首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Minor magmatic intrusions of kimberlite, melilitite and cpx-melilitite occur in the southern part of the Kola Peninsula, Russia, on the Terskii Coast and near the town of Kandalaksha. They yield K-Ar ages of 382 ± 14 Ma and 365 ± 16 Ma, similar to the magmatic rocks from the Kola Alkaline Province. The Terskii Coast kimberlites have mineralogical and geochemical affinities with group 1 kimberlites, whereas the Kandalaksha monticellite kimberlite more closely resembles calcite kimberlites. The lower Al2O3 content in the Kola kimberlites indicates a strongly depleted harzburgitic source, while higher Al2O3 in the melilitites suggests a lherzolitic source. The Terskii Coast kimberlites are anomalously potassic and significantly enriched in P and Ba compared to other group 1 kimberlites. In contrast, the melilitites are sodic and are anomalously depleted in P compared to worldwide melilitites. Trace element patterns of the Kola kimberlites and melilitites indicate the presence of K- and P-rich phases in the mantle source. To account for the K-troughs shown by both magma types, a K-rich phase such as phlogopite is thought to be residual in their sources; however, the anomalous K-enrichment in the Terskii Coast kimberlites may indicate that an additional metasomatic K-rich phase (e.g. K-richterite and/or a complex K-Ba-phosphate) existed in the kimberlite source. The P-depletion in the melilitites may suggest that a phosphate phase such as apatite remained residual in the melilititic source. However, anomalous P-enrichment in the kimberlites cannot be explained by complete melting of the same phase because the kimberlites are a smaller degree melt; thus, it is most likely that another metasomatic phosphate mineral existed in the source of the kimberlites. The Kola kimberlites and melilitites are all strongly LREE-enriched but the kimberlites have a steeper REE pattern and are significantly more depleted in HREE, indicating a higher proportion of garnet in their source. Higher Nb/Y ratios and lower SiO2 values in the kimberlites indicate that they were a smaller degree partial melt than the melilitites. The presence of diamonds in the Terskii Coast kimberlites indicates a relatively deep origin, while the melilitites originated from shallower depth. The non-diamondiferous Kandalaksha monticellite kimberlite has lower abundances of all incompatible trace elements, suggesting a higher degree of partial melting and/or a less enriched and shallower source than the Terskii Coast kimberlites. The 87Sr/86Sri, 143Nd/144Ndi and Pb isotope compositions confirm that the Terskii Coast kimberlites have close affinities with group 1 kimberlites and were derived from an asthenospheric mantle source, while the Kandalaksha monticellite kimberlite and Terskii Coast melilitites were derived from lithospheric mantle. Impact of a Devonian asthenospheric mantle plume on the base of the Archaean-Proterozoic lithosphere of the Kola Peninsula caused widespread emplacement of kimberlites, melilitites, ultramafic lamprophyres and other more fractionated alkaline magmas. The nature of the mantle affected by metasomatism associated with the plume and, in particular, the depth of melting and the stability of the metasomatic phases, gave rise to the observed differences between kimberlites and the related melilitites and other magmas. Received: 3 March 1997 / Accepted: 7 October 1997  相似文献   

2.
《地学前缘(英文版)》2020,11(3):793-805
Detailed mineralogy,bulk rock major,trace and Sr-Nd isotope compositions,and ~(40)Ar/~(39)Ar dating of the Pipe-8 diamondiferous ultramafic intrusion in the Wajrakarur cluster of southern India,is reported.Based on the presence of Ti-rich phlogopite,high Na/K content in amphibole,Al-and Ti-rich diopside,a titanomagnetite trend in spinel and the presence of Ti-rich schorlomite garnet and carbonates in the groundmass,the Pipe-8 intrusion is here more precisely classified as an ultramafic lamprophyre(i.e.,aillikite).An aillikite affinity of the Pipe-8 intrusion is further supported by the bulk rock major and trace element and Sr-Nd isotope geochemistry.Sr-Nd isotope data are consistent with a common,moderately depleted upper mantle source region for both the Pipe-8 aillikite as well as the Wajrakarur kimberlites of southern India.A phlogopite-rich groundmass ~(40)Ar/~(39)Ar plateau age of 1115.8±7.9 Ma(2σ) for the Pipe-8 intrusion falls within a restricted 100 Ma time bracket as defined by the 1053-1155 Ma emplacement ages of kimberlites and related rocks in India.The presence of ultramafic lamprophyres,carbonatites,kimberlites,and olivine lamproites in the Wajrakarur kimberlite field requires low degrees of partial melting of contrasting metasomatic assemblages in a heterogeneous sub-continental lithospheric mantle.The widespread association of kimberlite and other mantle-derived magmatism during the Mesoproterozoic(ca.1.1 Ga) have been interpreted as being part of a single large igneous province comprising of the Kalahari,Australian,West Laurentian and Indian blocks of the Rodinia supercontinent that were in existence during its assembly.In India only kimberlite/lamproite/ultramafic lamprophyre magmatism occurred at this time without the associated large igneous provinces as seen in other parts of Rodinia.This may be because of the separated paleo-latitudinal position of India from Australia during the assembly of Rodinia.It is speculated that the presence of a large plume at or close to 1.1 Ga within the Rodinian supercontinent,with the Indian block located on its periphery,could be the reason for incipient melting of lithospheric mantle and the consequent emplacement of only kimberlites and other ultramafic,volatile rich rocks in India due to comparatively low thermal effects from the distant plume.  相似文献   

3.
Lithospheric thinning beneath the North China Craton is widely recognized, but whether the Yangtze block has undergone the same process is a controversial issue. Based on a detailed petrographic study, a suite of xenoliths from the Lianshan Cenozoic basalts have been analyzed for the compositions of minerals and whole rocks, and their Sr–Nd isotopes to probe the nature and evolution of the subcontinental lithospheric mantle beneath the lower Yangtze block. The Lianshan xenoliths can be subdivided into two Types: the main Type 1 xenoliths (9–15% clinopyroxene and olivine-Mg# < 90) and minor Type 2 peridotites (1.8–6.2% clinopyroxene and olivine-Mg# > 90). Type 1 peridotites are characterized by low MgO, high levels of basaltic components (i.e., Al2O3, CaO and TiO2), LREE-depleted patterns in clinopyroxenes and whole rocks, and relatively high 143Nd/144Nd (0.513219–0.513331) and low 86Sr/87Sr (0.702279–0.702789). These features suggest that Type 1 peridotites represent fragments of the newly accreted fertile lithospheric mantle that have undergone ~ 1% of fractional partial melting and later weak silicate–melt metasomatism, similar to Phanerozoic lithospheric mantle beneath the eastern North China Craton. Type 2 peridotites may be shallow relics of the older lithospheric mantle depleted in basaltic components, with LREE-enriched and HREE-depleted patterns, relatively low 143Nd/144Nd (0.512499–0.512956) and high 86Sr/87Sr (0.703275–0.703997), which can be produced by 9–14% partial melting and subsequent carbonatite–melt metasomatism. Neither type shows a correlation between equilibration temperatures and Mg# in olivine, indicating that the lithospheric mantle is not compositionally stratified, but both types coexist at similar depths. This coexistence suggests that the residual refractory lithospheric mantle (i.e., Type 2 peridotites) may be irregularly eroded by upwelling asthenosphere materials along weak zones and eventually replaced to create a new and fertile lithosphere mantle (i.e., Type 1 xenoliths) as the asthenosphere cooled. Therefore, the subcontinental lithospheric mantle beneath the lower Yangtze block shared a common evolutional dynamic environment with that beneath the eastern North China Craton during late Mesozoic–Cenozoic time.  相似文献   

4.
Geochemical and isotopic data for Cretaceous mafic rocks (basalt, gabbro, and diorite) from the Lower Yangtze region, northern Yangtze block, constrain the evolution of the lithospheric mantle. The mafic rocks, separated into the northeast and southwest groups, are alkaline and evolved, with low Mg# values (44–58) and variable SiO2 contents (47.6–57.4 wt%). Enriched LREEs, LILEs, and Pb, together with depleted Nb, Zr, and Ti, suggest that the mantle sources were metasomatized by slab-derived fluid/melt. All samples show high radiogenic 207Pb/204Pb(t) (15.41–15.65) and 208Pb/204Pb(t) (37.66–38.51) ratios at given 206Pb/204Pb(t) (17.65–19.00) ratios, consistent with the mantle sources having been metasomatized by ancient slab-derived material. Mafic rocks of the southwest group show enriched Sr–Nd isotopic characteristics, with 87Sr/86Sr(t) ranging from 0.7056 to 0.7071 and εNd(t) ranging from −5.3 to −8.3, indicating an origin from enriched lithospheric mantle. Mafic rocks of the northeast group, which record 87Sr/86Sr(t) ratios of between 0.7044 and 0.7050 and εNd(t) of −2.8 to −0.7, possibly formed by the mixing of melts from isotopically enriched lithospheric mantle and isotopically depleted asthenospheric mantle. Taking into consideration the geochemical and isotopic characteristics of Cretaceous mafic rocks, Cenozoic basalts, and basalt-hosted peridotite xenoliths from the Lower Yangtze region, we propose that an isotopically enriched, subduction-modified lithospheric mantle was replaced by or transformed into an isotopically depleted “oceanic-type” mantle. Such a process appears to have occurred in the eastern North China Craton as well as the eastern Yangtze block, probably in response to subduction of the paleo-Pacific plate beneath East Asia.  相似文献   

5.
Geochemical and isotopic data from Mesozoic lavas from the Jianguo, Niutoushan, Wulahada, and Guancaishan volcanic fields on the northern margin of the North China Craton provide evidence for secular lithospheric evolution of the region. Jianguo lavas are alkaline basalts with LILE- and LREE-enrichment ((La/Yb)N=12.2-13.2) and MORB-like Sr-Nd-Pb isotopic ratios ((87Sr/86Sr)i<0.704; εNd=3.9-4.8; (206Pb/204Pb)i≈18). Niutoushan basalts are similar but show evidence of olivine fractionation. Wulahada lavas are high-Mg andesites (Mg#∼67) with EM1 Sr-Nd-Pb isotopic signatures. Geochemical data suggest that the basalts originated from MORB-type asthenosphere whereas the high-Mg andesites were derived an EM1 mantle source, i.e., a refractory lithospheric mantle modified by a previously subducted slab. The result, combined with the available data of the Mesozoic basalts from the southern portion of the NCC (Zhang et al., 2002), manifests a vast secular evolution of the lithospheric mantle beneath the eastern NCC from the Paleozoic refractory continental lithosphere to this Mesozoic modified lithosphere. Compared with the cratonic margin, the lithospheric mantle beneath the center of the craton was less extensively modified, implying the secular evolution was related to the subduction processes surrounding the NCC. Therefore, we suggest that the interaction of the slab-derived silicic melt with the old refractory lithospheric mantle converted the Paleozoic cratonic lithospheric mantle into the late Mesozoic fertile mantle, which was also different from the Cenozoic counterpart. A geodynamic model is proposed to illustrate such a secular lithosphere evolution.  相似文献   

6.
Using the ICP-MS method we have studied the isotope systematics of Sr and Nd as well as trace element composition of a representative collection of kimberlites and related rocks from the Siberian Platform. The summarized literature and our own data suggest that the kimberlites developed within the platform can be divided into several petrochemical and geochemical types, whose origin is related to different mantle sources. The petrochemical classification of kimberlites is based on persistent differences of their composition in mg# and in contents of indicator oxides such as FeOtot, TiO2, and K2O. The recognized geochemical types of kimberlites differ from one another in the level of concentration of incompatible elements as well as in their ratios.Most of isotope characteristics of kimberlites and related rocks of the Siberian Platform correspond to the earlier studied Type 1 basaltoid kimberlites from different provinces of the world: Points of isotopic compositions are in the field of primitive and weakly depleted mantle. An exception is one sample of the rocks from veins of the Ingashi field (Sayan area), which is characterized by the Sr and Nd isotopic composition corresponding to Type 2 micaceous kimberlites (orangeites).The most important feature of distribution of isotopic and trace-element compositions (incompatible elements) is their independence of the chemical rock composition. It is shown that the kimberlite formation is connected with, at least, two independent sources, fluid and melt, responsible for the trace-element and chemical compositions of the rock. It is supposed that, when rising through the heterogeneous lithosphere of the mantle, a powerful flow of an asthenosphere-derived fluid provoked the formation of local kimberlite chambers there. Thus, the partial melting of the lithosphere mantle led to the formation of contrasting petrochemical types of kimberlites, while the geochemical specialization of kimberlites is due to the mantle fluid of asthenosphere origin, which drastically dominated in the rare-metal balance of a hybrid magma of the chamber.  相似文献   

7.
《Gondwana Research》2014,25(2):859-872
Mesozoic lamprophyres are widely present in gold province in the Jiaodong Peninsula. In this study, we analyzed major and trace elements and Sr–Nd–Pb isotopic compositions of lamprophyres from the Linglong and Penglai Au-ore districts in the Jiaodong Peninsula, in an attempt to better understand Mesozoic lithospheric evolution beneath the eastern North China Craton. These lamprophyre dikes are calc-alkaline in nature, and are characterized by low concentrations of SiO2, TiO2 and total Fe2O3, high concentrations of MgO, Mg# and compatible element, enriched in LREE and LILE but variably depleted in HFSE. They display initial 87Sr/86Sr ratios of 0.709134–0.710314, εNd(t) values of − 13.2 to − 18.3, 206Pb/204Pb of 17.364–17.645, 207Pb/204Pb of 15.513–15.571 and 208Pb/204Pb of 37.995–38.374. Interpretation of elemental and isotopic data suggests that the Linglong and Penglai lamprophyres were derived from partial melting of a phlogopite- and/or amphibole-bearing lherzolite in the spinel–garnet transition zone. The parental magma might have experienced fractionation of olivine and clinopyroxene, and minor crustal materials were incorporated during ascent of these mafic magmas. Before ~ 120 Ma of emplacement of these calc-alkaline lamprophyres, the ancient lithospheric mantle was variably metasomatized by hydrous fluids rather than melts from subducted/foundered continental crust. It is proposed that continuous modification by slab-derived hydrous fluids from the Paleo-Pacific plate converted the old cratonic lithospheric mantle to Mesozoic enriched lithospheric mantle. Geodynamic force for generation of these lamprophyres may be related to large scale lithospheric thinning coupled with upwelling of the asthenosphere beneath the North China Craton. Continental arc-rifting related to the Paleo-Pacific plate subduction is favored as a geodynamic force for the cratonic lithosphere detachment.  相似文献   

8.
Trace element evidence indicates that at the Buell Park diatreme, Navajo volcanic field, the felsic minette can be best explained by crystal fractionation from a potassic magma similar in composition to the mafic minettes. Compatible trace element (Cr, Ni, Sc) abundances decrease while concentrations of most incompatible elements (Ce, Yb, Rb, Ba, Sr) remain constant or increase from mafic to felsic minette. In particular, the nearly constant Ce/Yb ratio of the minettes combined with the decrease in Cr, Ni, and Sc abundances from mafic to felsic minette is inconsistent with a model of varying amounts of partial melting as the process to explain minette compositions. The uniformity of rare earth element (REE) abundances in all the minettes requires that an accessory mineral, apatite, dominated the geochemistry of the REE during fractionation. A decrease in P2O5 from mafic to felsic minette and the presence of apatite in cognate inclusions are also consistent with apatite fractionation. Higher initial87Sr/86Sr ratios in the felsic minettes relative to the proposed parental mafic minettes, however, is inconsistent with a simple fractionation model. Also, a separated phlogopite has a higher initial87Sr/86Sr ratio than host minette. These anomalous isotopic features probably reflect interaction of minette magma with crust.The associated ultramafic breccia at Buell Park is one of the Navajo kimberlites, but REE concentrations of the matrix do not support the kimberlite classification. Although the matrix of the breccia is enriched in the light REE relative to chondrites, and has high La, Rb, Ba, and Sr concentrations relative to peridotites, the concentrations of these elements are significantly lower than in South African kimberlites. A high initial87Sr/86Sr ratio combined with petrographic evidence of ubiquitous crustal xenoliths in the Navajo kimberlites suggests that the relatively high incompatible element concentrations are due to a crustal component. Apparently, Navajo kimberlites are most likely a mixture of comminuted mantle wall rock and crustal material; there is no evidence for an incompatible element-rich magma which is characteristic of South African kimberlites.If the mafic minettes are primary magmas derived from a garnet peridotite source with chondritic REE abundances, then REE geochemistry requires very small (less than 1%) degrees of melting to explain the minettes. Alternatively, the minettes could have formed by a larger degree of melting of a metasomatized, relatively light REE-enriched garnet peridotite. The important role of phlogopite and apatite in the differentiation of the minettes supports this latter hypothesis.  相似文献   

9.
The Mesozoic lithospheric mantle beneath the North China craton remains poorly constrained relative to its Palaeozoic and Cenozoic counterparts due to a lack of mantle xenoliths in volcanic rocks. Available data show that the Mesozoic lithospheric mantle was distinctive in terms of its major, trace element, and isotopic compositions. The recent discovery of mantle peridotitic xenoliths in Late Cretaceous mafic rocks in the Jiaodong region provides an opportunity to further quantify the nature and secular evolution of the Mesozoic lithospheric mantle beneath the region. These peridotitic xenoliths are all spinel-facies nodules and two groups, high-Mg# and low-Mg# types, can be distinguished based on textural and mineralogical features. High-Mg# peridotites have inequigranular textures, high Mg# (up to 92.2) in olivines, and high Cr# (up to 55) in spinels. Clinopyroxenes in the high-Mg# peridotites are generally LREE-enriched ((La/Yb)N>1) with variable REE concentrations, and have enriched Sr–Nd isotopic compositions (87Sr/86Sr = 0.7046–0.7087; 143Nd/144Nd = 0.5121–0.5126). We suggest that the high-Mg# peridotites are fragments of the Archaean and/or Proterozoic lithospheric mantle that underwent extensive interaction with both carbonatitic and silicate melts prior to or during Mesozoic time. The low-Mg# peridotites are equigranular, are typified by low Mg# ( < 90) in olivines, and by low Cr# ( < 12) in spinels. Clinopyroxenes from low-Mg# peridotites have low REE abundances (ΣREE = 12 ppm), LREE-depleted REE patterns ((La/Yb)N < 1), and depleted Sr–Nd isotopic features, in contrast to the high-Mg# peridotites. These geochemical characteristics suggest that the low-Mg# peridotites represent samples from the newly accreted lithospheric mantle. Combined with the data of mantle xenoliths from the Junan and Daxizhuang areas, a highly heterogeneous, secular evolution of the lithosphere is inferred for the region in Late Cretaceous time.  相似文献   

10.
The Denizli region of the Western Anatolia Extensional Province (WAEP) includes a typical example of intra-plate potassic magmatism. Lamproite-like K-rich to shoshonitic alkaline rocks erupted in the Upper Miocene-Pliocene in a tensional tectonic setting. The absence of Nb and Ta depletion, low Th/Zr and high Nb/Zr ratios and distinct isotopic values (i.e. low 87Sr/86Sr, 0.703523–0.703757; high 143Nd/144Nd, 0.512708–0.512784; high 206Pb/204Pb, 19.079–19.227, 207Pb/204Pb, 15.635–15.682, 208Pb/204Pb, 39.144–39.302) mark an anorogenic geochemical signature of the Denizli volcanics. All of the lavas are strongly enriched in large-ion-lithophile elements (e.g. Ba 1,100–2,200 ppm; Sr 1,900–3,100 ppm; Rb 91–295 ppm) and light rare-earth elements (e.g. LaN?=?319–464), with a geochemical affinity to ocean-island basalts and lack of a recognizable subduction signature or any evidence for crustal contamination. The restricted range of isotopic (Sr, Nd, Pb) ratios in both near-primitive (Mg# 66.7–77.2) and more evolved (Mg# 64.6–68.7) members of the Denizli volcanics signify their evolution from an isotopically equilibrated parental mantle source. Their high Dy/Yb and Rb/Sr values also suggest that garnet and phlogopite were present in the mantle source. Their strong EM-II signature, very low Nd model ages (0.44–049 Ga) and isotopic (Sr-Nd-Pb) values analogous to those of the Nyiragongo potassic basanites and kimberlites from the African stable continental settings, suggest that the parental melts that produced the Denizli volcanics are associated with very young and enriched mantle sources, which include both sublithospheric and enriched subcontinental lithospheric mantle melts. Mantle-lithosphere delamination probably played a significant role in the generation of these melts, and could be related to roll-back of the Aegean arc, lithospheric extension and asthenospheric mantle upwelling.  相似文献   

11.
Strontium and Nd isotopic compositions and trace element abundances were determined for Cretaceous to late Cenozoic igneous rocks from the Japan Sea side of Southwest Japan in order to investigate the effect of the opening of the Japan Sea on igneous activity. The 87Sr/86Sr ratios for both high and low silica rocks decrease with decreasing age since the middle Miocene, when the opening occurred. Similarly, 143Nd/144Nd values for these rocks increase with decreasing age, and are negatively correlated with 87Sr/86Sr ratios. A two-component mixing process can best account for these isotopic and chemical characteristics. One end-member is likely the subcontinental lithospheric mantle (SCLM) and its derivative mafic to intermediate materials which had ɛNd values of around +3. The other endmember consists of mafic to intermediate rocks with low ɛNd values (e.g., −8), probably located in the lower crust. The mantle upwelling associated with the opening of the Japan Sea did not supply typical MORB or MORB-source materials to the crust, but did provide the heat that caused the melting of lithospheric mantle and lower crust. Received: 29 August 1996 / Accepted: 6 May 1997  相似文献   

12.
The widespread Emeishan igneous province in southwestern China comprises the Emeishan continental flood basalts (ECFB) and associated mafie-ultramafic intrusions. The ECFB have variable SiO2, ranging from 43.6 to 52.1 wt%, Al2O3 from 5.0 to 12.6 wt%, and total alkali (K2O + Na2O) from 0.7 to 6.5 wt%. These oxides exhibit negative correlations with MgO (5.4 - 23.1 wt%), implying fractional crystallization of olivine and clinopyroxene, which occur as phenocrysts in the rocks. Linear correlations between Zr, Nb, and La suggest that crustal contamination is not important. The primitive-mantle-normalized trace-element patterns show that the ECFB are enriched in high-field-strength trace elements, large-ion-lithophile elements, and light-rare-earth elements, similar to ocean-island basalt. Incompatible element ratios of the ECFB, such as Zr/Nb (7-10), Th/La (0.1-0.15), and Rb/Nb (0.9-1.7), differ from those of primitive mantle, N-MORB, and continental crust, but are similar to ocean-island basalts from an enriched mantle source (EM-1). However, the ECFB have isotopic ratios (143Nd/144Nd = 0.51229 -0.51276 and 87Sr/86Sr = 0.70480-0.70647) that imply that the ECFB were derived from a homogeneous, primitive lower mantle carried upward by a mantle plume.

We propose that the original melts derived from the mantle plume were contaminated through interaction at shallower depth with an enriched lithospheric mantle. This model suggests that the lithospheric mantle beneath the ECFB was modified by subduction of an oceanic slab.  相似文献   

13.
Kimberlites with different diamond grades from the Zolotitsa, Verkhotina, and Kepina occurrences of the Zimny Bereg field (Arkangel’sk oblast) have been compared in order to ascertain geochemical criteria of their diamond resource potential. A new collection of 21 core samples taken within a depth interval of 207–940 m from nine boreholes drilled in the central and western portions of the high-grade diamond-bearing Grib kimberlite pipe was subjected to comprehensive petrographic and geochemical examination, including Sr, Nd, and Pb isotopes and trace elements determined with ICP-MS. The compositional variations in kimberlites are controlled by the structural types of rocks. Porphyritic kimberlite (PK) distinctly differs from autolithic kimberlite breccia (AKB). Autoliths (Av) and PK are enriched in Th, U, Nb, Ta, La, Ce, Pr, P, Nd, Sm, Eu, Ti, LREE, and MREE, whereas HREE contents are rather uniform in all types of kimberlites. No lateral zoning was observed in pipes pertaining to the same structural type. The composition of kimberlites in the Zimny Bereg field and their diamond resource potential are variable. In the series of the Zolotitsa, Verkhotina, and Kepina occurrences, the Ti content increases, the La/Yb ratio grows from 18–44 to 70–130, and the diamond grade diminishes in the Kepina occurrence. The variations in kimberlite compositions are considered in terms of the degree of partial melting in the mantle, the role of volatiles, etc. As follows from the variation in the Ce/Y ratio, kimberlites from the Zolotitsa occurrence were formed at a lower degree of partial melting in comparison with the Kepina occurrence. Products of different degrees of partial melting are recognized within the Grib pipe; Av were likely formed at a somewhat higher degree of melting than AKB. An appreciable isotopic heterogeneity of the mantle is recorded in variable Nd and Sr isotopic compositions of kimberlites. The Kepina kimberlites were derived from a source slightly depleted relative to CHUR (?Nd(t) reaches +4) and are close to kimberlites of group I in South Africa. Kimberlites from the Grib pipe with transitional Nd isotopic composition plotted near the Bulk Silicate Earth (BSE) value in the ?Nd(t)-?Sr(t) diagram adjoin the first group. The source of kimberlites of the Zolotitsa occurrence falls in the field of enriched mantle and is considered to be a product of interaction of an asthenospheric plume with the ancient enriched lithospheric mantle. Kimberlites depleted in Ti, Zr, and Th are related to a source formed as a result of a multistage process that included mantle metasomatism with participation of fluids. Devonian kimberlites derived from sources that involve crustal material (a shift of 206Pb/204Pb, minimums of Th, U, Nb, and Ta contents) are diamond-bearing both in the East European Platform (the Zolotitsa and Verkhotina occurrences) and in the Siberian Craton (the Nakyn field).  相似文献   

14.
Previous studies of samples of subcontinental lithospheric mantle (SCLM) that underlay the North China Craton (NCC) during the Paleozoic have documented the presence of thick Archean SCLM at this time. In contrast, samples of SCLM underlying the NCC during the Cenozoic are characterized by evidence for melt depletion during the Proterozoic, and relatively recent juvenile additions to the lithosphere. These observations, coupled with geophysical evidence for relatively thin lithosphere at present, have led to the conclusion that the SCLM underlying the NCC was thinned and modified subsequent to the late Paleozoic. In order to extend the view into both the Paleozoic and modern SCLM underlying the NCC, we examine mantle xenoliths and xenocrystic chromites extracted from three Paleozoic kimberlites (Tieling, Fuxian and Mengyin), and mantle xenoliths extracted from one Cenozoic basaltic center (Kuandian). Geochemical data suggest that most of the Kuandian xenoliths are residues of small degrees of partial melting from chemically primitive mantle. Sr-Nd-Hf isotopic analyses indicate that the samples were removed from long-term depleted SCLM that had later been variably enriched in incompatible elements. Osmium isotopic compositions of the two most refractory xenoliths are depleted relative to the modern convecting upper mantle and have model melt depletion ages that indicate melt depletion during Paleoproterozoic. Other relatively depleted xenoliths have Os isotopic compositions consistent with the modern convecting upper mantle. This observation is generally consistent with earlier data for xenoliths from other Cenozoic volcanic systems in the NCC and surrounding cratons. Thus, the present SCLM underlying the NCC has a complex age structure, but does not appear to retain materials with Archean melt depletion ages. Results for what are presumed to be early Paleozoic xenoliths from Teiling are generally highly depleted in melt components, e.g. have low Al2O3, but have also been metasomatically altered. Enrichment in light rare earth elements, low εNd values (∼−10), and relatively high 87Sr/86Sr (0.707-0.710) are consistent with a past episode of metasomatism. Despite the metasomatic event, 187Os/188Os ratios are low and consistent with a late Archean melt depletion event. Thus, like results for xenoliths from other early Paleozoic volcanic centers within the NCC, these rocks sample dominantly Archean SCLM. The mechanism for lithospheric thinning is still uncertain. The complex age structure currently underlying the NCC requires either variable melt depletion over the entire history of this SCLM, or the present lithospheric material was partly or wholly extruded under the NCC from elsewhere by the plate collisions (collision with the Yangtze Craton and/or NNW subduction of the Pacific plate) that may have caused the thinning to take place.  相似文献   

15.
The variations in trace element abundances of a suite of alkali-olivine basalts from the Big Pine volcanic field, California, have been ‘inverted’ following the method of Hofmann and co-workers to obtain source concentration and distribution coefficient data. The high Mg-numbers and ne-normative mineralogy of these lavas allow a simple correction to be made for fractional crystallisation, and together with a limited range in 87Sr/86Sr (0.7056–0.7064), suggest derivation from a relatively homogeneous source region. Negative correlations between SiO2 and P2O5, and SiO2 and Rb in the calculated primary magmas imply that both major and trace elements vary in a coherent fashion as a function of the degree of partial melting. The Big Pine lavas are characterised by high ratios of large-ion lithophile to high-field strength elements (Ba/Nb>60), and the inverse procedure demonstrates that this reflects source concentrations, as opposed to a mineralogical control. The calculated mantle source is further characterised by generally high abundances of Sr, Ba, K, and Th relative to Nb and Ta which imply that incompatible element enrichment of the source occurred above a subduction zone. A model Sm/Nd age of 1.8 Ga for this enrichment coincides with the regional crustal formation age. Such features imply that both the major and trace element components of the Big Pine lavas are derived from within lithospheric mantle, perhaps mobilised by the high geothermal gradients which characterise the extensional environment of the Basin and Range Province. A comparison with other Cenozoic mafic lavas throughout the western United States suggests that a substantial proportion of the mantle lithosphere in this area has similar chemical characteristics to the source of the Big Pine lavas. If this is the case, then it implies that convergent margins represent an important tectonic environment for the formation of lithospheric mantle.  相似文献   

16.
Groundmass perovskite has been dated by LA-ICPMS in 135 kimberlites and related rocks from 110 localities across southern Africa. Sr and/or Nd isotopes have been analysed by LA-MC-ICPMS in a subset of these and integrated with published data. The age distribution shows peaks at 1,600–1,800, 1,000–1,200, 500–800 and 50–130 Ma. The major “bloom” of Group I kimberlites at ca 90 ± 10 Ma was preceded by a slow build-up in magmatic activity from ca 180 Ma. The main pulse of Group II kimberlites at 120–130 Ma was a distinct episode within this build-up. Comparison of the isotopic data with seismic tomography images suggests that metasomatized subcontinental lithospheric mantle (SCLM) with very low ε Nd and high 87Sr/86Sr, (the isotopic signature of Group II kimberlites) was focused in low-Vs zones along translithospheric structures. Such metasomatized zones existed as early as 1,800 Ma, but were only sporadically tapped until the magmatic build-up began at ca 180 Ma, and contributed little to the kimberlitic magmas after ca 110 Ma. We suggest that these metasomatized volumes resided in the deep SCLM and that their low-melting point components were “burned off” by rising temperatures, presumably during an asthenospheric upwelling that led to SCLM thinning and a rise in the ambient geotherm between 120 and 90 Ma. The younger Group I kimberlites therefore rarely interacted with such SCLM, but had improved access to shallower volumes of differently metasomatized, ancient SCLM with low 87Sr/86Sr and intermediate ε Nd (0–5). The kimberlite compositions therefore reflect the evolution of the SCLM of southern Africa, with metasomatic-enrichment events from as early as 1.8 Ga, through a major thermal and compositional change at ca 110 Ma, and the major kimberlite “bloom” around 90 Ma.  相似文献   

17.
The petrological and geochemical characteristics of kimberlites from two Russian provinces of the northern East European craton (EEP) and the Siberian craton (SC) (especially the Yakutian diamondiferous province, YDP), and aphanitic kimberlites from the Jericho pipe (Canada) were compared for the elucidation of some aspects of the genesis of these rocks. The comparison of the EEP and YDP showed that they comprise identical rock associations with some variations in kimberlite composition between particular fields and regions, which are clearly manifested in the TiO2-K2O, TiO2-(Y, Zr, HREE), SiO2-MgO, SiO2-Al2O3, MgO-Ni, MgO-CO2, and MgO-H2O diagrams and in variations in light element ratios (Li/Yb, Be/Nd, and B/Nb). The compositions of YDP kimberlites are confined mainly to quadrant III; i.e., their source was mainly the depleted mantle, whereas the compositions of EEP kimberlites fall within all four quadrants in the fields of both enriched and slightly depleted mantle reservoirs. The initial (143Nd/144Nd) i ratio of kimberlites from the Yakutian collection is 0.5121–0.5126. The lead isotopic characteristics of the EEP and YDP kimberlites are similar to mantle values: 206Pb/204Pb of 16.19–19.14, 207Pb/204Pb of 15.44–15.61, and 208Pb/204Pb of 34.99–38.55. In the 207Pb/204Pb-206Pb/204Pb diagram, part of the kimberlites, including those from the Botuobiya pipe, fall within the lower part of the field of group I kimberlites from southern Africa near the Pb isotopic composition of the depleted mantle. It was shown that the chemical compositions of the aphanitic kimberlites of the Jericho pipe (supposedly approaching the composition of primary magmas) are similar to those of some individual kimberlite samples from the YDP and EEP. It was supposed that the initial kimberlite melt arrived from the asthenosphere and was enriched in water and other volatile components (especially CO2). During its ascent to the surface, the melt assimilated mantle components, primarily MgO; as a result, it acquired the compositional characteristics observed in kimberlites. Subsequent compositional modifications were related to diverse factors, including the type of mantle metasomatism, degree of melting, etc. We emphasized the importance of petrological and geochemical criteria (low contents of HREE and Ti in the rocks and a kimberlite source similar to BSE or EMI) for the estimation of the diamond potential of rocks.  相似文献   

18.
This study presents new geochronological and geochemical data for Early Cretaceous volcanic rocks in the southern margin of the North China Craton (NCC), to discuss the crust–mantle interaction. The studied rocks include pyroxene andesites from Daying Formation, hornblende andesites and andesites from Jiudian Formation, and rhyolites from a hitherto unnamed Formation. These rocks formed in Early Cretaceous (138–120 Ma), with enrichment in light rare earth elements (REE), depletion in heavy REE and arc-like trace elements characteristics. Pyroxene andesites show low SiO2 contents and enriched Sr–Nd–Pb–Hf isotopic compositions, with orthopyroxene phenocryst and Paleoproterozoic (2320–1829 Ma) inherited zircons, suggesting that they originated from lithospheric mantle after metasomatism with NCC lower crustal materials. Hornblende andesites have low SiO2 contents and high Mg# (Mg# = 100 Mg/(Mg + Fe2+)) values, indicating a lithospheric-mantle origin. Considering the distinct whole-rock Sr isotopic compositions we divide them into two groups. Among them, the low (87Sr/86Sr)i andesites possess amount inherited Neoarchean to Neoproterozoic (2548–845 Ma) zircons, indicating the origin of lithospheric mantle with addition of Yangtze Craton (YC) and NCC materials. In comparison, the high (87Sr/86Sr)i andesites, with abundant Neoarchean–Paleozoic inherited zircons (3499–261 Ma), are formed by partial melting of lithospheric mantle with incorporation of NCC supracrustal rocks and YC materials. Rhyolites have extremely high SiO2 (77.63–82.52 wt.%) and low total Fe2O3, Cr, Ni contents and Mg# values, combined with ancient inherited zircon ages (2316 and 2251 Ma), suggesting an origin of NCC lower continental crust. Considering the presence of resorption texture of quartz phenocryst, we propose a petrogenetic model of ‘crystal mushes’ for rhyolites prior to their eruption. These constraints record the intense crust–mantle interaction in the southern margin of the NCC. Given the regional data and spatial distribution of Early Cretaceous rocks within NCC, we believe that the formation of these rocks is related to the contemporaneous far-field effect of the Paleo-Pacific Plate.  相似文献   

19.
In the Mediterranean area, lamproitic provinces in Spain, Italy, Serbia and Macedonia have uniform geological, geochemical and petrographic characteristics. Mediterranean lamproites are SiO2-rich lamproites, characterized by relatively low CaO, Al2O3 and Na2O, and high K2O/Al2O3 and Mg-number. They are enriched in LILE relative to HFSE and in Pb, and show depletion in Ti, Nb and Ta. Mediterranean lamproites show huge regional variation of Sr, Nd and 207Pb/204Pb isotopic values, with 87Sr/86Sr range of 0.707-0.722, εNd range from −13 to −3, and 207Pb/204Pb range of 15.62-15.79.Lamproitic rocks are derived from melts with three components involved in their origin, characterized by contrasting geochemical features which appear in 206Pb/204Pb, 87Sr/86Sr and 143Nd/144Nd space: (i) a mantle source contaminated by crustal material, giving rise to crust-like trace element patterns and radiogenic isotope systematics, (ii) an extremely depleted mantle characterized by very low whole-rock CaO and Al2O3, high-Fo olivine and Cr-rich spinel, which isotopically resembles European peridotitic massifs and lithospheric mantle; (iii) a component originating from the convecting mantle, characterized by unradiogenic 87Sr/86Sr and radiogenic 143Nd/144Nd and 206Pb/204Pb. These components demand multistage preconditioning of the lamproite-mantle source, involving an episode of extreme depletion, followed by involvement of terrigenous sediments, and finally interaction with melts originating from the convecting mantle, some of which are probably carbonatitic.We use our data on Mediterranean lamproites to characterize the mantle composition under the whole Alpine-Himalaya belt. Lamproites are an integral part of postcollisional volcanism, and are the most extreme melting products from a mantle which is ubiquitously crustally metasomatized. Enriched isotope signatures in Himalayan volcanics can also be explained by the involvement of subducted sediments instead of by proterozoic mantle lithosphere.  相似文献   

20.
《Gondwana Research》2016,29(4):1344-1360
Using free-board modeling, we examine a vertically-averaged mantle density beneath the Archean–Proterozoic Siberian Craton in the layer from the Moho down to base of the chemical boundary layer (CBL). Two models are tested: in Model 1 the base of the CBL coincides with the LAB, whereas in Model 2 the base of the CBL is at a 180 km depth. The uncertainty of density model is < 0.02 t/m3 or < 0.6% with respect to primitive mantle. The results, calculated at in situ and at room temperature (SPT) conditions, indicate a heterogeneous density structure of the Siberian lithospheric mantle with a strong correlation between mantle density variations and the tectonic setting. Three types of cratonic mantle are recognized from mantle density anomalies. ‘Pristine’ cratonic regions not sampled by kimberlites have the strongest depletion with density deficit of 1.8–3.0% (and SPT density of 3.29–3.33 t/m3 as compared to 3.39 t/m3 of primitive mantle). Cratonic mantle affected by magmatism (including the kimberlite provinces) has a typical density deficit of 1.0–1.5%, indicative of a metasomatic melt-enrichment. Intracratonic sedimentary basins have a high density mantle (3.38–3.40 t/m3 at SPT) which suggests, at least partial, eclogitization. Moderate density anomalies beneath the Tunguska Basin imply that the source of the Siberian LIP lies outside of the Craton. In situ mantle density is used to test the isopycnic condition of the Siberian Craton. Both CBL thickness models indicate significant lateral variations in the isopycnic state, correlated with mantle depletion and best achieved for the Anabar Shield region and other intracratonic domains with a strongly depleted mantle. A comparison of synthetic Mg# for the bulk lithospheric mantle calculated from density with Mg# from petrological studies of peridotite xenoliths from the Siberian kimberlites suggests that melt migration may produce local patches of metasomatic material in the overall depleted mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号