首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examines spatial and temporal changes in 16 extreme temperature indices at 37 weather stations in Xinjiang and their associations with changes in climate means during 1961–2008. Linear regression analyses reveal that significant increasing trends in temperature were observed over Xinjiang, with the rate of 0.13 °C/decade, 0.24 °C/decade, and 0.52 °C/decade for annual mean temperature, annual maximum, and minimum temperature, respectively. Annual frequency of cool nights (days) has decreased by -2.45 days/decade (-0.86 days/decade), whereas the frequency of warm nights (days) has increased by 4.85 days/decade (1.62 days/decade). Seasonally, the frequencies of summer warm nights and days are changing more rapidly than the corresponding frequencies for cool nights and days. However, normalization of the extreme and mean series shows that the rate of changes in extreme temperature events are generally less than those of mean temperatures, except for winter cold nights which are changing as rapidly as the winter mean minimum temperatures. These results indicate that there have been seasonally and diurnally asymmetric changes in extreme temperature events relative to recent increases in temperature means in Xinjiang.  相似文献   

2.
In this study, a monthly dataset of temperature time series (1961-2010) from 12 meteorological stations across the Three-River Headwater Region of Qinghai Province (THRHR) was used to analyze the climate change. The temperature variation and abrupt change analysis were examined by using moving average, linear regression, Spline interpo-lation, Mann-Kendall test and so on. Some important conclusions were obtained from this research, which mainly contained four aspects as follows. (1) There were several cold and warm fluctuations for the annual and seasonal average temperature in the THRHR and its three sub-headwater regions, but the temperature in these regions all had an obviously rising trend at the statistical significance level, especially after 2001. The spring, summer, autumn and annual average temperature increased evidently after the 1990s, and the winter average temperature exhibited an obvious upward trend after entering the 21st century. Except the standard value of spring temperature, the annual and seasonal temperature standard value in the THRHR and its three sub-headwater regions increased gradually, and the upward trend for the standard value of winter average temperature indicated significantly. (2) The tendency rate of annual average temperature in the THRHR was 0.36℃10a?1, while the tendency rates in the Yellow River Headwater Region (YERHR), Lancangjiang River Headwater Region (LARHR) and Yangtze River Headwater Region (YARHR) were 0.37℃10a?1, 0.37℃10a?1 and 0.34℃10a?1 respectively. The temperature increased significantly in the south of Yushu County and the north of Nangqian County. The rising trends of temperature in winter and autumn were higher than the upward trends in spring and summer. (3) The abrupt changes of annual, summer, autumn and winter average temperature were found in the THRHR, LARHR and YARHR, and were detected for the summer and autumn average temperature in the YERHR. The abrupt changes of annual and summer average temperatures were mainly in the late 1990s, while the abrupt changes of autumn and winter average temperatures ap-peared primarily in the early 1990s and the early 21st century respectively. (4) With the global warming, the diversities of altitude and underlying surface in different parts of the Tibetan Plateau were possibly the main reasons for the high increasing rate of temperature in the THRHR.  相似文献   

3.
WenWen Wang 《寒旱区科学》2013,5(2):0240-0250
Based on daily maximum and minimum surface air temperature and precipitation records at 48 meteorological stations in Xinjiang, the spatial and temporal distributions of climate extreme indices have been analyzed during 1961-2008. Twelve temperature extreme indices and six precipitation extreme indices are studied. Temperature extremes are highly correlated to annual mean temperature, which appears to be significantly increasing by 0.08 °C per year, indicating that changes in temperature extremes reflect consistent warming. The warming tendency is clearer at stations in northern Xinjiang as reflected by mean temperature. The frequencies of cold days and nights have both decreased, respectively by 0.86 and 2.45 d/decade, but the frequencies of warm days and nights have both increased, respectively by +1.62 and +4.85 d/decade. Over the same period, the number of frost days shows a statistically significant decreasing trend of 2.54 d/decade. The growing season length and the number of summer days exhibit significant increasing trends at rates of +2.62 and +2.86 d/decade, respectively. The diurnal temperature range has decreased by 0.28 °C/decade. Both annual extreme low and high temperatures exhibit significant increasing trend, with the former clearly larger than the latter. For precipitation indices, regional annual total precipitation shows an increasing trend and most other precipitation indices are strongly correlated with annual total precipitation. Average wet day precipitation, maximum 1-day and 5-day precipitation, and heavy precipitation days show increasing trends, but only the last is statistically significant. A decreasing trend is found for consecutive dry days. For all precipitation indices, stations in northwestern Xinjiang have the largest positive trend magnitudes, while stations in northern Xinjiang have the largest negative magnitudes.  相似文献   

4.
In this paper we analyze daily mean, minimum, and maximum temperature data collected at 119 meteorological stations over five regions of China during the period 1951-2010. The series of minimum, maximum, and mean temperatures from each climatic region have similar signatures, but there are differences among the five regions and the countrywide average. The results indicate that the periods of faster warming were not synchronous across the regions studied: warming in northeast China and Tibet began in 1986, while in central-east, southeast, and northwest China the warming emerged in 1995. Furthermore, central-east and northwest China, and Tibet, have warmed continuously since 2000, but the temperature has decreased during this period in southeast China. We evaluated the evolution of these temperature series using a novel nonlinear filtering technique based on the concept of the lifetime of temperature curves. The decadal to secular evolution of solar activity and temperature variation had similar signatures in the northeast, southeast, and northwest re- gions and the average across the whole country, indicating that solar activity is a significant control on climate change over secular time scales in these regions. In comparison with these regions, the signatures were different in central-east China and Tibet because of regional differences (e.g., landforms and elevation) and indirect effects (e.g., cloud cover influencing the radiation balance, thereby inducing climate change). Furthermore, the results of wavelet analysis indicated that the El Nino Southem Oscillation (ENSO) has had a significant impact on climate change, but at different times among the regions, and these changes were most probably induced by differing responses of the atmospheric system to solar forcing.  相似文献   

5.
新疆气候时空变化特征及其趋势(英文)   总被引:8,自引:1,他引:7  
Temperature and precipitation time series datasets from 1961 to 2005 at 65 meteorological stations were used to reveal the spatial and temporal trends of climate change in Xinjiang, China. Annual and seasonal mean air temperature and total precipitation were analyzed using Mann-Kendall (MK) test, inverse distance weighted (IDW) interpolation, and R/S methods. The results indicate that: (1) both temperature and precipitation increased in the past 45 years, but the increase in temperature is more obvious than that of precipitation; (2) for temperature increase, the higher the latitude and the higher the elevation the faster the increase, though the latitude has greater influence on the increase. Northern Xinjiang shows a faster warming than southern Xinjiang, especially in summer; (3) increase of precipitation occurs mainly in winter in northern Xinjiang and in summer in southern Xinjiang. Ili, which has the most precipitation in Xinjiang, shows a weak increase of precipitation; (4) although both temperature and precipitation increased in general, the increase is different inside Xinjiang; (5) Hurst index (H) analysis indicates that climate change will continue the current trends.  相似文献   

6.
The Yarlung Zangbo River (YR) is the highest great river in the world, and its basin is one of the centers of human economic activity in Tibet. Using 10 meteorological stations over the YR basin in 1961–2005, the spatial and temporal characteristics of temperature and precipitation as well as potential evapotranspiration are analyzed. The results are as follows. (1) The annual and four seasonal mean air temperature shows statistically significant increasing trend, the tendency is more significant in winter and fall. The warming in Lhasa river basin is most significant. (2) The precipitation is decreasing from the 1960s to the 1980s and increasing since the 1980s. From 1961 to 2005, the annual and four seasonal mean precipitation is increasing but not statistically significant, especially in fall and spring. The increasing precipitation rates are more pronounced in Niyangqu and Palong Zangbo river basins, the closer to the upper YR is, the less precipitation increasing rate would be. (3) The annual and four seasonal mean potential evapotranspiration has decreased, especially after the 1980s, and most of it happens in winter and spring. The decreasing trend is most significant in the middle YR and Nianchu river basin. (4) Compared with the Mt. Qomolangma region, Tibetan Plateau, China and global average, the magnitudes of warming trend over the YR basin since the 1970s exceed those areas in the same period, and compared with the Tibetan Plateau, the magnitudes of precipitation increasing and potential evapotranspiration decreasing are larger, suggesting that the YR basin is one of the most sensitive areas to global warming.  相似文献   

7.
The regional changes of daily temperature extremes in North China caused by urbanization are studied further from observed facts and model estimates on the basis of homogenized daily series of maximum and minimum temperature observations from 268 meteorological stations, NCEP/DOE AMIP-Ⅱ reanalysis data(R-2), and the data of simulations by regional climate model(RegCM3). The observed facts of regional warming on long time scales are obtained by analyzing the indices of temperature extremes during two time periods of 1961–2010 and 1951–2010. For urbanization effect, the contributions to decreases in annual and winter diurnal temperature range(DTR) are 56.0% and 52.9%, respectively, and increases in the lowest minimum temperature(TNn) are 35.7% and 26.2% by comparison of urban and rural observations. Obtained by R-2 data with observations for contrast, on the other hand, increase in the number of annual warm nights(TN90p) contributed by urbanization is 60.9%. And observed facts of regional warming in daily temperature extremes are also reflected in the simulations, but what difference is urbanization progress at rural areas in North China would be prominent in the next few years relative to urban areas to some extent from model estimates.  相似文献   

8.
Using daily temperature data from 599 Chinese weather stations during 1961–2007, the length change trends of four seasons during the past 47 years were analyzed. Results show that throughout the region, four seasons’ lengths are: spring becomes shorter (-0.8 d/10yrs), summer becomes longer (3.2 d/10yrs), autumn (-0.5 d/10yrs) and winter (-1.6 d/10yrs) becomes shorter. This trend is different in spatial distribution, namely it is very obvious in northern than southern China, and also remarkable in eastern than western China. Summer change is most obvious, but autumn has little change comparatively. This trend is highly obvious in North, East, Central and South China. In the Southwest starting in the 21st century, summer becomes longer and winter shortens. The trend in the Plateau region since the 1980s is that spring becomes longer and winter shortens. The average annual temperature increased during the past 47 years, and the change of the average annual temperature precedes seasons’ length. Thus, the average annual temperature has a certain influence on the length change of seasons.  相似文献   

9.
The 1998–2012 global warming hiatus has aroused great public interest over the past several years. Based on the air temperature measurements from 622 meteorological stations in China, the temperature response to the global warming hiatus was analyzed at national and regional scales. We found that air temperature changed –0.221℃/10 a during 1998–2012, which was lower than the long-term trend for 1960–1998 by 0.427℃/10 a. Therefore, the warming hiatus in China was more pronounced than the global mean. Winter played a dominant role in the nationwide warming hiatus, contributing 74.13%, while summer contributed the least among the four seasons. Furthermore, the warming hiatus was spatial heterogeneous across different climate conditions in China. Comparing the three geographic zones, the monsoon region of eastern China, arid region of northwestern China, and high frigid region of the Tibetan Plateau, there was significant cooling in eastern and northwestern China. In eastern China, which contributed 53.79%, the trend magnitudes were 0.896℃/10 a in winter and 0.134℃/10 a in summer. In the Tibetan Plateau, air temperature increased by 0.204℃/10 a, indicating a lack of a significant warming hiatus. More broadly, the warming hiatus in China may have been associated with the negative phase of PDO and reduction in sunspot numbers and total solar radiation. Finally, although a warming hiatus occurred in China from 1998 to 2012, air temperature rapidly increased after 2012 and will likely to continuously warm in the next few years.  相似文献   

10.
The lake hydrological and meteorological data of the Tibetan Plateau are not rich. This research reports the observed climatic data and measured water levels of saline lakes from the local meteorological stations in the Zabuye salt lake, the Dangqiong Co salt lake and the Bankog Co salt lake in recent two decades. Combining with satellite remote sensing maps, we have analyzed the changes of the water level of these three lakes in recent years and discussed the origins of the changes induced by the meteorological factors. The results show that the annual mean temperature and the water level reflect a general ascending trend in these three lakes during the observation period. The rising rates of the annual mean temperature were 0.08℃/yr during 1991–2014 and 0.07℃/yr during 2004–2014, and of the water level, were 0.032 m/yr and 0.24 m/yr, respectively. Analysis of changes of the meteorological factors shows the main cause for the increase of lake water quantity are the reduced lake evaporation and the increased precipitation in the lake basins by the rise of average temperature. Seasonal variation of lake water level is powered largely by the supply of lake water types and the seasonal change of regional climate.  相似文献   

11.
A 70-year history of precipitation δ18O record has been retrieved using an ice core drilled from a plat portion of the firn area in the Guoqu Glacier (33o34′37.8″ N, 91o10′35.3″ E, 5720 m a.s.l.) on Mt. Geladaindong (the source region of Yangtze River) during October and November, 2005. Based on the seasonality of δ18O records and the significant positive relationships between monsoon/non-monsoon δ18O values and summer/spring air temperature from the nearby meteorological stations, the history of summer and spring air temperature have been reconstructed for the last 70 years. The results show that both summer and spring air temperature variations present similar trends during the last 70 years. Regression analysis indicates that the slope of the temperature-δ18O relationship is 1.3℃/‰ for non-monsoon δ18O values and spring air temperature, and 0.4℃/‰ for monsoon δ18O values and summer air temperature. Variation of air temperature recorded in the ice core is consistent with that in the Northern Hemisphere (NH), however, the warming trend in the Geladaindong region is more intense than that in the NH, reflecting a higher sensitivity to global warming in the high elevation regions. In addition, warming trend is greater in spring than in summer.  相似文献   

12.
The paper presents the analysis of tendencies in water level changes in 32 lakes in Poland during 1976–2010.Series of monthly,seasonal,and annual precipitation and air temperature for 9 meteorological stations were also studied.The trend analysis for all of the studied series of water levels in lakes showed high spatial and temporal variability.Series of annual water levels in the case of 6 lakes showed statistically significant increasing tendencies,and in 7 lakes,significant decreasing trends.Series of annual amplitudes in the majority of lakes(22) showed a decreasing trend,but they were statistically significant only in three cases.The tendencies for air temperature fluctuations are more statistically significant than precipitation.The key role in determining water level changes is played by local factors,particularly including human economic activity,obscuring the effect of natural factors on water level changes.The paper describes cases of changes in water levels in lakes under anthropopressure related to among others: agricultural irrigations,hydropower infrastructure,water transfers,navigation,or mining.  相似文献   

13.
Based on a 0.5°×0.5° daily gridded precipitation dataset and observations in meteorological stations released by the National Meteorological Information Center,the interannual variation of areal precipitation in the Qilian Mountains during 1961–2012 is investigated using principal component analysis(PCA) and regression analysis,and the relationship between areal precipitation and drought accumulation intensity is also analyzed.The results indicate that the spatial distribution of precipitation in the Qilian Mountains can be well reflected by the gridded dataset.The gridded data-based precipitation in mountainous region is generally larger than that in plain region,and the eastern section of the mountain range usually has more precipitation than the western section.The annual mean areal precipitation in the Qilian Mountains is 724.9×108 m3,and the seasonal means in spring,summer,autumn and winter are 118.9×108 m3,469.4×108 m3,122.5×108 m3 and 14.1×108 m3,respectively.Summer is a season with the largest areal precipitation among the four seasons,and the proportion in summer is approximately 64.76%.The areal precipitation in summer,autumn and winter shows increasing trends,but a decreasing trend is seen in spring.Among the four seasons,summer have the largest trend magnitude of 1.7×108 m3?a–1.The correlation between areal precipitation in the mountainous region and dry-wet conditions in the mountains and the surroundings can be well exhibited.There is a negative correlation between drought accumulation intensity and the larger areal precipitation is consistent with the weaker drought intensity for this region.  相似文献   

14.
1956-2003年拉萨河流域径流变化趋势   总被引:4,自引:1,他引:3  
Taking the Lhasa River Basin above Lhasa hydrological station in Tibetan Plateau as a study area, the characteristics of the annual and monthly mean runoff during 1956-2003 were analyzed, based on the hydro-data of the two hydrological stations (Lhasa and Tanggya) and the meteorological data of the three meteorological stations (Damxung, Lhasa and Tanggya). The trends and the change points of runoff and climate from 1956 to 2003 were detected using the nonparametric Mann-Kendall test and Pettitt-Mann-Whitney change-point statistics. The correlations between runoff and climate change were analyzed using multiple linear regression. The major results could be summarized as follows: (1) The annual mean runoff during the last 50 years is characterized by a great fluctuation and a positive trend with two change points (around 1970 and the early 1980s), after which the runoff tended to increase and was increasing intensively in the last 20 years. Besides, the monthly mean runoff with a positive trend is centralized in winter half-year (November to April) and some other months (May, July and September). (2) The trends of the climate change in the study area are generally consistent with the trend of the runoff, but the leading climate factors which aroused the runoff variation are distinct. Precipitation is the dominant factor influencing the annual and monthly mean runoff in summer half year, while temperature is the primary factor in winter season.  相似文献   

15.
<正> In the paper,by use of the monthly mean temperature data of 12 sta-tions in the vicinity of Antarctic Peninsula,the temperature series during 1903-2000 is founded and the interdecadal oscillation of the temperature are discussed.The results indicate that 1) There are three jumps during 1919-1923,1947-1953 and 1976-1982 in recent hundred years and the stable climate step betweentwo jump points lasted about 30 years.2)Annual mean temperature is increasedby 0.730℃ in an echelon during 1903-2000,the warming extent is dissimilarityin each season,the maximum of warming is in the winter and the minimum ofwarming is in summer.3)The ice decline trend is presented in the index of Iceconcentration in the vicinity sea of Antarctic Peninsula,which shows a-0.2053/10a drop,and the decrease trend of the ice concentration index in summerhalf year(Dec-May)is found much more obviously than that in winter half year(Jun-Nov).4)There is better negative relationship between the temperature andthe Ice concentration index in Antarctic Peninsula and its vicinity sea,which cor-relation coefficient of is exceed the significance level of 5% in summer,autumnand annual. Antarctic Peninsula,temperature,sea ice,oscillation.  相似文献   

16.
In this study,the characteristics and changing trends of temperature,precipitation,and runoff in the upper Yellow River basin up Tangnag station are analyzed by using hydrological and meteorological data in the past 50 years from observation stations in the basin.Further,in this study,the evolving trend of runoff in the future decades is forecasted in the basin based on the method of suppositional climate scenes combination.The results indicate temperature variation in the basin has an evident positive relation with global warming,and the precipitation variations are quite complicated in the basin because of differences of located geographic positions during the past 50 years.Runoff in the basin has been decreasing continually since the end of the 1980s because the mean temperature in the basin has been rising and precipitation in the main areas of runoff formation in the basin has been decreasing.Runoff will largely decrease if precipitation decreases and temperature rises continuously,whereas runoff will increase if temperature is invariable and precipitation increases largely;the increase magnitude of runoff may be more than that of precipitation because of the synchronously increasing supply of meltwater from snow,glacier,and frozen soils in future several decades.  相似文献   

17.
Using series of daily average temperature observations over the period of 1961–1999 of 701 meteorological stations in China, and simulated results of 20 global climate models (such as BCCR_BCM2.0, CGCM3T47) during the same period as the observation, we validate and analyze the simulated results of the models by using three factor statistical method, achieve the results of multi- model ensemble, test and verify the results of multi-model ensemble by using the observation data during the period of 1991–1999. Finally, we analyze changes of the annual mean temperature result of multi-mode ensemble prediction for the period of 2011–2040 under the emission scenarios A2, A1B and B1. Analyzed results show that: (1) Global climate models can reproduce Chinese regional spatial distribution of annual mean temperature, especially in low latitudes and eastern China. (2) With the factor of the trend of annual mean temperature changes in reference period, there is an obvious bias between the model and the observation. (3) Testing the result of multi-model ensemble during the period of 1991–1999, we can simulate the trend of temperature increase. Compared to observation, the result of different weighing multi-model ensemble prediction is better than the same weighing ensemble. (4) For the period of 2011–2040, the growth of the annual mean temperature in China, which results from multi-mode ensemble prediction, is above 1 °C. In the spatial distribution of annual mean temperature, under the emission scenarios of A2, A1B and B1, the trend of growth in South China region is the smallest, the increment is less than or equals to 0.8 °C; the trends in the northwestern region and south of the Qinghai-Tibet Plateau are the largest, the increment is more than 1 °C.  相似文献   

18.
19.
The evolution of ground thermal state has been studied to assess impacts of current climatic warming on permafrost in Central Yakutia. The analysis of long-term data of regional weather stations has revealed one of the highest increasing trends in mean annual air temperature in northern Russia. A forecast of surface air temperature fluctuations has been made by applying a frequency analysis method. Monitoring of ground thermal conditions allows us to identify inter-annual and long-term variability among a wide range of natural conditions. Experimental research has indicated a long-term dynamics of ground thermal state evolution: ground temperatures at the depth of zero annual amplitude and seasonally thawed layer depth. Long-term variability of thaw depth shows near-zero to weak positive trends in small valleys in contrast to weak negative trends on slopes. With significant climatic warming, the thermal state of near-surface layers of permafrost demonstrates steadiness. Anthropogenic impacts on ground thermal regime in various terrain types have been qualitatively evaluated. Clear-cutting, ground cover stripping, and post-fire deforestation in inter-alas type terrains result in a significant increase of temperature and seasonal ground thaw depth, as well as adverse cryogenic processes. The dynamics of mean annual ground temperature in slash and burn sites have been evaluated in reference to stages of successive vegetation recovery.  相似文献   

20.
A 70-year history of precipitation δ18O record has been retrieved using an ice core drilled from a plat portion of the firn area in the Guoqu Glacier (33o34′37.8″ N, 91o10′35.3″ E, 5720 m a.s.l.) on Mt. Geladaindong (the source region of Yangtze River) during October and November, 2005. Based on the seasonality of δ18O records and the significant positive rela-tionships between monsoon/non-monsoon δ18O values and summer/spring air temperature from the nearby meteorological stations, the history of summer and spring air temperature have been reconstructed for the last 70 years. The results show that both summer and spring air temperature variations present similar trends during the last 70 years. Regression analysis indicates that the slope of the temperature-δ18O relationship is 1.3℃/‰ for non-monsoon δ18O values and spring air temperature, and 0.4℃/‰ for monsoon δ18O values and summer air temperature. Variation of air temperature recorded in the ice core is consistent with that in the Northern Hemisphere (NH), however, the warming trend in the Geladaindong region is more intense than that in the NH, reflecting a higher sensitivity to global warming in the high elevation regions. In addition, warming trend is greater in spring than in summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号