首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Radon emanation has been monitored in shallow capped holes by a Tracketch method along several active faults and in the vicinity of some volcanoes and underground nuclear explosions. The measured emanation shows large temporal variations that appear to be partly related to crustal strain changes. This paper proposes a model that may explain the observed tectonic variations in radon emanation, and explores the possibility of using radon emanation as an indicator of crustal deformation. In this model the emanation variation is assumed to be due to the perturbation of near-surface profile of radon concentration in the soil gas caused by a change in the vertical flow rate of the soil gas which, in turn, is caused by the crustal deformation. It is shown that, for a typical soil, a small change in the flow rate (3 · 10−4 cm sec−1) can effect a significant change (a factor of 2) in radon emanation detected at a fixed shallow depth (0.7 m). The radon concentration profile has been monitored at several depths at a selected site to test the model. The results appear to be in satisfactory agreement.  相似文献   

2.
Changes of radon concentration in the ground have been reported to correlate with seismic activity in many places over widely varying distances from the earthquake epicenters, sometimes over 100's and occasionally over 1000's of km depending on the magnitude M of the earthquakes. For proper use of such correlations in forecasting the location and size of impending earthquakes, it would be useful to establish a relation between M and the maximum distance xM at which radon can be significantly altered by preseismic effects.We have monitored radon in the ground continuously at Blue Mountain Lake, NY starting Dec. 3. 1975 and at three locations in Alaska—Icy Bay, Yakataga, and Sand Point (starting Nov. 12, 1979; March 5, 1980; and June 29, 1980 respectively). Sample correlations from visual examination of the recent radon record and tentative use of a proposed scaling relation show a number of possible earthquake-related signals at these locations. The data are compatible with scaling relations that were derived from two separate models of premonitory elastic strains. In this work xM = 100.48M, where xM is in units of km and M ≥ 3. Since tilt and strain signals correlate similarly with magnitude and distance, it is likely that most earthquake-related radon signals are mechanically induced.  相似文献   

3.
Analysis of one year measurements of in situ radon (222Rn) and its progenies along with surface air temperature, relative humidity and pressure near to the Earth’s surface has been carried out for the first time at the National Atmospheric Research Laboratory (NARL, 13.5°N and 79.2°E) located in a rural site in Gadanki, south India. The dataset was analysed to understand the behaviour of radon in relation to the surface air temperature and relative humidity at a rural site. It was observed that over a period of the 24 hours in a day, the activity of radon and its progenies reaches a peak in the morning hours followed by a remarkable decrease in the afternoon hours. Relatively, a higher concentration of radon was observed at NARL during fair weather days, and this can be attributed to the presence of rocky hills and dense vegetation surrounding the site. The high negative correlation between surface air temperature and activity of radon (R = – 0.70, on an annual scale) suggests that dynamical removal of radon due to increased vertical mixing is one of the most important controlling processes of the radon accumulation in the atmospheric surface layer. The annual averaged activity of radon was found to be 12.01±0.66 Bq m?3 and 4.25±0.18 Bq m?3 for its progenies, in the study period.  相似文献   

4.
Radon and its progenies have been ranked second of being responsible for lung cancer in humans. Hong Kong has four major groups of uranium-rich plutonic and volcanic rocks and is suffering from radon emanated therefrom. However, there is a lack of radon potential maps in Hong Kong to resolve the spatial distribution of radon-prone areas. A ten-point radon potential system was developed in Germany (2005) to predict radon potential using both the in situ geogenic and geographic parameters under hierarchical ranking. Primarily, the ten-point system requires the desk study of the geological environment of sampling sites, which has an advantage of saving resources and manpower in extensive radon potential mapping over the traditional soil radon concentration sampling method. This paper presents a trial of radon potential mapping in Hong Kong to further verify the system. Despite some slight departures, the system demonstrates an acceptable correlation with soil radon concentrations (R 2 = 0.62–0.66) from 768 samples of mainly intermediate radon potential. Hong Kong has a mean soil radon concentrations of 58.9 kBqm?3, while the radon potential from the ten-point system achieves an average of 4.93 out of 10 over the territory. The vicinity of fault zone showed high soil radon concentrations and potentials, which were conducive to uranium enrichment and rapid soil-gas diffusion near faults. High uranium-238 content in soil was found to cause high soil radon concentration with a large R 2, 0.84. The Jurassic granite and volcanic crystal tuff cover more than 85 % of the whole Hong Kong area, and they show relatively high radon concentrations (Geometric mean 83 and 49 kBqm?3, respectively) which are associated with their high uranium contents (Geometric mean 234 and 197 Bqkg?1, respectively). While indoor radon concentration is an important factor for radon risk assessment, this study has not considered the correlation between indoor radon concentration and radon potential. The reason is that almost all buildings in Hong Kong are high-rise buildings where indoor radon concentrations are governed only by the radium content in the building materials and the ventilation conditions.  相似文献   

5.
加载速度对强度和破坏机制的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
岩体力学实验中,加载速度对岩体力学性质的影响是很重要的。许多岩体力学工作者,利用岩块和模型材料,进行了大量有关室内加载速度对岩体力学性质影响的研究,为室内岩块力学试验和野外原位岩体力学试验选取合理加载速度提供了依据。目前,基本上从应变速率和应力速率两方面去研究加载速度对岩体力学性能的影响。这两方面的研究都认为随着应变速率和应力速率的增加,岩块和岩体的强度、变形模量也相应增加,不同的是峰值强度以后的破坏后效不同。  相似文献   

6.
The suggestion that radon could be used as a radioactive tracer of regolith-atmosphere exchanges and as a proxy for subsurface water on Mars, as well as its indirect detection in the Martian atmosphere by the rover Opportunity, have raised the need for a better characterization of its production process and transport efficiency in the Martian soil. More specifically, a proper estimation of radon exhalation rate on Mars requires its emanation factor and diffusion length to be determined. The dependence of the emanation factor as a function of pore water content (at 267 and 293 K) and the dependence of the adsorption coefficient on temperature, specific surface area and nature of the carrier gas (He, He + CO2) have been measured on a Martian soil analogue (Hawaiian palagonitized volcanic ash, JSC Mars-1), whose radiometric analysis has been performed. An estimation of radon diffusion lengths on Mars is provided and is used to derive a global average emanation factor (2-6.5%) that accounts for the exhalation rate inferred from the 210Po surface concentration detected on Martian dust and from the 214Bi signal measured by the Mars Odyssey Gamma Ray Spectrometer. It is found to be much larger than emanation factors characterizing lunar samples, but lower than the emanation factor of the palagonite samples obtained under dry conditions. This result probably reflects different degrees of aqueous alteration and could indicate that the emanation factor is also affected by the current presence of pore water in the Martian soil. The rationale of the “radon method” as a technique to probe subsurface water on Mars, and its sensitivity to soil parameters are discussed. These experimental data are useful to perform more detailed studies of radon transport in the Martian atmosphere using Global Climate Models and to interpret neutron and gamma data from Mars Odyssey Gamma Ray Spectrometer.  相似文献   

7.
Pressure of natural gas in its rock reservoir determines the final radon concentration in this gas after its decompression to normal conditions. In this investigation, radon contents of 62 natural gas samples were measured and a simple physical model of the gas reservoir was applied. The model takes into account an additional dependence of radon concentration on the natural gas pressure and on the porosity of the rock reservoir. The influence of the gas pressure on the value of the radon emanating power is discussed. The mean 226 Ra content in the source rock needed for generation of 222 Rn concentrations observed in gas is also calculated. The calculations are made with the help of regression analysis.  相似文献   

8.
Naturally occurring isotopes of radon (222Rn) and radium isotopes (223,224,226,228Ra) were used as tracers to assess submarine groundwater discharge (SGD) into Little Lagoon, AL (USA), a site of recurring harmful algal blooms (HABs). The radium isotopic data suggests that there are two groundwater sources of these tracers to the lagoon, a shallow (A1) and deeper (A2) aquifer. We estimated the fraction of each source via a three-end-member mixing model consisting of Gulf of Mexico seawater, shallow and deep groundwater. The estimated lagoonwide SGD rates based on a radium mass balance and the mixing model were 1.22?±?0.53 and 1.59?±?0.20 m3 s-1 for the shallow and deep groundwater discharges, respectively. To investigate temporal variations in SGD, we performed several radon surveys from 2010 through 2012, a period of generally declining groundwater levels due to a drought in the southeastern USA. The total SGD rates based on a radon mass balance approach were found to vary from 0.60 to 2.87 m3 s-1. We observed well-defined relationships between nutrients and chlorophyll-a in lagoon waters during a period when there was an intense diatom bloom in April 2010 and when no bloom existed in March 2011. A good correlation was also found between radium (groundwater-derived) and nutrients during the April 2010 period, while there was no clear relationship between the same parameters in March 2011. Based on multivariate analysis of chemical and environmental factors, we suggest that nutrient-rich inputs during high SGD may be a significant driver of algal blooms, but during low SGD periods, multiple drivers are responsible for the occurrence of algal blooms.  相似文献   

9.
10.
Groundwater constitutes the major source of utility water in Ekiti State with the majority of the population depending on groundwater for drinking and other household uses. Soil in the area is commonly used as a component of building materials, which may produce radon in the indoor environment. Excessive concentrations of radon in water and soil can cause radiological health risks to human as witnessed by the increased cases of lung cancer among non-smokers in Nigeria, which may be traceable to the ingestion and inhalation 222Rn in drinking water and indoor air. In the present study, comparative in situ measurements of radon in groundwater and soil gas were carried out at one hundred selected locations across the Ekiti State in southwest Nigeria, using a RAD7 radon detector to generate a radon distribution map and to estimate radiation hazards due to radon. The concentrations of radon in groundwater ranged from 0.9 to 472 Bq L?1 with a mean of 34.7?±?4.4 Bq L?1, while those of soil gas ranged from 0.1 to 315 kBq L?1 with a mean of 38.9?±?1.4 kBq L?1. The total annual effective dose due to inhalation and ingestion of radon in groundwater amounted to 94.7 µSv year?1, which is lower than the reference dose of 100 µSv year?1 recommended by the World Health Organization (WHO). The radon map generated for groundwater and soil gas identified three distinct areas with radon levels ranging from low to high. The results of this study show that some locations (Emure, Gbonyin, Ijero and Ikole) show mean total annual effective doses which are higher than the recommended limit. It can then be inferred that the groundwater samples pose significant radiological hazards to the population and that the noticed increase in lung cancer cases may be attributed to the consumption of groundwater in the area.  相似文献   

11.
The gaseous state and chemical inert behavior of radon make it important tracer for the radon transport study through the building materials. The radon resistant property of building construction materials is important parameter to control the indoor radon levels in living and workplaces. The materials with higher radium content can be made less severe by the use of some building materials of low diffusion coefficient and diffusion length. This makes the study of radon diffusion through building material more important along with the study of exhalation and radioactivity content. Keeping this in mind the radon diffusion study was carried out through different building construction materials used for wall and floor by active and passive techniques. The diffusion coefficient from these building materials measured by passive methods varied from (0.9 ± 0.5) × 10?7 to (22.95 ± 13.19) × 10?6 m2s?1 and radon diffusion length varied from 0.21 to 3.31 m for cement, soil, sand, wall putty and plaster of Paris (POP) etc. The radon diffusion coefficient measured by active technique varied from 1.93 × 10?10 to 1.36 × 10?7 m2s?1 for samples with definite geometry like paper, polyethylene, marble, granite etc. The radon diffusion coefficient and diffusion length depend upon the porosity and density of materials for powder samples.  相似文献   

12.
Precipitation of decay products of atmospheric 222Rn in small containers and the effects of their precipitation on alpha-particle-track-measurements of radon activities were studied. From decay curves of decay product activities on surfaces exposed to radon-containing air the ratios 214Pb/218Po (=r) in the precipitates were determined. From r average ages of precipitating decay products were calculated. Average ages and r were low, indicating rapid precipitation of decay products, and decreased with container size. Activities on exposed surfaces were approximately those expected if decay products precipitate completely and uniformly on the internal surfaces of containers.Decay products precipitated on foils of correct thickness covering cellulose nitrate (CN) track detectors produce tracks. Therefore track densities produced by given radon activities are increased by such covers to extents predictable from the decay product activities on the overlays. Tracks formed under overlays may etch to larger, more vertical-sided, more easily counted forms. When suspended, uncovered, in air at distances from surfaces greater than the ranges of the alpha particles, three types of CN recorded tracks at the rate (ρ′) of 0.12 tracks cm?2 (pCi Rn)?1 1?1 hr?1 as predicted by a theoretical expression. In small containers (ρ′) varied with position and container size.  相似文献   

13.
Indoor radon measurements were carried out in a total of 420 dwellings and 17 schools in Hail region of Saudi Arabia, using NTDs based radon dosimeters. The duration of the measurements was one year, from April 2008 to April 2009. The indoor radon concentrations varied from 4 to 513 Bq/m3 with an overall average of 45 Bq/m3 for all surveyed dwellings. These passive measurements were confirmed by the active measurements. The anomalous concentrations above 200 Bq/m3 were observed in 13 dwellings, representing 3.1 % of the total surveyed dwellings. In Inbowan village alone, it was found that 7.6 % of the dwellings have indoor radon concentration above 200 Bq/m3. The highest average indoor radon concentration of 64 Bq/m3 was found in Inbowan village while the lowest average of 24 Bq/m3 was found in Majasah village. The city of Hail showed an average indoor radon concentration of 49 Bq/m3. The average indoor radon concentration in one area located at the edge of the Aja Mountain in Hail city was 111 Bq/m3. The elevated indoor radon concentrations in many dwellings in the Hail region, prompted us to measure outdoor ground radon in such locations using gas monitor. It was found that radon concentrations at a depth of 0.5 m varied significantly from place to place ranging from 1.2 to 177 kBq/m3. The outdoor radon concentrations are generally correlated with the indoor radon measurements. Radon exhalations from construction materials and soil samples from the Hail region were also measured. It was found that radon exhalations from soil samples are higher than that of construction materials by a factor of at least 3 and reaching up to 11. These results indicate that soil is the main source of indoor radon. Geological interpretations of the results are also given.  相似文献   

14.
This investigation aims to evaluate the concentration of dissolved radon in drinking water and to assess the associated radiation doses for infants, children and adults in Bhiwani district of Haryana The radon concentrations were measured in 82 drinking water samples collected from 32 villages/towns in the Bhiwani district. The measurements were performed by RAD7, an electronic radon detector manufactured by Durridge Company Inc. The mean radon concentration ranged between 1.3 ± 0.4 and 13.4 ± 2.2 Bq l-1. The mean radon concentrations from two locations exceeded the maximum contamination level (MCL) of 11 Bq l-1 recommended by United States Environmental Protection Agency. The total annual effective doses due to ingestion and inhalation of radon in drinking water varied from 10.1 to 104.4 μSv y-1 for infants, 5.8 to 59.6 μSv y-1 for children and 6.6 to 67.7 μSv y-1 for adults and the average values were found to be 46.3, 26.5 and 30.1 μSv y-1, respectively.  相似文献   

15.
Afyonkarahisar is a very important geothermal province of western Anatolia and has low and medium enthalpy geothermal areas. This study has been carried out for the preparation of distribution maps of soil gases (radon and carbon dioxide) and shallow soil temperature and the exploration of permeable tectonic regions associated with geothermal systems and reveal the origins of radon and carbon dioxide gases. The western district of the study area is characterized by the high radon concentration (168.30 kBq/m3), carbon dioxide ratio (0.30%), and soil temperature (21.0 °C) values. Fethibey and Demirçevre faults, which allow the circulation of geothermal fluids, have been detected in the distribution maps of radon, carbon dioxide, and shallow depth temperature and the directions of the curves in these maps correspond to the strikes of Demirçevre faults. The effect of the fault plays an important role in the change of carbon dioxide concentration along the W-E directional geological section prepared to determine the change of soil gas and shallow depth temperature values depending on lithological differences, fault existence, and geothermal reservoir depth. On the other hand, it was determined that Rn222 concentration and soil temperature changed as a function of geothermal reservoir depth or lithological difference. Tuffs in Köprülü volcano-sedimentary units are the main source of radon due to their higher uranium contents. Besides, the carbon dioxide in Ömer–Gecek soils has geothermal origin because of the highest carbon dioxide content (99.3%) in non-condense gas. The similarities in patterns of soil temperature, radon, and carbon dioxide indicate that the variation in soil temperatures is related to radon and carbon dioxide emissions. It is concluded that soil gas and temperature measurements can be used to determine the active faults in the initial stage of geothermal exploration successfully.  相似文献   

16.
 Generalized geologic province information and data on house construction were used to predict indoor radon concentrations in New Hampshire (NH). A mixed-effects regression model was used to predict the geometric mean (GM) short-term radon concentrations in 259 NH towns. Bayesian methods were used to avoid over-fitting and to minimize the effects of small sample variation within towns. Data from a random survey of short-term radon measurements, individual residence building characteristics, along with geologic unit information, and average surface radium concentration by town, were variables used in the model. Predicted town GM short-term indoor radon concentrations for detached houses with usable basements range from 34 Bq/m3 (1 pCi/l) to 558 Bq/m3 (15 pCi/l), with uncertainties of about 30%. A geologic province consisting of glacial deposits and marine sediments was associated with significantly elevated radon levels, after adjustment for radium concentration and building type. Validation and interpretation of results are discussed. Received: 20 October 1997 · Accepted: 18 May 1998  相似文献   

17.
This paper presents the results of radon concentration measurements in the drinking water from the municipal water supply system and private wells of Xian, Xianyang and Baoji city of Shaanxi province of China. The measurements were carried out on 38 samples. Radon levels in drinking water in Xian, Xianyang and Baoji were found to be 5.78, 13.04 and 15.01 k Bq m–3, respectively. The AM radon concentration of private well water from Xianyang and Baoji is 28.84 k Bq m–3 and 38.85 k Bq m–3, respectively, which is 2.56 times and 3.14 times as high as that of tap water radon, respectively. The radiation risk of radon in water would be due to degassing and not due to drinking water. The domestic use of showers, humidifiers, and cooking, washing up, laundering, etc. may lead to an additional increase of the radon concentration in the indoor air. The observed radon concentration in drinking water from three main cities of Shaanxi Province can contribute to a 4.86 to 32.63% increase in indoor radon concentration and can cause 0.068±0.016 mSv y–1 to 0.177±0.045 mSv y–1 extra annual effective dose to males, 0.060±0.014 mSv y–1 to 0.155±0.039 mSv y–1 to females. The mean annual effective dose equivalents to males and females of Xianyang and Baoji from well water account for 25.94 to 39.75% of environmental radon and radon daughters annual effective dose equivalents. The radon concentrations in the well water from Xianyang and Baoji will bring a definite additional risk to the population.  相似文献   

18.
This study was conducted primarily to measure and map radon activity concentration in soil gas and to understand the effect of geology and lithology and meteorology on radon concentration. Portable radon meter has been used for the measurement of soil gas radon at 30 different locations around Uro and Korn area in eastern Nuba Mountain South Kordofan State. The results indicate that the activity concentrations of 222Rn in soil gas fall within the range of 20–1,359 Bq/m3 with geometric mean of 102.80 Bq/cm3. The obtained data show that samples around Uro have anomaly of 222Rn concentrations than the sample around Korn. The reason could be attributed to differences in the geological structure, lithology and climate parameters. GIS predicative map has shown that the elevated levels of radon concentration were measured in North study area. Upon comparing the results with global data, it was found that the obtained values are far below the reported range of India, Slovenia, Portugal and Syria. However, the range of 222Rn concentrations in the soil observed in this study is significantly high relative to similar data reported from Libya. The regression analysis has shown that no correlation was noted between radon concentrations, climatic parameters and trace element.  相似文献   

19.
Measurement of soil-gas radon in some areas of northern Rajasthan,India   总被引:1,自引:0,他引:1  
The health hazards of the radioactive gas radon on general public are well known. In order to understand the level and distribution of 222Rn concentrations in soil-gas in Sri Ganganagar district of Rajasthan, a 222Rn survey was carried out for the first time using RAD7, an electronic radon detector manufactured by Durridge Company (USA), at different locations covering a total area of 10,978 km 2, having a population of approximately 20 lakh. The measurement of 222Rn concentration in soil-gas was carried out at four different depths (10, 40, 70, and 100 cm). The radon concentration in soil-gas for 10, 40, 70, and 100 cm depths ranged from 0.09–4.25, 0.15–6.30, 0.50–9.18, and 0.72–10.40 kBq m ?3, respectively. The minimum value of radon concentration is observed in 33 GB village at 10 cm depth and maximum for Mohanpura village at 100 cm depth. As expected, our data show an increase of soil-gas radon concentration levels with depth. The present results are compared with the available radon data from other studies.  相似文献   

20.
The spontaneous deposition of short-lived radon decay products onto solid surfaces (“collectors”) provides the basis for a simple and efficient way of prospecting for uranium. The alpha activity of two of the decay products, 218Po and 214Po, can be measured by conventional counting techniques following the exposure of a collector to a radon source. Laboratory studies have shown: (a) radon decay products can be collected on a wide variety of materials; (b) the number of radon decay products increases with the collector surface area; (c) a negative charge applied to the collectors enhances the number of decay products collected; (d) the shape of the collectors is relatively unimportant; and (e) reproducibility is about ± 5% of the measured value.Field tests on known uranium anomalies involved suspending collectors for an overnight exposure, in either covered holes or inverted containers buried in soil. Subsequent removal of the collectors was immediately followed by counting the alpha activity. Anomalies were readily detected at three different test sites. Replicate measurements at selected sites both on an hour-to-hour and on a day-to-day basis showed remarkably good agreement. Some anomalies were also outlined using activity measurements from collectors suspended above soil aliquots in sealed containers.Because the half-lives of two of the thoron (220Rn) decay products are much longer than those of the radon (222Rn) decay products, a thoron correction can be applied to the original activity measured from the collectors, thus discriminating against thoron in thorium-rich terrains.The counting of radon decay products deposited onto collectors is an effective method for delineating radon anomalies in uranium exploration. The field techniques are simple to apply, and results are available after very short exposure times (about 18 hours) and after short counting intervals (5 minutes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号