首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Applied Geochemistry》1999,14(2):159-171
For a proper assessment of the environmental impact of the utilisation and disposal of Municipal Solid Waste Incinerator (MSWI) bottom ash it is necessary to understand weathering processes and their effects on (trace) element leaching. The authors have investigated the processes that control the leaching of Cd, Pb, Zn, Cu, and Mo from 3 categories of bottom ash: (A) unweathered bottom ash (grate siftings and unquenched samples), (B) quenched/non-carbonated bottom ash (freshly quenched and 6-week-old samples), and (C) weathered bottom ash (1.5- and 12-year-old samples). Leaching experiments were performed in a pH-stat at a large range of pH values. The speciation code MINTEQA2 was used for subsequent modelling of precipitation/dissolution processes. The speciation of trace elements in weathered bottom ash was also investigated by microanalytical techniques. In A- and B-type bottom ash the general controlling processes are thought to be precipitation/dissolution of relatively soluble minerals or, in the case of Cu in particular, extensive complexation with dissolved organic C. At the “natural” pH of the samples, the leaching of Cd, Pb, Cu, Zn and Mo is generally significantly lower from C-type bottom ash than from less weathered types of bottom ash. This reduction in leaching is due to the neutralisation of bottom ash pH and the formation of less soluble species of these elements as weathering continues. In the more weathered (C-type) bottom ash trace element leaching does not seem to be solubility-controlled; although slow precipitation reactions cannot be totally excluded, it is hypothesised that the controlling mechanism in those samples is sorption to neoformed minerals.  相似文献   

2.
The leaching behaviour of fly ash from a Co smelter situated in the Zambian Copperbelt was studied as a function of pH (5–12) using the pH-static leaching test (CEN/TS 14997). Various experimental time intervals (48 h and 168 h) were evaluated. The leaching results were combined with the ORCHESTRA modelling framework and a detailed mineralogical investigation was performed on the original FA and leached solid residues. The largest amounts of Co, Cu, Pb and Zn were leached at pH 5, generally with the lowest concentrations between pH 9 and 11 and slightly increased concentrations at pH 12. For most elements, the released concentrations were very similar after 48 h and 168 h, indicating near-equilibrium conditions in the system. Calcite, clinopyroxenes, quartz and amorphous phases predominated in the fly ash. Various metallic sulfides, alloys and the presence of Cu, Co and Zn in silicates and glass were detected using SEM/EDS and/or TEM/EDS. The leaching of metals was mainly attributed to the dissolution of metallic particles. Partial dissolution of silicate and glass fractions was assumed to significantly influence the release of Ca, Mg, Fe, K, Al and Si as well as Cu, Co and Zn. The formation of illite was suggested by the ORCHESTRA modelling to be one of the main solubility-controlling phases for major elements, whereas Co and Zn were controlled by CoO and zincite, respectively. Sorption of metals on hydrous ferric oxides was assumed to be an important attenuation mechanism, especially for the release of Pb and Cu. However, there is a high risk of Co, Cu, Pb and Zn mobility in the acidic soils around the smelter facility. Therefore, potential local options for “stabilisation” of the fly ash were evaluated on the basis of the modelling results using the PHREEQC code.  相似文献   

3.
《Applied Geochemistry》2002,17(12):1503-1513
The interaction of CO2 with municipal solid waste incinerator (MSWI) bottom ash was studied in order to investigate the resulting changes in pH and bottom ash mineralogy and the impact that these changes have on the mobility of Cu and Mo. Carefully controlled carbonation experiments were performed on bottom ash suspensions and on filtered bottom ash leachates. Changes in leachate composition were interpreted with the geochemical model MINTEQA2, and neoformed minerals were investigated by means of chemical and spectroscopic analysis. The leaching of Cu and Mo during artificial carbonation is compared to the leachability of Cu and Mo from a sample of naturally carbonated bottom ash from the same incinerator. During carbonation in the laboratory, a precipitate was formed that consisted mainly of Al-rich amorphous material, calcite, and possibly gibbsite. Carbonation to pH ≈8.3 resulted in a reduction of more than 50% in Cu leaching, and a reduction of less than 3% in Mo leaching. The reduction in Cu leaching is attributed to sorption to the neoformed amorphous Al-minerals. During natural weathering/carbonation of bottom ash, additional sorption sites are formed which further reduce the leaching of Cu and Mo on a time scale of months to years.  相似文献   

4.
In the present study, coal from Chakwal (Pakistan) was leached with an aqueous solutions of iodine monochloride (ICl) and diethylenetriamine pentaacetic acid (DPTA) of different concentrations. The effect of stirring time, concentration and pH was studied on the leaching of different metals from coal. The physicochemical parameters indicated that the coal was of reasonably good quality. The results indicated that with increase in time duration, the extraction of metals increased. In most of the cases, metal concentration increased in the leachate with increasing the concentration of the leaching agents. DPTA was found to be the best leaching agent for most of the metals. Higher extraction of metals from coal fly ash indicated that coal organic matter has a pronounced effect on the leaching. Higher concentration of metals was extracted from virgin coal and coal fly ash at low pH (p?>?0.00) as compared to high pH. DPTA extracted metals in higher concentration from virgin coal and coal fly ash at low pH as compared to ICl. Based on the present study, the most leached metals were Fe, Cu, Mn and the least were Pb, Ni, Cd and Cr.  相似文献   

5.
Flexible-wall hydraulic conductivity tests were carried out on bottom ash, fly ash and compacted specimens of sand with additions of 0, 3, 6, 9 and 18% of bentonite. In order to study the effect of bentonite inclusion and particle morphology on the hydraulic conductivity of the admixtures, an investigation was undertaken based on thin section micrographs. It was found that, for both bottom and fly ash admixtures, bentonite addition reduced only one order of magnitude the hydraulic conductivity, from 1.78 × 10−6 m/s to 1.39 × 10−7 m/s. On the other hand, the sand hydraulic conductivity was reduced five orders of magnitude, from 3.17 × 10−5 m/s to 5.15 × 10−10 m/s. Among several factors that can be responsible for the difficulty in reducing hydraulic conductivity, such as ash grain size distribution and elevated cation concentration (leached from the ash) in pore water, it can also be recalled the high particle voids observed in the ash by means of microscopic analysis. The same is not true with the sand, which has solid particles, without inner voids.  相似文献   

6.
Metal leaching from metallurgical wastes (slags) by means of environmentally friendly approaches is promising for practical applications. The goal of this study was to compare the feasibility of metal bioleaching from Cu slags by means of Pseudomonas fluorescens and Acidithiobacillus thiooxidans. Two size particles (<0.3 mm and 1–2 mm) of two types of Cu slags (massive crystalline slag and granulated amorphous slag) were used to study metal (Cu, Zn and Fe) bioleaching. The 40-days bioleaching experiments with P. fluorescens began at circumneutral pH (7.0), whereas the experiments with A. thiooxidans were started under acidic (pH 2.5) conditions. The results demonstrated that A. thiooxidans catalyzes metal leaching from both slag types investigated. After 21 days of incubation, optimal leaching was achieved and up to 79% Cu, 76% Zn and 45% Fe could be extracted from crystalline slag under conditions of 1 wt.% pulp density and particle size <0.3 mm. The optimal efficiency achieved with amorphous slag was 81% Cu, 79% Zn and 22% Fe when 1% pulp density and 1–2 mm particle size were used. The use of P. fluorescens resulted in poor leaching efficiencies as compared to the performance of A. thiooxidans, presumably due to the higher pH conditions maintained during the P. fluorescens incubations. The maximum metal leaching efficiencies with P. fluorescens were achieved at 1% pulp density and particle size <0.3 mm and did not exceed 10% Cu, 4% Zn, 0.3% Fe for crystalline slag and 4% Cu, 3% Zn, 0.7% Fe for amorphous slag. Both slags exhibited a good potential for bioleaching with A. thiooxidans, however; further optimization of the process parameters (e.g. pulp density, particle size and pH) is needed to improve the efficiency.  相似文献   

7.
With tightening legislations on air pollution and decreasing grades of Cu and Ni ores, the mineral processing industry will have to find an alternative to smelting. One such hydrometallurgical alternative is bacterial leaching; it utilizes the action of Thiobacillus ferrooxidans on sulfide minerals converting them to metal sulfates which can be leached by acid produced by the bacteria. The metal is recovered by cementation, solvent extraction or electrowinning. In the present paper, the authors report their test work with a Cu-Ni sulfide concentrate and show that the mutualistic association of T. ferrooxidans with nitrogen-fixing bacteria Beijerinckia lacticogenes helps leach more metal faster in a leaching medium devoid of any added carbon or nitrogen source. Use of intentionally mixed bacterial culture in ore leaching has not been previously reported.  相似文献   

8.
The Tuwu porphyry Cu deposit in the eastern Tianshan Orogenic Belt of southern Central Oceanic Orogen Belt contains 557 Mt ores at an average grade of 0.58 wt.% Cu and 0.2 g/t Au, being the largest porphyry Cu deposit in NW China. The deposit is genetically related to dioritic and plagiogranitic porphyries that intruded the Carboniferous Qieshan Group. Ore minerals are dominantly chalcopyrite, pyrite and enargite. Porphyric diorites have Sr/Y and La/YbN ratios lower but Y and Yb contents higher than plagiogranites. Diorites have highly variable Cu but nearly constant PGE contents (most Pd = 0.50–1.98 ppb) with Cu/Pd ratios ranging from 10,900 to 8,900,000. Plagiogranites have PGEs that are positively correlated with Cu and have nearly uniform Cu/Pd ratios (5,100,000 to 7,800,000). Diorites have concentrations of Re (0.73–15.18 ppb), and 187Re/188Os and 187Os/188Os ratios lower but common Os contents (0.006–0.097 ppb) higher than plagiogranites. However, both the diorites and plagiogranites have similar normalized patterns of rare earth elements (REE), trace element and platinum-group elements (PGEs). All the samples are characterized by the enrichments of LREE relative to HREE and display positive anomalies of Pb and Sr but negative anomalies of Nb and Ta in primitive-mantle normalized patterns. In the primitive mantle-normalized siderophile element diagrams, they are similarly depleted in all PGEs but slightly enriched in Au relative to Cu.Our new dataset suggests that both the diorite and plagiogranite porphyries were likely evolved from magmas derived from partial melting of a wet mantle wedge. Their parental magmas may have had different water contents and redox states, possibly due to different retaining time in staging magma chambers at the depth, and thus different histories of magma differentiation. Parental magmas of the diorite porphyries are relatively reduced with less water contents so that they have experienced sulfide saturation before fractional crystallization of silicate minerals, whereas the relatively more oxidized parental magmas with higher water contents of the plagiogranite porphyries did not reach sulfide saturation until the magmatic-hydrothermal stage. Our PGE data also indicates that the Cu mineralization in the Tuwu deposit involved an early stage with the enrichments of Au, Mo and Re and a late stage with the enrichment of As but depletion of Au–Mo. After the formation of the Cu mineralization, meteoric water heated by magmas penetrated into and interacted with porphyritic rocks at Tuwu, which was responsible for leaching Re from hosting rocks.  相似文献   

9.
The isotopic composition of dissolved Cu and solid Cu-rich minerals [δ65Cu (‰) = (65Cu/63Cusample/65Cu/63Custd) - 1)*1000] were monitored in batch oxidative dissolution experiments with and without Thiobacillus ferrooxidans. Aqueous copper in leach fluids released during abiotic oxidation of both chalcocite and chalcopyrite was isotopically heavier (δ65Cu = 5.34‰ and δ65Cu = 1.90‰, respectively, [±0.16 at 2σ]) than the initial starting material (δ65Cu = 2.60 ± 0.16‰ and δ65Cu = 0.58 ± 0.16‰, respectively). Isotopic mass balance between the starting material, aqueous copper, and secondary minerals precipitated in these experiments explains the heavier isotopic values of aqueous copper. In contrast, aqueous copper from leached chalcocite and chalcopyrite inoculated with Thiobacillus ferrooxidans was isotopically similar to the starting material. The lack of fractionation of the aqueous copper in the biotic experiments can best be explained by assuming a sink for isotopically heavy copper present in the bacteria cells with δ65Cu = 5.59 ± 0.16‰. Consistent with this inference, amorphous Cu-Fe oxide minerals are observed surrounding cell membranes of Thiobacillus grown in the presence of dissolved Cu and Fe.Extrapolating these experiments to natural supergene environments implies that release of isotopically heavy aqueous Cu from oxidative leach caps, especially under abiotic conditions, should result in precipitates in underlying enrichment blankets that are isotopically heavy. Where iron-oxidizing cells are involved, isotopically heavy oxidized Cu entrained in cellular material may become associated with leach caps, causing the released aqueous Cu to be less isotopically enriched in the heavy isotope than predicted for the abiotic system. Rayleigh fractionation trends with fractionation factors calculated from our experiments for both biotic and abiotic conditions are consistent with large numbers of individual abiotic or biotic leaching events, explaining the supergene chalcocites in the Morenci and Silver Bell porphyry copper deposits.  相似文献   

10.
The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in 87Sr/86Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.  相似文献   

11.
《Applied Geochemistry》2006,21(2):335-351
In this paper, the leaching behaviour of major components (Al, Ca, SO4, Mg, Si, Fe, Na and DOC) and trace elements (Ni, Zn, Cd, Cu, Pb, Mo and Sb) from MSWI bottom ash is studied as a function of time over a wide range of pH, under pH-controlled conditions. Equilibrium geochemical modelling using the modelling framework ORCHESTRA is used to enable a process-based interpretation of the results and to investigate whether ‘equilibrium’ is attained during the time scale of the experiments. Depending on the element and setpoint-pH value, net concentration increases or decreases of up to one order of magnitude were observed. Different concentration–time trends (increase or decrease) are observed in different pH ranges. The direction of the concentration–time trends depends on: (1) the shape of the ‘equilibrium’ solubility curve, and (2) the position of the setpoint-pH in the leaching test relative to the natural pH of the sample. Although the majority of the elements do not reach steady state, leached concentrations over a wide pH range have been shown to closely approach ‘equilibrium’ model curves within an equilibration time of 168 h. The different effects that leaching kinetics may have on the pH dependent leaching patterns have been identified for a wide range of elements, and can generally be explained in a mechanistic way. The results are in support of the currently prescribed equilibration time of 48 h in the European standard for the pH-static leaching test (TS14997). Finally, this study demonstrates that pH-static leaching experiments such as described in the European standards (TS14497 and TS14429), in combination with selective chemical extractions and a mechanistically based modelling approach, constitute a powerful set of tools for the characterization of leaching processes in waste materials over a wide range of conditions.  相似文献   

12.
 In 1995, the central heating plant Draken in Kalmar, Sweden, started manufacturing a granular ash product for nutrient recycling to forest soil, instead of dumping the ash in landfills. Chemical composition, leaching and dissolution characteristics were determined for the Draken wood ash, the dolomite used in granule manufacturing and the final granule product. The heavy metal concentrations in fly ash were within the limit values recommended by the Swedish National Board of Forestry for ash recycling, except for Cd and As levels which occasionally exceeded the limit values. The Ca, Mn and P levels were too low for nutrient recycling at the time. Adding dolomite insures that the levels of the important nutrients Ca and Mg are sufficient in the granules. After 7 months in the field, about 60 % of Na and K was leached out from granules. Between 20 and 60% of trace elements Mo, Sc, V, Y and Zr were leached out after 7 months. The release of Ca and Mg was low, 1–5% during 7 months. Received: 12 July 1999 · Accepted: 31 August 1999  相似文献   

13.
Abstract. Oxidation and reduction processes can influence extent of leaching of elements from solid waste. Three samples of municipal solid waste combustion fly ash were subjected to oxidizing and reducing conditions in order to evaluate leaching of elements in the Milli-Q water and fly ash (liquid to solid ratio, 100) mixtures. Although the oxidizing and reducing conditions were applied for 6 hours only, elements like Cs, Li, Mg, Sb, Tl and V leached more under oxidizing condition than under reducing condition in the case of all three ash samples. Cadmium, Pb and Zn leached more from all samples under reducing condition than under oxidizing condition. Leaching of other elements like Al, Ba, Cr, Cu, Ni and Rb was inconsistent with oxidizing or reducing conditions and varied from sample to sample, suggesting that factors other than redox may be more important in controlling leaching of these elements. Strong acid neutralization capacity of the fly ash samples let the pH vary within a narrow range, and thus severely limited the extent of leaching during the course of the experiment. Lead and Zn were the most sensitive while K and Na were the least sensitive to changes in redox conditions.  相似文献   

14.
The leaching behaviour of electrostatic precipitator dust from the Mufulira Cu smelter (Copperbelt, Zambia) was studied using a 48-h pH-static leaching experiment (CEN/TS 14997). The release of metals (Cd, Co, Cu, Ni, Pb and Zn) and changes in mineralogical composition using X-ray diffraction and PHREEQC-2 modelling were investigated in the pH range of 3–7. The highest concentrations of metals were released at pH 3–4.5, which encompasses the natural pH of the dust suspension (~4.3). About 40% of the total Cu was leached at pH 3, yielding 107 g/kg. Chalcanthite (CuSO4·5H2O), magnetite (Fe3O4) and delafossite (CuFeO2) represented the principal phases of the studied dust. In contact with water, chalcanthite was dissolved and hydrated Cu sulphates precipitated at pH 4–7. Gypsum (CaSO4·2H2O) and secondary Fe or Al phases were observed in the leached residues. Serious environmental impact due to leaching may occur in dust-contaminated soil systems in the vicinity of the smelting plants.  相似文献   

15.
An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40–80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.  相似文献   

16.
The laterite nickel (Ni) ore smelting operation in Niquelândia (Goiás state, Brazil) produced large amounts of smelting wastes, stockpiled on dumps (slags) and in settling ponds (fly ash). In this study we present data on the chemistry, mineralogy and pH-dependent leaching behaviours of these two waste materials.Bulk chemical analyses indicated that both wastes contained significant amounts of potentially toxic elements (PTEs), with substantially higher concentrations in the case of the fly ash (up to 2.51 wt% Ni, 1870 mg/kg Cr and 488 mg/kg Co). The mineralogical investigations carried out using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and electron microprobe (EPMA) indicated that the slag was mainly composed of silicate glass, olivine and pyroxene. In contrast, the fly ash was composed of Ni-bearing serpentine-like phases (originating from the furnace feed), Ni-bearing glass, olivine, pyroxene and spinel. The pH-dependent leaching behaviour was performed according the EU standard experimental protocol (CEN/TS 14997) in the pH range of 3–12. The leaching was highly pH-dependent for both materials, and the highest releases of PTEs occurred at pH 3. The slag generally exhibited an U-shaped leaching behaviour of the PTEs as a function of pH, and was found to release up to 48.0 mg/kg Ni, 25.6 mg/kg Cr, and 1.42 mg/kg Co. The fly ash was significantly more reactive, and exhibited its highest leaching level of PTEs between pH 3 and 7. The maximum observed release corresponded to 5750 mg/kg Ni, 4.35 mg/kg Cr, and 112 mg/kg Co. The leached Ni concentrations after 24 h of leaching in deionized water exceeded the limit for hazardous waste by more than 100x according to the EU legislation (40 mg/kg Ni). X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structures (EXAFS) spectra indicated that Ni in the fly ash is predominantly bound in a serpentine-like phase, and during the fly ash experimental alteration it was mainly released from the second shell (corresponding to the atomic distances between Ni and Si, Mg, Fe in high-temperature silicates, glass, and partially dissolved serpentine). This study shows that disposal sites for the fly ash can represent a significant source of local pollution, and direct recycling of the fly ash in the smelting technology (as currently adopted at the Barro Alto new smelter and since few years also at the Niquelândia smelter) is the best environment-friendly option for handling of fly ash in the future.  相似文献   

17.
Organic amendment application to heavy metal contaminated soils may contribute to leaching of phosphorus (P). The objectives of this study were to determine the influence of sheep manure and ethylenediamine tetraacetic acid (EDTA) on the P leaching from a wide range of calcareous contaminated soils. Glass tubes, 4.9 cm diameter, and 40 cm long, were packed with contaminated soil. The resulting 20 cm long column of soils had bulk density of 1.3–1.4 g cm−3. The columns were leached with distilled water, 0.01 M EDTA, 0.01 M CaCl2 or sheep manure extract (SME) solutions. The breakthrough curves for P were different and the amounts of P leached varied considerably between different soils and leaching solutions. The amounts leached with SME were less than the amount added through the SME, indicating that some P was retained by the soil, mainly due to preliminary sorption of organic ligands on to the soil with the creation of new sorbing surfaces. The amount leached with EDTA solution varied from 9.9 to 46.3% of the extractable P when 15 pore volumes had passed through the column. Low amounts of P were leached by 0.01 M CaCl2, which is likely to be due to the high concentration of soluble Ca used in the solution. Thus, among leaching solutions the application of EDTA and SME on contaminated calcareous soils might enhance the mobility of P and large amounts of P will be leached, leading to contamination of ground and surface waters.  相似文献   

18.
The chemical speciation of potentially toxic elements (As, Cd, Cu, Pb, and Zn) in the contaminated soils and sulfides-rich tailings sediments of an abandoned tungsten mine in Korea was evaluated by conducting modified BCR sequential extraction tests. Kinetic and static batch leaching tests were also conducted to evaluate the potential release of As and other heavy metals by acidic rain water and the leaching behaviors of these heavy metals. The major sources of the elements were As-, Zn- and Pb-bearing sulfides, Pb carbonates (i.e., cerussite), and Pb sulfates (i.e., anglesite). The biggest pollutant fraction in these soil and tailing samples consists of metals bound to the oxidizable host phase, which can be released into the environment if conditions become oxidative, and/or to residual fractions. No significant difference in total element concentrations was observed between the tailings sediments and contaminated soils. For both sample types, almost no changes occurred in the mobility of As and the other heavy metals at 7 days, but the mobility increased afterwards until the end of the tests at 30 days, regardless of the initial pH. However, the mobility was approximately 5–10 times higher at initial pH 1.0 than at initial pHs of 3.0 and 5.0. The leached amounts of all the heavy metal contents were higher from tailings sediments than from contaminated soils at pH > 3.0, but were lower at pH < 3.0 except for As. Results of this study suggest that further dissolution of heavy metals from soil and tailing samples may occur during extended rainfall, resulting in a serious threat to surface and groundwater in the mine area.  相似文献   

19.
The Cu hydroxy mineral, atacamite, is commonly associated with saline environments and is generally thought to dissolve rapidly in the presence of fresh water. A Cu contaminated soil from the arid Namaqualand region, South Africa, shows atacamite as the dominant Cu containing mineral. The stability of the Cu phase in this soil was determined through equilibrium and leaching studies using both deionised water (DI) and a concentrated (0.5 M) NaCl solution. Initially a high concentration of exchangeable Cu was released from the soils leached with NaCl. Continued leaching with NaCl resulted in a substantial decrease in Cu release as atacamite equilibria started to control dissolved Cu. This suggests that an initial spike of Cu laden water will leach from the soils at the onset of a large rainfall event. Further additions of water will result in a lower but sustained release of Cu from the soil. The Cu contaminated soils are exposed to acidic sulphate leachate thus the dissolution kinetics of synthetic atacamite in the acidic range (pH 5.5–4.0) was determined in both NaCl and DI solutions. The kinetic data showed that atacamite dissolution rates are significantly higher in DI than in NaCl but the rates converge at pH 4. In comparison to common acid soluble minerals, atacamite displays a moderate dissolution rate (10−9.55–10−7.14 mol m−2 s−1) within the acid range (pH 5.5–4.0). The atacamite dissolution reaction order with respect to pH is 1.3 and 1.6 in DI and NaCl solutions, respectively, suggesting that dissolution rates of atacamite are highly pH dependent in the acid range. The type of acid used to lower the pH had no effect on the reaction kinetics, with HNO3 and H2SO4 resulting in comparable dissolution rates of atacamite at pH 4.5.  相似文献   

20.
Systematic changes in mineralogy, enrichment and depletion of selected elements, and mineralogical speciation of selected elements in fly ash and bottom ash samples from the Lingan Power Plant were compared to run-of-mine and pulverized feed coal from the Sydney coalfield, Nova Scotia, eastern Canada. The analytical techniques used were an electron microprobe equipped with energy and wavelength X-ray dispersive spectrometers, X-ray diffraction, neutron activation, scanning electron microscopy with energy dispersive X-ray and incident light petrography. Three types of glasses (Fe/O-rich, Fe/Al/Si/O-rich and or Al/Si/O-rich) were identified in the combustion residues; they were formed as a result of the interaction of melted pyrite and clay minerals. Compared to the feed coal, most elements were enriched 10 to20 times in the fly ash. The concentration of the elements in both the fly ash and bottom ash are comparable to coal ash that is generated by the low temperature asher in the laboratory. Some chalcophile elements such as arsenic and lead occurred as a solid solution in pyrite in the feed coal and were concentrated in the float fraction (density: <2.81 g/cm3) of the fly ash with non-crystalline Fe-oxides. X-ray mapping of arsenic in the fly ash and bottom ash indicates that arsenic was evenly distributed as oxide within the Fe/O- and Fe/Al/Si/O-rich glass and crystalline phases in the fly ash, possibly in solid solution. Arsenic is associated with Fe/O and Fe/S crystalline phases in the bottom ash.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号