首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to reconstruct the formation and exhumation mechanisms of UHP metamorphic terrains, the Chinese Continental Scientific Drilling Program (CCSD) has been carried out in Donghai of the Dabie-Sulu ultrahigh-pressure (UHP) metamorphic belt, East China. Eclogite, gneiss, amphibolite (retrograded from eclogite), ultramafic rocks, and minor schist and quartzite have been drilled. Aiming to reveal the fluid behaviour in a vertical sequence of an UHP slab, we investigated fluid inclusion and oxygen isotope characteristics of selected drillcores from the main hole and the pilot-holes PP2 and ZK 703 of the CCSD. More than 540 laser-ablation oxygen isotope analyses on garnet, omphacite, quartz, kyanite, amphibole, phengite, rutile, epidote, amphibole, plagioclase, and biotite from various rocks in the depth range of 0–3,000 m (mainly eclogite and gneiss) show that the investigated rocks can be divided into two groups: 18O-depleted rocks (as low as δ18O = −7.4‰ for garnet) indicate interaction with cold climate meteoric waters, whereas 18O-normal rocks (with bulk δ18O > +5.6‰) have preserved the O-isotopic compositions of their protoliths. Meteoric water/rock interaction has reached depths of at least 2,700 m. Oxygen isotope equilibrium has generally been achieved. Isotopic compositions of mineral phases are homogeneous on a mm to cm scale regardless of lithology, but heterogeneous on the scale of a few metres. Oxygen isotope distributions in the vertical sections favour an “in situ” origin of the UHP metamorphic rocks. The very negative δ18O eclogites usually have higher hydroxyl-mineral contents than the normal δ18O rocks, indicating higher water content during UHP metamorphism. Fluid inclusion data suggest that rocks with depleted 18O compositions have had different fluid histories compared to those with normal δ18O values. Rocks with depleted 18O mainly have primary medium-to-high salinity inclusions in omphacite, kyanite and quartz, and abundant secondary low-salinity or pure water inclusions in quartz, indicating a high-salinity-brine-dominated fluid system during peak UHP metamorphism; no carbonic inclusions have been identified in these rocks. By contrast, primary very high-density CO2 inclusions are commonly found in the rocks with normal δ18O values. These observations suggest that fluid and oxygen isotope composition of minerals are related and reflect variable degrees of alterations of the Dabie-Sulu UHP metamorphic rocks.  相似文献   

2.
Fourteen cogenetic quartz-biotite pairs from gneissic wall rocks, and 22 quartz, 16 calcite, and 8 biotite samples and 1 sample of albite from fissure-filling veins in the Western Tauern Window were analyzed for their oxygen isotope composition. The δ18O values show the following ranges: (a) quartz, +6.0 in fissure in amphibolite to +10.3 in fissures in granite gneisses; (b) biotite, +2.5 to +6.7; and (c) calcite, +7.0 to +8.9. The δ18O value of albite is +7.1. Only a small variation in the hydrogen isotope composition of biotite was detected. δD values of 7 biotites from gneisses and fissure fillings varied from −54 to −59. There is no significant difference in the hydrogen isotope composition of fissure biotite and biotite from the host rock. This indicates that a common water source of probably deep-seated origin existed, with no detectable contribution from isotopically light meteoric water. Oxygen isotope fractionations between coexisting quartz and biotite of 3.5 to 7.0‰ indicate equilibrium temperatures of 640 ° to 450 ° C, respectively, using the fractionation curve of Hoernes and Friedrichsen (1978). The highest temperatures of equilibration are for the rocks at the Alpenhauptkamm, i.e., the central part of the Tauern Window. Successively lower temperatures are found to the north and to the south of the Alpenhauptkamm along a traverse through Penninic units of the Tauern Window. The metamorphism of the host rocks and the filling of fissures has occurred at the same temperature in a given sample locality.  相似文献   

3.
唐俊  郑永飞  吴元保  龚冰 《地球科学》2005,30(6):692-706
在苏鲁超高压变质带东北端山东威海地区皂埠镇发现锆石δ18O值低至-7.8‰左右的花岗片麻岩, 与前人在苏鲁超高压变质带西南端江苏东海青龙山地区发现的锆石δ18O值为-7‰~-9‰左右的花岗片麻岩一致.对这些低δ18O值花岗片麻岩进行了锆石SHRIMP法UPb定年和系统的激光氟化法矿物氧同位素分析, 结果对低δ18O值锆石成因和花岗片麻岩的原岩性质提供了制约.研究得到: (1) 这些低δ18O值锆石以新元古代岩浆锆石为主, 但部分岩浆锆石在印支期超高压变质作用过程中发生了不同程度的重结晶作用.δ18O值为-7.08‰的岩浆核锆石UPb定年得到的花岗片麻岩原岩谐和年龄和不一致线上交点年龄分别为(760±49) Ma和(751±27) Ma, 变质谐和年龄和不一致线下交点年龄分别为(232±4) Ma和(241±33) Ma, 指示其原岩为新元古代花岗岩并经历了印支期变质作用; (2) 锆石δ18O值在局部范围内变化于-7.76‰~5.40‰之间, 低δ18O值岩浆锆石表明它们是从新元古代低δ18O值岩浆中直接结晶形成, 锆石δ18O值的局部变化表明其原岩岩浆的氧同位素组成具有不均一性, 指示低δ18O值岩浆源区物质曾经在地表与极度亏损18O的大气降水发生过不同程度的高温水岩反应; (3) 低δ18O值花岗片麻岩在印支期板块俯冲和折返过程中基本没有与外部发生显著的氧同位素交换, 在退变质作用过程中花岗片麻岩内部缓冲流体对原岩岩浆锆石的δ18O值影响不大.威海皂埠镇地区和东海青龙山地区的花岗片麻岩在原岩时代、变质时代和氧同位素组成等方面基本相同, 指示它们应具有相同的原岩性质, 并经历了相同的变质作用和水岩相互作用过程.因此, 极度亏损18O的新元古代双峰式基性-酸性岩浆岩可能分布于整个大别-苏鲁造山带.   相似文献   

4.
Early carbonate cements in the Yanchang Formation sandstones are composed mainly of calcite with relatively heavier carbon isotope (their δ^18O values range from -0.3‰- -0.1‰) and lighter oxygen isotope (their δ^18O values range from -22.1‰- -19.5‰). Generally, they are closely related to the direct precipitation of oversaturated calcium carbonate from alkaline lake water. This kind of cementation plays an important role in enhancing the anti-compaction ability of sandstones, preserving intragranular volume and providing the mass basis for later disso- lution caused by acidic fluid flow to produce secondary porosity. Ferriferous calcites are characterized by relatively light carbon isotope with δ^13C values ranging from -8.02‰ to -3.23‰, and lighter oxygen isotope with δ^18O values ranging from -22.9‰ to -19.7‰, which is obviously related to the decarboxylation of organic matter during the late period of early diagenesis to the early period of late diagenesis. As the mid-late diagenetic products, ferriferous cal- cites in the study area are considered as the characteristic authigenic minerals for indicating large-scaled hydrocarbon influx and migration within the clastic reservoir. The late ankerite is relatively heavy in carbon isotope with δ^13C values ranging from -1.92‰ to -0.84‰, and shows a wide range of variations in oxygen isotopic composition, with δ^18O values ranging from -20.5‰ to -12.6‰. They are believed to have nothing to do with decarboxylation, but the previously formed marine carbonate rock fragments may serve as the chief carbon source for their precipitation, and the alkaline diagenetic environment at the mid-late stage would promote this process.  相似文献   

5.
 Hydrogen and oxygen isotope analyses have been made of hydrous minerals in gabbros and basaltic xenoliths from the Eocene Kap Edvard Holm intrusive complex of East Greenland. The analyzed samples are of three types: (1) primary igneous hornblendes and phlogopites that crystallized from partial melts of hydrothermally altered basaltic xenoliths, (2) primary igneous hornblendes that formed during late–magmatic recrystallization of layered gabbroic cumulates, and (3) secondary actinolite, epidote and chlorite that formed during subsolidus alteration of both xenoliths and gabbros. Secondary actinolite has a δ18O value of −5.8‰ and a δD value of −158‰. These low values reflect subsolidus alteration by low–δ18O, low–δD hydrothermal fluids of meteoric origin. The δD value is lower than the −146 to −112‰ values previously reported for amphiboles from other early Tertiary meteoric–hydrothermal systems in East Greenland and Scotland, indicating that the meteoric waters at Kap Edvard Holm were isotopically lighter than typical early Tertiary meteoric waters in the North Atlantic region. This probably reflects local climatic variations caused by formation of a major topographic dome at about the time of plutonism and hydrothermal activity. The calculated isotopic composition of the meteoric water is δD=−110 ± 10‰, δ18O ≈−15‰. Igneous hornblendes and phlogopites from pegmatitic pods in hornfelsed basaltic xenoliths have δ18O values between −6.0 and −3.8‰ and δD values between −155 and −140‰. These are both much lower than typical values of fresh basalts. The oxygen isotope fractionations between pegmatitic hornblendes and surrounding hornfelsic minerals are close to equilibrium fractionations for magmatic temperatures, indicating that the pegmatites crystallized from low–δ18O partial melts of xenoliths that had been hydrothermally altered and depleted in 18O prior to stoping. The pegmatitic minerals may have crystallized with low primary δD values inherited from the altered country rocks, but these values were probably overprinted extensively by subsolidus isotopic exchange with low–δD meteoric–hydrothermal fluids. This exchange was facilitated by rapid self–diffusion of hydrogen through the crystal structures. Primary igneous hornblendes from the plutonic rocks have δ18O values between +2.0 and +3.2‰ and δD values between −166 and −146‰. The 18O fractionations between hornblendes and coexisting augites are close to equilibrium fractionations for magmatic temperatures, indicating that the hornblendes crystallized directly from the magma and subsequently underwent little or no oxygen exchange. The hornblendes may have crystallized with low primary δD values, due to contamination of the magma with altered xenolithic material, but the final δD values were probably controlled largely by subsolidus isotopic exchange. This inference is based partly on the observation that coexisting plagioclase has been extensively depleted in 18O via a mineral–fluid exchange reaction that is much slower than the hydrogen exchange reaction in hornblende. It is concluded that all hydrous minerals in the study area, whether igneous or secondary, have δD values that reflect extensive subsolidus isotopic equilibration with meteoric–hydrothermal fluids. Received: 22 March 1994 / Accepted: 26 January 1995  相似文献   

6.
 Late Proterozoic to Cambrian carbonate rocks from Lone Mountain, west central Nevada, record multiple post-depositional events including: (1) diagenesis, (2) Mesozoic regional metamorphism, (3) Late Cretaceous contact metamorphism, related to the emplacement of the Lone Mountain granitic pluton and (4) Tertiary hydrothermal alteration associated with extension, uplift and intrusion of silicic porphyry and lamprophyre dikes. Essentially pure calcite and dolomite marbles have stable isotopic compositions that can be divided into two groups, one with positive δ13C values from+3.1 to +1.4 ‰ (PDB) and high δ18O values from +21.5 to +15.8 ‰ (SMOW), and the other with negative δ13C values from –3.3 to –3.6‰ and low δ18O values from +16.9 to +11.1‰. Marbles also contain minor amounts of quartz, muscovite and phlogopite. Brown and blue luminescent, clear, smooth textured quartz grains from orange luminescent calcite marbles have high δ18O values from +23.9 to +18.1‰, while brown luminescent, opaque, rough textured quartz grains from red luminescent dolomite marbles typically have low δ18O values from +2.0 to +9.3‰. The δ18O values of muscovite and phlogopite from marbles are typical of micas in metamorphic rocks, with values between +10.4 and +14.4‰, whereas mica δD values are very depleted, varying from −102 to −156‰. No significant lowering of the δ18O values of Lone Mountain carbonates is inferred to have occurred during metamorphism as a result of devolatilization reactions because of the essentially pure nature of the marbles. Bright luminescence along the edges of fractures, quartz cements and quartz overgrowths in dolomite marbles, low δD values of micas, negative δ13C values and low δ18O values of calcite and dolomite, and depleted δ18O values of quartz from dolomite marbles all indicate that meteoric fluids interacted with Lone Mountain marbles during the Tertiary. Partial oxygen isotopic exchange between calcite and low 18O meteoric fluids lowered the δ18O values of calcite, resulting in uniform quartz-calcite fractionations that define an apparent pseudoisotherm. These quartz-calcite fractionations significantly underestimate both the temperature of metamorphism and the temperature of post-metamorphic alteration. Partial oxygen isotopic exchange between quartz and meteoric fluids also resulted in 18O depletion of quartz from dolomite marbles. This partial exchange was facilitated by an increase in the surface area of the quartz as a result of its dissolution by meteoric fluids. The negative δ13C values in carbonates result from the oxidation of organic material by meteoric fluids following metamorphism. Stable isotopic data from Lone Mountain marbles are consistent with the extensive circulation of meteoric hydrothermal fluids throughout western Nevada in Tertiary time. Received: 1 February 1994/Accepted: 12 September 1995  相似文献   

7.
刘福来  S.MARUYAMA 《地质论评》2001,47(2):164-168
中国大陆科学钻探工程预先导孔CCSD-PP1中存在两类不同性质的花岗质片麻岩,它们的岩相学性质,地球化学特征,锆石中的包体矿物组合和分布规律以及阴极发光图像均存在明显的判别,其中第一类花岗质片麻岩中的锆石呈完好的自形晶,不含任何超高压矿物包体,自晶体中心至边缘均具有典型的岩浆结晶生长环带,表明该类花岗质片麻岩未经历超高压变质作用,第二类花岗质征麻岩中的锆石呈半自形晶一它形晶,晶体核部保存典型的岩浆结晶生长环带,且无超高压矿物包体,具有继承性锆石的特点,而在晶体的过渡带及其与边缘的交界部位,普遍存在以柯石英粉 包体矿物,表明第二类花岗质片麻岩曾经历了超高压变质作用,且锆石在此变质过程进一步结晶生长,形成新的生长环带,该项成果对于深入探讨苏鲁超高压变质带的俯冲-折返机制及其与岩浆作用的相互关系以及对中国大陆科学钻探工程的选址和实施有着重要的科学意义。  相似文献   

8.
The oxygen isotopic composition of gem corundum was measured from 22 deposits and occurrences in Madagascar to provide a gemstone geological identification and characterization. Primary corundum deposits in Madagascar are hosted in magmatic (syenite and alkali basalt) and metamorphic rocks (gneiss, cordieritite, mafic and ultramafic rocks, marble, and calc-silicate rocks). In both domains the circulation of fluids, especially along shear zones for metamorphic deposits, provoked in situ transformation of the corundum host rocks with the formation of metasomatites such as phlogopite, sakenite, and corundumite. Secondary deposits (placers) are the most important economically and are contained in detrital basins and karsts. The oxygen isotopic ratios (18O/16O) of ruby and sapphire from primary deposits are a good indicator of their geological origin and reveal a wide range of δ18O (Vienna Standard Mean Ocean Water) between 1.3 and 15.6‰. Metamorphic rubies are defined by two groups of δ18O values in the range of 1.7 to 2.9‰ (cordieritite) and 3.8 to 6.1‰ (amphibolite). “Magmatic” rubies from pyroxenitic xenoliths contained in the alkali basalt of Soamiakatra have δ18O values ranging between 1.3 and 4.7‰. Sapphires are classified into two main groups with δ18O in the range of 4.7 to 9.0‰ (pyroxenite and feldspathic gneiss) and 10.7 to 15.6‰ (skarn in marble from Andranondambo). The δ18O values for gem corundum from secondary deposits have a wide spread between −0.3 and 16.5‰. The ruby and sapphire found in placers linked to alkali basalt environments in the northern and central regions of Madagascar have consistent δ18O values between 3.5 and 6.9‰. Ruby from the placers of Vatomandry and Andilamena has δ18O values of 5.9‰, and between 0.5 and 4.0‰, respectively. The placers of the Ilakaka area are characterized by a huge variety of colored sapphires and rubies, with δ18O values between −0.3 and 16.5‰, and their origin is debated. A comparison with oxygen isotope data obtained on gem corundum from Eastern Africa, India, and Sri Lanka is presented. Giant placer deposits from Sri Lanka, Madagascar, and Tanzania have a large variety of colored sapphires and rubies with a large variation in δ18O due to mingling of corundum of different origin: mafic and ultramafic rocks for ruby, desilicated pegmatites for blue sapphire, syenite for yellow, green, and blue sapphire, and skarn in marbles for blue sapphire.  相似文献   

9.
A generalized approach for retrieving equilibrium isotope fractionations from natural rocks is proposed in which models of prograde reaction histories and retrograde diffusional exchange are used to identify coexisting minerals with similar isotope closure temperatures. Examples using literature data and new analyses from 32 natural amphibolite-facies schists demonstrate both the feasibility and limitations of obtaining equilibrium oxygen isotope fractionations from minerals in natural rocks. By screening samples according to the theoretical models, natural data are shown to have highly consistent mineral fractionations (±2σ reproducibilities of ±0.16 to 0.54‰) that within uncertainty reproduce experimental determinations among the minerals quartz, biotite, muscovite, and calcic amphibole. This correspondence indicates that the proposed theoretically-based selection criteria improve the likelihood of measuring equilibrium fractionations. The new data further corroborate the expected progressive enrichment of δ18O in the orthosilicates with increasing Al+Si relative to Fe+Mg: Δ(Ky-Grt) ∼1.05‰, Δ(St-Grt) ∼0.6‰, and Δ(St-Cld) ∼0.3‰ at 525–575 °C. In contrast, typical samples that fail to satisfy screening criteria exhibit fractionations involving quartz, biotite, and amphibole that are strongly disequilibrium because of exchange during cooling. Theoretical screening of samples prior to isotope analysis allows robust, independent assessment of theoretical and experimental determinations of equilibrium isotope fractionations. Received: 14 January 1997 / Accepted: 9 March 1998  相似文献   

10.
The oxygen isotopic composition was studied in minerals and rocks from the critical zone of the Ioko-Dovyren layered pluton. The δ18O values vary from +5.4 to +6.1‰ in rocks, from +4.8 to +5.8‰ in olivine, from +5.5 to 6.5‰ in pyroxene, and from +5.8 to +6.9‰ in plagioclase and fall into the interval of mantle values for continental mafic and ultramafic rocks. A decrease in δ18O could have been caused by penetration of meteoric water. Postmagmatic (retrograde) oxygen isotopic redistribution in the slowly cooling rocks is responsible for disturbance of oxygen isotope equilibria in the coexisting minerals, which were crystallized from the same magma at a high temperature. The nonequilibrium oxygen isotopic composition in the associated minerals and calculated temperature of the final isotopic equilibration do not contradict the model of “fluid” formation of low-sulfide PGE mineralization in the Ioko-Dovyren layered pluton.  相似文献   

11.
The Chupa nappe of the Belomorian Complex contains aluminous silica-undersaturated rocks with corundum, which are characterized by extremely low 18O/16O (whole-rock δ18O up to −21‰). Revealed isotopic anomalies are explained by the influence of meteoric waters that were modified through evaporation-precipitation cycles (Rayleigh distillation) under cold climatic conditions. In order to estimate whether the decrease in δ18O occurred prior to metamorphism of the protoliths of the Chupa Sequence or during water percolation in the course of metamorphic or postmetamorphic transformations, we studied oxygen composition in the rocks and minerals and conducted U-Pb dating on single zircons from corundumbearing rocks of Khitostrov.  相似文献   

12.
Whole rock and mineral stable isotope and microprobe analyses are presented from granitoids of the North Chilean Precordillera. The Cretaceous to Tertiary plutonic rocks contain important ore deposits and frequently display compositional and textural evidence of hydrothermal alteration even in barren rocks. Deuteric alteration includes replacement of biotite and amphibole by chlorite and epidote, sericitization and saussuritization of feldspars, and uralitization of clinopyroxene and/or amphibole. While whole rock compositions are not significantly affected, compositional variations in amphiboles suggest two types of hydrothermal alteration. Hornblende with actinolitic patches and rims and tight compositional trends from hornblende to Mg-rich actinolite indicate increasing oxygen fugacity from magmatic to hydrothermal conditions. Uralitic amphiboles exhibiting irregular Mg-Fe distribution and variable Al content are interpreted as reflecting subsolidus hydration reactions at low temperatures. The δD values of hydrous silicates vary from −63 to −105‰. Most δ18O values of whole rocks are in the range of 5.7 to 7.7‰ and are considered normal for igneous rocks in the Andes. These δ18O values also coincide well with the oxygen isotope composition of geochemically similar recent volcanics from the Central Andean Volcanic Zone (δ18O = 7.0–7.4‰). Only one sample in this study (δ18O = 3.0‰) appears to be depleted by isotope exchange with light meteoric water at high temperatures. The formation of secondary minerals in all other intrusions is mainly the product of deuteric alteration. This also holds true for the sample from El Abra, the only pluton associated with mineralization. This indicates the dominant role of a magmatic rather than a meteoric fluid in the alteration of the Cretaceous and Tertiary granitoids in northern Chile. Received: 8 July 1998 / Accepted: 15 April 1999  相似文献   

13.
Oxygen and hydrogen stable isotope ratios of eclogite-facies metagabbros and metabasalts from the Cycladic archipelago (Greece) document the scale and timing of fluid–rock interaction in subducted oceanic crust. Close similarities are found between the isotopic compositions of the high-pressure rocks and their ocean-floor equivalents. High-pressure minerals in metagabbros have low δ18O values: garnet 2.6 to 5.9‰, glaucophane 4.3 to 7.1‰; omphacite 3.5 to 6.2‰. Precursor actinolite that was formed during the hydrothermal alteration of the oceanic crust by seawater analyses at 3.7 to 6.3‰. These compositions are in the range of the δ18O values of unaltered igneous oceanic crust and high-temperature hydrothermally altered oceanic crust. In contrast, high-pressure metabasalts are characterised by 18O-enriched isotopic compositions (garnet 9.2 to 11.5‰, glaucophane 10.6 to 12.5‰, omphacite 10.2 to 12.8‰), which are consistent with the precursor basalts having undergone low-temperature alteration by seawater. D/H ratios of glaucophane and actinolite are also consistent with alteration by seawater. Remarkably constant oxygen isotope fractionations, compatible with isotopic equilibrium, are observed among high-pressure minerals, with Δglaucophane−garnet = 1.37 ± 0.24‰ and Δomphacite−garnet = 0.72 ± 0.24‰. For the estimated metamorphic temperature of 500 °C, these fractionations yield coefficients in the equation Δ = A * 106/T 2 (in Kelvin) of Aglaucophane−garnet = 0.87 ± 0.15 and Aomphacite−garnet = 0.72 ± 0.24. A fractionation of Δglaucophane–actinolite = 0.94 ± 0.21‰ is measured in metagabbros, and indicates that isotopic equilibrium was established during the metamorphic reaction in which glaucophane formed at the expense of actinolite. The preservation of the isotopic compositions of gabbroic and basaltic oceanic crust and the equilibrium fractionations among minerals shows that high-pressure metamorphism occurred at low water/rock ratios. The isotopic equilibrium is only observed at hand-specimen scale, at an outcrop scale isotopic compositional differences occur among adjacent rocks. This heterogeneity reflects metre-scale compositional variations that developed during hydrothermal alteration by seawater and were subsequently inherited by the high-pressure metamorphic rocks. Received: 4 January 1999 / Accepted: 7 July 1999  相似文献   

14.
The Biwabik Iron Formation of Minnesota (1.9 Ga) underwent contact metamorphism by intrusion of the Duluth Complex (1.1 Ga). Apparent quartz–magnetite oxygen isotope temperatures decrease from ∼700°C at the contact to ∼375°C at 2.6 km distance (normal to the contact in 3D). Metamorphic pigeonite at the contact, however, indicates that peak temperatures were greater than 825°C. The apparent O isotope temperatures, therefore, reflect cooling, and not peak metamorphic conditions. Magnetite was reset in δ18O as a function of grain size, indicating that isotopic exchange was controlled by diffusion of oxygen in magnetite for samples from above the grunerite isograd. Apparent quartz–magnetite O isotope temperatures are similar to calculated closure temperatures for oxygen diffusion in magnetite at a cooling rate of ∼5.6°C/kyr, which suggests that the Biwabik Iron Formation cooled from ∼825 to 400°C in ∼75 kyr at the contact with the Duluth Complex. Isotopic exchange during metamorphism also occurred for Fe, where magnetite–Fe silicate fractionations decrease with increasing metamorphic grade. Correlations between quartz–magnetite O isotope fractionations and magnetite–iron silicate Fe isotope fractionations suggest that both reflect cooling, where the closure temperature for Fe was higher than for O. The net effect of metamorphism on δ18O–δ56Fe variations in magnetite is a strong increase in δ18OMt and a mild decrease in δ56Fe with increasing metamorphic grade, relative to the isotopic compositions that are expected at the low temperatures of initial magnetite formation. If metamorphism of Iron Formations occurs in a closed system, bulk O and Fe isotope compositions may be preserved, although re-equilibration among the minerals may occur for both O and Fe isotopes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The Longquanzhan gold deposit hosted in granitic cataclasites with mylontization of the foot wall of the main Yishui-Tangtou fault. 3He/4He ratios in fluid inclusions range from 0. 14 to 0. 24 R/Ra,close to those of the crust-source helium. 40Ar/36Ar ratios were measured to be 289-1811, slightly higher than those of atmospheric argon. The results of analysis of helium and argon isotopes suggested that ore-forming fluids were derived chiefly from the crust. The δ18O values of fluid inclusions from vein quartz range from -1.78‰ to 4.07‰, and the δD values of the fluid inclusions vary between -74‰ and -77‰. The hydrogen and oxygen isotope data indicated that the ore-forming fluid for the Longquanzhan gold deposit had mixed with meteoric water in the process of mineralization. This is consistent with the conclusion from the helium and argon isotope data.  相似文献   

16.
Diffusion rates of Sr and O in minerals are often comparable while Nd has a lower diffusion rate during thermal overprint(s); thus, the O isotope systems between metamorphic minerals can serve as an indicator to evaluate whether equilibrium of Rb–Sr and Sm–Nd systems has been preserved in the metamorphic minerals that experienced retrograde metamorphism. This study presents a combination of investigation on Sm–Nd, Rb–Sr, and O isotopic compositions of minerals separated from ultrahigh-pressure eclogite and gneiss that were collected from the main hole of the Chinese Continental Scientific Drilling project located in the Sulu orogen, eastern China. Oxygen isotopic compositions of minerals from gneiss and eclogite yield two temperature groups of 620–740 and 460–590°C, representing diffusion cessation of isotopic exchange during the eclogite-facies recrystallization and later amphibolite-facies retrograde overprint. Rb–Sr mineral regressions of two eclogite samples give consistent Triassic ages of 244 Ma, corresponding to eclogite-facies metamorphism, while the same minerals do not yield meaningful Sm–Nd isochron ages. This phenomenon likely suggests that Rb–Sr isotopic equilibrium was achieved during eclogite-facies metamorphism and preserved during late amphibolite-facies retrogression. In contrast, Sm–Nd isotopic equilibrium between the minerals of eclogite was not achieved under UHP metamorphic conditions. Regressions of epidote and biotite of one gneiss sample give a Triassic Sm–Nd age of 243 ± 34 Ma, corresponding to the time of the eclogite-facies metamorphism, and a Jurassic mineral Rb–Sr age of 187.5 ± 1.8 Ma. These results imply that fluids have played an important role to achievement of the Sm–Nd isotopic equilibrium during eclogite-facies metamorphism and re-equilibration of the Rb–Sr isotopic system during later retrograde overprint.  相似文献   

17.
The origin of monzonitic intrusions that are associated with Proterozoic massif-type anorthosite complexes is controversial. A detailed oxygen isotope study of the Sybille intrusion, a monzonitic intrusion of the Laramie Anorthosite Complex (Wyoming), indicates that either derivation from a basaltic magma of mantle origin with a metasedimentary component (∼20%) incorporated early in its magmatic history, or a partial melt of lower crustal rocks is consistent with the data. The oxygen isotope compositions of plagioclase, pyroxene and zircon from the Sybille monzosyenite, the dominant rock type in the Sybille intrusion, were analyzed in order to establish the isotopic composition of the source of the magma. Plagioclase δ18O values range from 6.77 to 9.17‰. We interpret the higher plagioclase δ18O values (average 8.69 ± 0.30‰, n = 19) to be magmatic in origin, lower plagioclase δ18O values (average 7.51 ± 0.44‰, n = 22) to be the result of variable subsolidus alteration, and pyroxene δ18O values (average 6.34 ± 0.38‰, n = 19) to be the result of closed-system diffusional exchange during cooling. Low magnetic zircons, which have been shown to retain magmatic oxygen isotope values despite high grade metamorphism and extensive subsolidus hydrothermal alteration, have δ18O values (7.40 ± 0.24‰, n = 11) which are consistent with our interpretation of the plagioclase and pyroxene results. Oxygen isotope data from all three minerals indicate that the magmatic oxygen isotope composition of the Sybille intrusion is enriched in 18O relative to the composition of average or “normal” mantle-derived magmas. This enrichment is approximately twice the oxygen isotope enrichment that could result from closed-system fractionation, rendering a closed-system, comag- matic petrogenetic model between the Sybille intrusion and the mantle-derived anorthositic lithologies of the Laramie Anorthosite Complex improbable. Received: 7 April 1998 / Accepted: 19 January 1999  相似文献   

18.
 Previous stable isotope studies at Lizzies Basin revealed that metasedimentary rocks are 18O-depleted relative to protolith values, particularly in the lower parts of the section (Lower Zone) where the rocks are also isotopically homogeneous on a scale of hundreds of meters (quartz δ18O=+9.0 to +9.6 per mil). In contrast, metasedimentary rocks at higher levels at Lizzies Basin (Upper Zone) are less 18O-depleted and more heterogeneous in δ18O. In order to understand more fully the isotopic evolution of this terrane, a series of detailed, meter-scale traverses across various metamorphic and igneous lithologies were completed at Lizzies Basin, and at the structurally higher Angel Lake locality. Traverses in the Lizzies Basin Lower Zone and in the lower parts of Angel Lake (Angel Lake Lower Sequence) across various silicate lithologies, including abundant granitoids, reveal similar degrees of homogeneity, although the average δ18O values are higher at Angel Lake. In contrast, traverses which include substantial thicknesses of marble and calc-silicate gneiss and very little granitoid have more heterogeneous quartz δ18O values (+11.9 to +13.4 per mil), and also have a higher average δ18O (+12.9 per mil), than observed elsewhere. The scale of 18O/16O homogeneity in quartz observed at Lizzies Basin and Angel Lake (meters to hundreds of meters) requires fluid-mediated isotope exchange, which accompanied Tertiary metamorphism. There is a correlation between the degree of 18O-depletion in metasedimentary rocks, 18O/16O homogenization between lithologies, and the proportion of granitoids (leucogranites in particular) within any part of the section, and a corresponding anticorrelation with the proportion of marble. This points to a causal relationship, whereby the leucogranites (as well as the Tertiary hornblende diorite and biotite monzogranite) acted as both a relatively low-18O reservoir and a source of fluids to enhance exchange, while the marbles hindered isotope depletion and homogenization by acting as relatively high-18O reservoirs and impermeable layers. Material balance calculations help delineate the plausible mechanisms of exchange between granitoids and metasediments. Single-pass infiltration of magmatic fluids from the granitoids is not capable of reproducing all of the observations. Fluid-mediated exchange by convective recirculation of magmatic fluids on a scale of meters is the mechanism which explains all of the observations. The generalized model for the isotopic evolution of the East Humboldt Range core complex provides an excellent opportunity to establish the main causes and controlling factors of 18O-depletion and 18O/16O homogenization during regional metamorphism. Received: 27 July 1993 / Accepted: 1 July 1994  相似文献   

19.
The strongly deformed Middle Devonian-Lower Carboniferous metasedimentary-volcanic successions of the Trevone Basin (SW England) contain stratiform and Pb-Sb vein deposits that reveal a wide variation in δ34S and δ13C, reflecting mineral deposition during diagenesis, regional metamorphism and basin inversion. Pre-Variscan metasedimentary sulphide (δ34S=−33.7 to −26.7‰) and metabasite sulphide (δ34S=+4.0 to +10.8‰) suggest two accessible source reservoirs for sulphur which were available for Sb-As-(Au) and Pb-Zn-(Ag) mineralisation (δ34S=−3.3 to −15.0‰) during late Variscan semiductile-brittle shear. On the basis of pressure-corrected fluid inclusion temperatures, the calculated composition of fluid sulphur reveals an enrichment in δ34SH2S in the individual vein parageneses and depletion of the fluid sulphur reservoir during evolution of the vein systems. Carbonates in the same veins are partly contemporaneous with Pb-Sb mineralisation and late tensional deformation; their isotopic composition (δ13C=−3.2 and −13.4‰) appears strongly influenced by the host formation. Fluid inclusions in post-tensional quartz show a marked reduction in CO2, suggesting that episodes of CO2 degassing in response to punctuated reductions in pressure during uplift and brittle deformation was an important mechanism for vein carbonation. An origin for the Pb-Sb mineralisation involving local remobilisation of sulphur from the mixed metasedimentary-volcanic succession is probably inseparable from processes connected with Variscan metamorphism and deformation. Although the N Cornish Variscan deformation is part of a spatially large-scale event, the isotopic evidence suggests compartmentalisation of sulphur and carbon isotope features and short distances between sources and sinks. Received: 15 August 1998 / Accepted: 8 October 1999  相似文献   

20.
18O/16O ratios have been obtained for 134 whole-rocks and minerals from metamorphic and granitic rocks of the Yanai district in the Ryoke belt, Southwest Japan. The 18O/16O ratios of pelitic rocks of the marginal metamorphic zone decrease progressively with increasing metamorphic grade. In the gneiss-granite complex (zone of migmatite [1]), the most characteristic feature of the rocks is that oxygen isotopic homogenization proceeds on both local and regional scales in parallel with “granitization” or chemical homogenization. Granitic rocks of various origin are fairly uniform in isotopic composition with δ 18O of quartz of 12 to 14‰ (SMOW) and δ 18O of biotite of 7 to 9‰ and are about 3 to 4‰ enriched in 18O compared to other Cretaceous granites of non-metamorphic terranes in Japan. The high 18O/16O ratios of granitic rocks of this district were discussed in relation to the 18O-depletion in metasediments. Oxygen isotopic fractionations among coexisting minerals from various rock-types of the gneiss-granite complex indicate that these minerals were formed under near isotopic equilibrium at a temperature of about 600 to 700° C. Some abnormal fractionations of quartz-biotite pairs also were obtained for rocks which had undergone a progressive 18O-depletion or 18O-enrichment. This is due to high resistivity of quartz and contrastive susceptibility of biotite to isotopic exchange during metamorphism and “granitization”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号