northern China displayed a shifting northward trend, while the area of ETZs in southern China decreased gradually, and their mean center moved to high-altitude areas. The effects of climate change on ETZs presented an increasing trend in China, especially in the Qinghai-Tibet Plateau.  相似文献   

8.
In areas with topographic heterogeneity, land use change is spatially variable and influenced by climate, soil properties, and topography. To better understand this variability in the high-sediment region of the Loess Plateau in which soil loss is most severe and sediment diameter is larger than in other regions of the plateau, this study builds some indicators to identify the characteristics of land use change and then analyze the spatial variability as it is affected by climate, soil property, and topography. We build two indicators, a land use change intensity index and a vegetation change index, to characterize the intensity of land use change, and the degree of vegetation restoration, respectively. Based on a subsection mean method, the two indicators are then used to assess the spatial variability of land use change affected by climatic, edaphic, and topographic elements. The results indicate that: 1) Land use changed significantly in the period 1998–2010. The total area experiencing land use change was 42,302 km2, accounting for 22.57%of the study area. High-coverage grassland, other woodland, and forest increased significantly, while low-coverage grassland and farmland decreased in 2010 compared with 1998. 2) Land use change occurred primarily west of the Yellow River, between 35 and 38 degrees north latitude. The four transformation types, including(a) low-coverage grassland to medium-coverage grassland,(b) medium-coverage grassland to high-coverage grassland,(c) farmland to other woodland, and(d) farmland to medium-coverage grassland, were the primary types of land use change, together constituting 60% of the area experiencing land use change. 3) The spatial variability of land use change was significantly affected by properties of dryness/wetness, soil conditions and slope gradient. In general, land use changed dramatically in semi-arid regions, remained relativelystable in arid regions, changed significantly in clay-rich soil, remained relatively stable in clay-poor soil, changed dramatically in steeper slopes, and remained relatively stable in tablelands and low-lying regions. The increase in vegetation coincided with increasing changes in land use for each physical element. These findings allow for an evaluation of the effect of the Grain to Green Program, and are applicable to the design of soil and water conservation projects on the Loess Plateau of China.  相似文献   

9.
In areas with topographic heterogeneity, land use change is spatially variable and influenced by climate, soil properties, and topography. To better understand this variability in the high-sediment region of the Loess Plateau in which soil loss is most severe and sediment diameter is larger than in other regions of the plateau, this study builds some indicators to identify the characteristics of land use change and then analyze the spatial variability as it is affected by climate, soil property, and topography. We build two indicators, a land use change intensity index and a vegetation change index, to characterize the intensity of land use change, and the degree of vegetation restoration, respectively. Based on a subsection mean method, the two indicators are then used to assess the spatial variability of land use change affected by climatic, edaphic, and topographic elements. The results indicate that: 1) Land use changed significantly in the period 1998-2010. The total area experiencing land use change was 42,302 km2, accounting for 22.57%of the study area. High-coverage grassland, other woodland, and forest increased significantly, while low-coverage grassland and farmland decreased in 2010 compared with 1998.2) Land use change occurred primarily west of the Yellow River, between 35 and 38 degrees north latitude. The four transformation types, including (a) low-coverage grassland to medium-coverage grassland, (b) medium-coverage grassland to high-coverage grassland, (c) farmland to other woodland, and (d) farmland to medium-coverage grassland, were the primary types of land use change, together constituting 60% of the area experiencing land use change. 3) The spatial variability of land use change was significantly affected by properties of dryness/wetness, soil conditions and slope gradient. In general, land use changed dramatically in semi-arid regions, remained relatively stable in arid regions, changed significantly in clay-rich soil, remained relatively stable in clay-poor soil, changed dramatically in steeper slopes, and remained relatively stable in tablelands and low-lying regions. The increase in vegetation coincided with increasing changes in land use for each physical element. These findings allow for an evaluation of the effect of the Grain to Green Program, and are applicable to the design of soil and water conservation projects on the Loess Plateau of China.  相似文献   

10.
榆林地区景观变化探测模型   总被引:3,自引:1,他引:2  
Landscape is a dynamic phenomenon that almost continuously changes. The overall change of a landscape is the result of complex and interacting natural and spontaneous processes and planned actions by man. However, numerous activities by a large number of individuals are not concerted and contribute to the autonomous evolution of the landscape in a similar way as natural processes do. There is a well-established need to detect land use and ecological change so that appropriate policies for the ;egional sustainable development can be developed. Landscape change detection is considered to be effectively repeated surveillance and needs especially strict protocols to identify landscape change. This paper developed a series of technical frameworks on landscape detection based on Landsat Thematic Mapper (TM) Data. Through human-machine interactive interpretation, the interpretation precision was 92.00% in 1986 and 89.73% in 2000. Based on the interpretation results of TM images and taking Yulin prefecture as a case study area, the area of main landscape types was summarized respectively in 1986 and 2000. The landscape pattern changes in Yulin could be divided into ten types.  相似文献   

11.
Based on GIS and statistical methods, with the help of searching historical literatures andcalculating the landscape indices, the land use changes of Qian'an County in both spatial and temporalaspects from 1945 to 1996 has been analyzed in this paper. And the driving forces of land use changesand their ecological effects are discussed too. The main findings of this study are as follows:(1)Landuse changed greatly in Qian'an during 1945-1996, characterized by a decrease in grassland, wetlandand water bodies,and an increase in cultivated land, saline-alkali land, and the land for housing andother construction purposes. Grassland decreased by 175,828.66 ha, and cultivated land increased by  相似文献   

12.
Land use/cover change has been recognized as a key component in global change and has attracted increasing attention in recent decades. Scenario simulation of land use change is an important issue in the study of land use/cover change, and plays a key role in land use prediction and policy decision. Based on the remote sensing data of Landsat TM images in 1989, 2000 and 2010, scenario simulation and landscape pattern analysis of land use change driven by socio-economic development and ecological protection policies were reported in Zhangjiakou city, a representative area of the Poverty Belt around Beijing and Tianjin. Using a CLUE-S model, along with socio-economic and geographic data, the land use simulation of four scenarios–namely, land use planning scenario, natural development scenario, ecological-oriented scenario and farmland protection scenario–were explored according to the actual conditions of Zhangjiakou city, and the landscape pattern characteristics under different land use scenarios were analyzed. The results revealed the following:(1) Farmland, grassland, water body and unused land decreased significantly during 1989–2010, with a decrease of 11.09%, 2.82%, 18.20% and 31.27%, respectively, while garden land, forestland and construction land increased over the same period, with an increase of 5.71%, 20.91% and 38.54%, respectively. The change rate and intensity of land use improved in general from 1989 to 2010. The integrated dynamic degree of land use increased from 2.21% during 1989–2000 to 3.96% during 2000–2010.(2) Land use changed significantly throughout 1989–2010. The total area that underwent land use change was 4759.14 km2, accounting for 12.53% of the study area. Land use transformation was characterized by grassland to forestland, and by farmland to forestland and grassland.(3) Under the land use planning scenario, farmland, grassland, water body and unused land shrank significantly, while garden land, forestland and construction land increased. Under the natural development scenario, construction land and forestland increased in 2020 compared with 2010, while farmland and unused land decreased. Under the ecological-oriented scenario, forestland increased dra-matically, which mainly derived from farmland, grassland and unused land. Under the farmland protection scenario, farmland was well protected and stable, while construction land expansion was restricted.(4) The landscape patterns of the four scenarios in 2020, compared with those in 2010, were more reasonable. Under the land use planning scenario, the landscape pattern tended to be more optimized. The landscape became less fragmented and heterogeneous with the natural development scenarios. However, under the ecological-oriented scenario and farmland protection scenario, landscape was characterized by fragmentation, and spatial heterogeneity of landscape was significant. Spatial differences in landscape patterns in Zhangjiakou city also existed.(5) The spatial distribution of land use could be explained, to a large extent, by the driving factors, and the simulation results tallied with the local situations, which provided useful information for decision-makers and planners to take appropriate land management measures in the area. The application of the combined Markov model, CLUE-S model and landscape metrics in Zhangjiakou city suggests that this methodology has the capacity to reflect the complex changes in land use at a scale of 300 m×300 m and can serve as a useful tool for analyzing complex land use driving factors.  相似文献   

13.
Land use change has a profound impact on biodiversity and ecological processes, and is closely related to changes in landscape patterns. This paper introduces the theory and method of land economic niche into landscape ecology, which provides a new method for spatial characterization of urban and rural spatial landscape patterns. Based on this theory, this paper analyzes the landscape pattern of Ganzhou District by using Landsat images as data source in 1995, 2000, 2005,2010 and 2015. We calculated the land economic niche by applying the niche potential theory. Combined with the theory of landscape ecology, we explored the effects of the land economic niche change on the landscape pattern at a county scale.The results show that economic niche of construction land, watershed and farmland increased during 1995–2015, and grassland declined significantly. The economic niche of farmland, construction land, watershed and grassland show a negative correlation with the number of patches(NP), fragmentation index(FN) and the fractal dimension index(FD), and had a positive correlation with the aggregation index(AI). There was no significant correlation between the forest land economic niche and landscape metrics. The change of land economic niche has a driving effect on the landscape pattern of the county, which can represent the economic development direction of Ganzhou District. The land economic niche is closely related to the landscape type which can directly obtain an economic benefit.  相似文献   

14.
The cultivation of mountainous land results in water loss and soil erosion. With rapid urbanization and industrialization in China, labor emigration relieves the cultivation of mountainous areas in regions with high poverty and leads to a significant land use transition. This research built an analysis framework for "land use transition – driving mechanism – effects –responses" for mountainous areas of China undergoing land use transition and then proposed the direction of mountainous land consolidation. The results showed that the turning point of land use morphology was the core of rural land use transition in mountainous areas. The expansion of cropland and the contraction of forestland have transitioned to the abandonment of cropland and the expansion of forestland; this transition was the main characteristic of the dominant land use change. Land marginalization and land ecological functional recovery were the main characteristics of the recessive land use transition in mountainous areas. Socioeconomic factors were the primary driving forces during land use transition in mountainous areas, with labor emigration being the most direct force. The rising costs of farming and the challenging living conditions causing labor emigration were fundamental driving forces. Rural land use transition in mountainous areas reduced the vulnerability of the ecological function of land ecosystems. The advantages and disadvantages of the socioeconomic effects should focus on rural development of mountainous areas as well as the livelihood of farmers; this should be further supported by empirical and quantitative research. Rural land use transition of mountainous areas improves natural restoration and is related to socioeconomic development. Rural land consolidation of mountainous areas should conform to land use transition,with the goal of shifting from the increase of cultivated land to the synergies of ecological and environmental protection.  相似文献   

15.
Scenarios of land cover in Eurasia under climate change   总被引:1,自引:1,他引:1  
Fan  Zemeng  Bai  Ruyu  Yue  Tianxiang 《地理学报(英文版)》2020,30(1):3-17
The method for surface modelling of land cover scenarios(SMLCS) has been improved to simulate the scenarios of land cover in Eurasia. On the basis of the observation monthly climatic data observed from 2127 weather stations in Eurasia during 1981–2010, the climatic scenarios data of RCP26, RCP45 and RCP85 scenarios released by CMIP5, and the land cover current data of Eurasia in 2010, the land cover scenarios of Eurasia were respectively simulated. The results show that most land cover types would generally have similar changing trends in the future, but with some difference in different periods under the three scenarios of RCP26, RCP45 and RCP85. Deciduous needleleaf forest, mixed forest, shrub land, wetlands and snow and ice would generally decrease in Eurasia during 2010–2100. Snow and ice would have the fastest decreasing rate that would decrease by 37.42% on average. Shrub land would have the slowest decreasing rate that would decrease by 5.65% on average. Water bodies would have the fastest increasing rate that would increase by 28.78% on average. Barren or sparsely vegetated land would have the slowest increasing rate that would increase by 0.76%. Moreover, the simulated results show that climate change would directly impact on land cover change in Eurasia.  相似文献   

16.
Based on four phases of TM images acquired in 1990, 1995, 2000 and 2005, this paper took Kitakyushu in Japan as a case study to analyze spatial change of land use landscape and corresponding effects on environmental issues guided by landscape ecology theory in virtue of combining technology of Remote Sensing with GIS. Firstly, land use types were divided into 6 classes (farmland, mountain, forestland, water body, urban land and unused land) according to national classification standard of land use, comprehensible ability of TM image and purpose of this study. Secondly, following the theory of landscape ecology analysis, 11 typical landscape indices were abstracted to evaluate the environmental effects and spatial feature changes of land use. Research results indicated that land use has grown more and more diversified and unbalanced, human activities have disturbed the landscape more seriously. Finally, transfer matrix of Markov was applied to forecast change process of land use in the future different periods, and then potential land use changes were also simulated from 2010 to 2050. Results showed that conversion tendency for all types of land use in Kitakyushu into urban construction land were enhanced. The study was anticipated to help local authorities better understand and address a complex land use system, and develop improved land use management strategies that could better balance urban expansion and ecological conservation.  相似文献   

17.
Desertification reversion is an interactive process involving climate, land use change, and water processes. In order to reveal the relationship between desertification reversion and these factors, we analyzed historical data on precipitation, air temperature, desertified land changes, underground water tables, and water body changes in Naiman County in the central part of Horqin Sandy Land. Our analysis showed that during 1961-2010 the annual precipitation fluctuated dramatically and has decreased fairly consistently in recent years. The air temperature increased by 0.50-1.25 °C, and the minimum temperature increased more obviously. The desertified land area increased from 42,300 km2 in 1959 to 62,000 km2 in 1985, and then declined to about 50,000 km2 in 2010. The underground water tables have been lowered by about 10 m in the past 30 years, and declined more rapidly in recent years. Desertified land is significantly related to the amount of total cropland, and underground water tables are significantly correlated with annual precipitation and the amount of irrigated cropland. Therefore, it is necessary to pursue sustainable desertification reversion without compromising the capacity for local development and restoration of degraded land, through application of appropriate management measures for improving water availability in this region.  相似文献   

18.
The area of desertified land has increased by 27.3% from 1987 to 2000 in Maduo County,northeastern Qinghai-Tibet Plateau.Driving forces of land degradation has been extensively studied in the region.Using Factor Analysis (FA),we evaluate contribution of human activity and natural environmental change to land degradation.Four common factors were extracted in this study.The result shows that climate related other than human-related factors,are the major inducing factors of land degradation in Maduo County.Climate change and consequent change of permafrost account for 70% to the land degradation.Increasing evaporation and declining precipitation in the beginning of the growing season hamper seedling establishment.Decreasing frozen days and rising active layer lower bound make surface soil loose and less soil moisture available for plant.  相似文献   

19.
广州市城市边缘区土地利用优化配置(英文)   总被引:1,自引:1,他引:0  
In response to the strong drive for social and economic development, local governments have implemented urban master plans, providing measures and timeframes to address the continuous demand for land and to alleviate urban problems. In this paper, a multi-objective model was constructed to discuss the problem, including economic benefits and ecological effectiveness, in terms of land use optimization. A genetic algorithm was then adopted to solve the model, and a performance evaluation and sensitivity analysis were conducted using Pareto optimality. Results showed that a set of tradeoffs could be acquired by the allocation of land use. In addition, the Pareto solutions proved the model to be efficient; for example, a limit of 13,500 ha of urban area conformed to plan recommendations. The reduction in crop land, orchard land, grassland, and unused land provided further efficiencies. These results implied that further potential regional land resources remain and that the urban master plan is able to support sustainable local development in the years to come, as well as verified that it is feasible to use land use allocation multi-objective modeling and genetic algorithms.  相似文献   

20.
21世纪初中国土地利用变化的空间格局与驱动力   总被引:33,自引:15,他引:18  
Land use and land cover change as the core of coupled human-environment systems has become a potential field of land change science (LCS) in the study of global environmental change. Based on remotely sensed data of land use change with a spatial resolution of 1 km × 1 km on national scale among every 5 years, this paper designed a new dynamic regionalization according to the comprehensive characteristics of land use change including regional differentiation, physical, economic, and macro-policy factors as well. Spatial pattern of land use change and its driving forces were investigated in China in the early 21st century. To sum up, land use change pattern of this period was characterized by rapid changes in the whole country. Over the agricultural zones, e.g., Huang-Huai-Hai Plain, the southeast coastal areas and Sichuan Basin, a great proportion of fine arable land were engrossed owing to considerable expansion of the built-up and residential areas, resulting in decrease of paddy land area in southern China. The development of oasis agriculture in Northwest China and the reclamation in Northeast China led to a slight increase in arable land area in northern China. Due to the "Grain for Green" policy, forest area was significantly increased in the middle and western developing regions, where the vegetation coverage was substantially enlarged, likewise. This paper argued the main driving forces as the implementation of the strategy on land use and regional development, such as policies of "Western Development", "Revitalization of Northeast", coupled with rapidly economic development during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号