首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Mixing is a dominant hydrogeological process in the hydrothermal spring system in the Cappadocia region of Turkey. All springs emerge along faults, which have the potential to transmit waters rapidly from great depths. However, mixing with shallow meteoric waters within the flow system results in uncertainty in the interpretation of geochemical results. The chemical compositions of cold and warm springs and geothermal waters are varied, but overall there is a trend from Ca–HCO3 dominated to Na–Cl dominated. There is little difference in the seasonal ionic compositions of the hot springs, suggesting the waters are sourced from a well-mixed reservoir. Based on δ18O and δ2H concentrations, all waters are of meteoric origin with evidence of temperature equilibration with carbonate rocks and evaporation. Seasonal isotopic variability indicates that only a small proportion of late spring and summer precipitation forms recharge and that fresh meteoric waters move rapidly into the flow system and mix with thermal waters at depth. 3H and percent modern carbon (pmC) values reflect progressively longer groundwater pathways from cold to geothermal waters; however, mixing processes and the very high dissolved inorganic carbon (DIC) of the water samples preclude the use of either isotope to gain any insight on actual groundwater ages.  相似文献   

2.
In a multidisciplinary approach, geological, geomorphologic, structural, hydrogeochemical and isotopic surveys were conducted on the Serra da Estrela groundwater system (central Portugal) in order to establish/develop a conceptual circulation model of the Caldas de Manteigas thermomineral system. A detailed study of the isotopic and geochemical composition of surface waters (e.g. Zêzere River), shallow groundwaters (cold dilute springs), and thermomineral waters was carried out to characterize the distribution of isotopes in waters of this mountainous region, and to determine the origin and possible recharge locations of the thermomineral system. Special attention was dedicated to isotopic tracers and their role in the definition of the thermomineral waters??conceptual model, considering: (1) the δ18O fractionation gradient; (2) the mean isotopic composition of the thermomineral waters in the region; and (3) the estimation of snowmelt contribution as a source of groundwater recharge at Serra da Estrela. The recharge of the thermomineral aquifer takes place on the more permeable zones of the granitic massif, associated with the main tectonic structures, whereas the recharge of the shallow aquifers seems to take place mostly in the plateaus, although another part of the recharge may occur in the slopes of the Zêzere River valley.  相似文献   

3.
Ayadi  Rahma  Trabelsi  Rim  Zouari  Kamel  Saibi  Hakim  Itoi  Ryuichi  Khanfir  Hafedh 《Hydrogeology Journal》2018,26(4):983-1007

Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water–rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  相似文献   

4.
The stable isotopic characteristics were used together with the total chloride to assess changes in groundwater from recharge zones into the carbonate aquifer in an arid environment. The aquifer under study represents a major source of groundwater and thermal springs in Al-Ain city, which are located at the northern part of Jabal Hafit in the United Arab Emirates (UAE). The relationship between oxygen and hydrogen isotopic composition of groundwater is established and is described by δD?=?2.2δ18O???9.96. The lower slope and y-intercept of groundwater samples relative to the local meteoric waterline suggests that the isotopic enrichment is due to the evaporation of shallow groundwater after recharge occurs. The majority of the shallow groundwater samples have a negative deuterium excess (d-excess) which might be ascribed to high a degree of evaporation, while most of the groundwater samples from deep wells, have a positive value of d-excess which may be related to a low degree of evaporation. The δ18O values of the thermal waters suggest enrichment towards δ18O of the carbonate rocks because of the exchange with oxygen at higher temperatures. A possible mixing between thermal or hot water and shallow groundwater is evident in some samples as reflected by δD vs. Cl and d-excess vs. δ18O plots.  相似文献   

5.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

6.
The groundwater of major karst systems and submarine springs in the coastal limestone aquifer of Syria has been investigated using chemical and isotopic techniques. The δ18O values of groundwater range from ?6.8 to ?5.05‰, while those for submarine springs vary from ?6.34 to +1.08‰ (eastern Mediterranean seawater samples have a mean of +1.7‰). Groundwater originates from the direct infiltration of atmospheric water. Stable isotopes show that the elevation of the recharge zones feeding the Banyas area (400–600 m a.s.l.) is higher than that feeding the Amrit area (100–300 m a.s.l.). The 18Oextracted (18O content of the seawater contribution) for the major submarine springs suggests a mean recharge area elevation of 600–700 m a.s.l., and lower than 400 m a.s.l. for the spring close to Amrit. Based on the measured velocity and the percentage of fresh water at the submarine springs outlet, the estimated discharge rate is 350 million m3/year. The tritium concentrations in groundwater (1.6–5.9 TU) are low and very close to the current rainfall values (2.9–5.6 TU). Adopting a model with exponential time distribution, the mean turnover time of groundwater in the Al-sen spring was evaluated to be 60 years. A value of about 3.7 billion m3 was obtained for the maximum groundwater reservoir size.  相似文献   

7.
The Xiangxi River basin, South China, is a steep terrane with well-developed karst features and an important Cambrian-Ordovician aquifer. Meteoric water in this mountainous area features a mean δ18O elevation gradient of –2.4?‰/km. This gradient was used to estimate mean recharge elevations of 760 m for Shuimoxi (SMX) spring, 1,060 m for Xiangshuidong (XSD) spring, and 1,430 m for drill hole ZK03, indicating multiple flow paths in the Cambrian-Ordovician karst aquifer. Mean residence times of 230 and 320 days and ~2 years were estimated for these features, respectively, using the damped running average model that predicts the isotopic variations in groundwater from those in precipitation. Groundwater in the regional karst flow system has the longest residence time, the highest recharge elevation, the longest flow paths, the lowest addition of anthropogenic components, and the greatest amount of water–rock interaction as indicated by its higher dissolved solids, Mg2+ concentrations and Mg/Ca ratios than the springs. In contrast, the local and shallow karst flow systems respond rapidly to recharge events. Artificial tracer tests prove that these shallow karst systems can also quickly transmit anthropogenic contaminants, indicating that they are highly vulnerable to human impacts, which include the enrichment of NO3 . The intensity of water–rock interaction and groundwater vulnerability are mainly determined by the structure and dynamics of the multiple karst flow systems.  相似文献   

8.
The study investigates the mechanism of glacial meltwater recharge under the Fennosciandian Ice Sheet during the last glacial maximum (LGM) and its impact on regional groundwater flow in the northern Baltic Artesian Basin (BAB) in Estonia and Latvia. The current hypothesis is that a flow reversal occurred in the BAB due to subglacial recharge during the LGM. This hypothesis is supported by an extensive dataset of geochemical and isotopic measurements in the groundwater of northern Estonia, exhibiting significant depletion in δ18O with respect to modern precipitation. To verify the consistency of this hypothesis and better understand groundwater flow dynamics during the LGM period, a numerical model is developed for this area. Two cross-sectional models have been created across the northern BAB, in which groundwater flow and the transport of δ18O have been simulated from the beginning of the LGM to present-day. Several simulations were performed with different subglacial boundary conditions, to investigate the uncertainty related to subglacial recharge of meltwater during the LGM and the subsequent flow reversal in the northern BAB. Several simulations provide a satisfying fit between computed and observed values of δ18O, which means that the hypothesis of subglacial recharge of meltwater is consistent with δ18O distribution. The numerical model suggests that preservation of meltwater in northern Estonia is controlled by confining layers and the proximity to the outcrop area of aquifers, located in the Gulf of Finland. The results also suggest that glacial meltwater has been preserved under the Baltic Sea in the Gulf of Riga.  相似文献   

9.
Spring and Snake valleys, western USA, are scheduled for development and groundwater export to Las Vegas, Nevada (USA). New work, compared to published studies, illustrates the critical role of conceptual models to underpin water withdrawals in arid regions. Interbasin flow studies suggest that 30–55?% of recharge to Snake Valley arrives from adjacent Spring Valley. This study, however, suggest little or no interbasin flow; rather, Spring and Snake valleys comprise separate systems. Contrary to expectation, δD and δ18O contours are perpendicular to proposed interbasin flow paths. 14C age gradients up to 10?ka along interbasin flow paths indicate that old waters are not displaced by such fluxes. 14C and 3H patterns indicate local recharge occurs in adjacent mountain ranges and is transferred to basin-fill by losing streams, mountain front recharge, and upward leakage from carbonate bedrock beneath basins. The choice of conceptual models is critical for groundwater development. Simple analyses of water withdrawals indicate that monitoring discharges at desert springs is an inadequate protective measure. Once flows decline, recovery is lengthy even if pumping is stopped. The conceptual framework behind quantitative evaluations of sustainable yield is critical to determine the ability of a groundwater system to deliver sustained withdrawals.  相似文献   

10.
The groundwater flow pattern of the western part of the Guarani Aquifer System (GAS), Brazil, is characterized by three regional recharge areas in the north, and a potentiometric divide in the south, which trends north–south approximately. Groundwater flow is radial from these regional recharge areas toward the center of Paraná Sedimentary Basin and toward the western outcrop areas at the border of the Pantanal Matogrossense, because of the potentiometric divide. The isotopic composition of GAS groundwater leads to understanding the paleoclimatic conditions in the regional recharge areas. The δ18O and δ2H isotopic ratios of GAS groundwaters vary, respectively, from –9.1 to –4.8‰ V-SMOW and –58.4 to –21.7‰ V-SMOW. In the recharge zones, enriched δ18O values are observed, while in the confined zone lighter δ18O values are observed. These suggest that climatic conditions were 10°C cooler than the present during the recharge of these waters. The δ13C ratios in groundwater of GAS, in the study area, vary from –19.5 to –6.5‰ VPDB, increasing along the regional flow lines toward the confined zone. This variation is related to dissolution of carbonate cement in the sandstones.  相似文献   

11.
On the basis of the isotopic composition of water in the northern part of Epirus, Greece, from springs at different altitudes with well-defined recharge areas, the altitude effect on the δ18O value of groundwater is –0.142±0.003ö (100?m)–1 and is uniform over the entire study area. Using the δ18O composition of surface water and groundwaters, the contribution of Ioannina Lake and the channel draining the lake water to the Kalamas River to the recharge of springs and boreholes was confirmed and quantitatively defined. In contrast, the Voidomatis and Vikos Rivers are not sources for recharge of the big springs along their banks. However, water from the Aoos River does replenish the aquifer in the unconsolidated deposits underlying the plain of Konitsa. In addition, limestones of Senonian–Late Eocene ages, dolomites, and limestones of the "Vigles" facies are hydraulically interconnected, and the limestones of the "Pantokrator" facies are hydraulically isolated from the other carbonate formations.  相似文献   

12.
The geochemical and isotopic composition of surface waters and groundwater in the Velenje Basin, Slovenia, was investigated seasonally to determine the relationship between major aquifers and surface waters, water–rock reactions, relative ages of groundwater, and biogeochemical processes. Groundwater in the Triassic aquifer is dominated by HCO3 , Ca2+, Mg2+ and δ13CDIC indicating degradation of soil organic matter and dissolution of carbonate minerals, similar to surface waters. In addition, groundwater in the Triassic aquifer has δ18O and δD values that plot near surface waters on the local and global meteoric water lines, and detectable tritium, likely reflecting recent (<50 years) recharge. In contrast, groundwater in the Pliocene aquifers is enriched in Mg2+, Na+, Ca2+, K+, and Si, and has high alkalinity and δ13CDIC values, with low SO4 2– and NO3 concentrations. These waters have likely been influenced by sulfate reduction and microbial methanogenesis associated with coal seams and dissolution of feldspars and Mg-rich clay minerals. Pliocene aquifer waters are also depleted in 18O and 2H, and have 3H concentrations near the detection limit, suggesting these waters are older, had a different recharge source, and have not mixed extensively with groundwater in the Triassic aquifer.  相似文献   

13.
This paper describes an indirect method to calculate the isotopic composition of rainfall by using the isotopic composition of karst springs fed by waters circulating in the most important regional aquifer of central Italy, i.e. the Mesozoic limestone sequence that forms the backbone of the Apennines. By using δ18O and δD data and the δ18O (and/or δD) average gradient for elevation, evaluated through the use of literature rainfall data and new measurements from a typical Alpine valley in northern Italy, the altitude of precipitation of their parent water has been re-calculated. Vertical descents of more than 2000 m, from recharge to discharge, have been assessed in some high flow-rate cold springs in the morphologically steep Adriatic sector of central Italy. A clear correlation between the vertical descents and more negative isotopic compositions at their relative emergence elevations is highlighted. In contrast, in the Tyrrhenian sector lower karstic drops (generally lower than 500 m) correlate with less negative isotopic composition of recharge areas.The δ18O iso-contour map of the “recalculated” parent rainfall in central Italy is more detailed than any possible isotopic map of rainfall made using pluviometers, unless large number of rainfall collectors were deployed on mountaintops. The data also show that the isotopic composition of rainfall depends on the source of the storm water. In particular, precipitation is isotopically heavier when originating in the Mediterranean Sea, and lighter when formed in the Atlantic Ocean. Consequently, the collision between air masses with such a different isotopic signature results in a relatively small latitudinal fractionation effect. The peninsular part of central Italy is very narrow, with several mountains and massifs more that 2000 m high, and any latitudinal variation in the isotopic composition between rainfall sourced in the Atlantic Ocean and in the Mediterranean Sea is much lower than that due to the isotopic fractionation due to elevation.  相似文献   

14.

Recently collected naturally occurring geochemical and isotopic groundwater tracers were combined with historic data from the Pahute Mesa area of the Nevada National Security Site (NNSS), Nevada, USA, to provide insights into long-term regional groundwater flow patterns, mixing and recharge. Pahute Mesa was the site of 85 nuclear detonations between 1965 and 1992, many of them deeply buried devices that introduced radionuclides directly into groundwater. The dataset examined included major ions and field measurements, stable isotopes of hydrogen (δ2H), oxygen (δ18O), carbon (δ13C) and sulfur (δ34S), and radioisotopes of carbon (14C) and chloride (36Cl). Analysis of the patterns of groundwater 14C data and the δ2H and δ18O signatures indicates that groundwater recharge is predominantly of Pleistocene age, except for a few localized areas near major ephemeral drainages. Steep gradients in sulfate (SO4) and chloride (Cl) define a region near the western edge of the NNSS where high-concentration groundwater flowing south from north of the NNSS merges with dilute groundwater flowing west from eastern Pahute Mesa in a mixing zone that coincides with a groundwater trough associated with major faults. The 36Cl/Cl and δ34S data suggest that the source of the high Cl and SO4 in the groundwater was a now-dry, pluvial-age playa lake north of the NNSS. Patterns of groundwater flow indicated by the combined data sets show that groundwater is flowing around the northwest margin of the now extinct Timber Mountain Caldera Complex toward regional discharge areas in Oasis Valley.

  相似文献   

15.
In order to address the problem of realistic assessment of groundwater potential and its sustainability, it is vital to study the recharge processes and mechanism of groundwater flow in fractured hard rocks, where inhomogeneties and discontinuities have a dominant role to play. Wide variations in chloride, δ18O and 14C concentrations of the studied groundwaters observed in space and time could only reflect the heterogeneous hydrogeological setting in the fractured granites of Hyderabad (India). This paper, based on the observed isotopic and environmental chloride variations of the groundwater system, puts forth two broad types of groundwaters involving various recharge processes and flow mechanisms in the studied granitic hard rock aquifers. Relatively high 14C ages (1300 to ~6000 yr B.P.), δ18O content (?3.2 to ?1.5‰) and chloride concentration (<100 mg/l) are the signatures that identified one broad set of groundwaters resulting from recharge through weathered zone and subsequent movement through extensive sheet joints. The second set of groundwaters possessed an age range Modern to ~1000 yr B.P., chloride in the range 100 to ~350 mg/l and δ18O from ?3.2 to +1.7‰. The δ18O enrichment and chloride concentration, further helped in the segregation of the second set of groundwaters into three sub-sets characterized by different recharge processes and sources. Based on these processes and mechanisms, a conceptual hydrogeologic model has evolved suggesting that the fracture network is connected either to a distant recharge source or to a surface reservoir (evaporating water bodies) apart from overlying weathered zone, explaining various resultant groundwaters having varying 14C ages, chloride and δ18O concentrations. The surface reservoir contribution to groundwater is evaluated to be significant (40 to 70%) in one subset of groundwaters. The conceptual hydrogeologic model, thus evolved, can aid in understanding the mechanism of groundwater flow as well as migration of contaminants to deep groundwater in other fractured granitic areas.  相似文献   

16.
To understand deep groundwater flow systems and their interaction with CO2 emanated from magma at depth in a volcanic edifice, deep groundwater samples were collected from hot spring wells in the Aso volcanic area for hydrogen, oxygen and carbon isotope analyses and measurements of the stable carbon isotope ratios and concentrations of dissolved inorganic carbon (DIC). Relations between the stable carbon isotope ratio (δ13CDIC) and DIC concentrations of the sampled waters show that magma-derived CO2 mixed into the deep groundwater. Furthermore, groundwaters of deeper areas, except samples from fumarolic areas, show higher δ13CDIC values. The waters' stable hydrogen and oxygen isotope ratios (δD and δ18O) reflect the meteoric-water origin of that region's deep groundwater. A negative correlation was found between the altitude of the well bottom and the altitude of groundwater recharge as calculated using the equation of the recharge-water line and δD value. This applies especially in the Aso-dani area, where deeper groundwater correlates with higher recharge. Groundwater recharged at high altitude has higher δ13CDIC of than groundwater recharged at low altitude, strongly suggesting that magmatic CO2 is present to a much greater degree in deeper groundwater. These results indicate that magmatic CO2 mixes into deeper groundwater flowing nearer the magma conduit or chamber.  相似文献   

17.
Groundwater systems in the San Luis Valley, Colorado, USA have been re-evaluated by an analysis of solute and isotopic data. Existing stream, spring, and groundwater samples have been augmented with 154 solute and isotopic samples. Based on geochemical stratification, three groundwater regimes have been identified within 1,200 m of the surface: unconfined, upper active confined, and lower active confined with maximum TDS concentrations of 35,000, 3,500 and 600 mg/L, respectively. The elevated TDS of northern valley unconfined and upper active confined systems result from mineral dissolution, ion exchange and methanogenesis of organic and evaporate lake sediments deposited in an ancient lake, herein designated as Lake Sipapu. Chemical evolutions along flow paths were modeled with NETPATH. Groundwater ages, and δ13C, δ2H and δ18O compositions and distributions, suggest that mountain front recharge is the principle recharge mechanism for the upper and lower confined aquifers with travel times in the northern valley of more than 20,000 and 30,000 14C years, respectively. Southern valley confined aquifer travel times are 5,000 14C years or less. The unconfined aquifer contains appreciable modern recharge water and the contribution of confined aquifer water to the unconfined aquifer does not exceed 20%.  相似文献   

18.
Sousan Spring emerges from the Keyno Anticline, Zagros Mountains (Iran), and the mean annual discharge is ~24 m3/s. Geological and hydrochemical evaluations suggest that the spring recharge is from the limestone Ilam-Sarvak Formation (Cretaceous) but the Mafaroon Fault, a major thrust feature, influences the regional groundwater flow path by juxtaposing other strata. Geological, geochemical, stable isotope and water balance studies were employed to interpret this behavior. Using the isotope data, the sources and elevations of the recharge area were found. Temporal variations of the isotopic data were compared with variations of electrical conductivity (EC). Unexpectedly, high EC was associated with a relative increase of discharge and depletion of δ18O. Several hypotheses were investigated and approximate water balance studies employed for validation. It was found that an elongated catchment on the Keyno Anticline plus a lesser catchment on a pair of parallel anticlines recharge the aquifer. While the long groundwater flow path along the Keyno Anticline plus guidance by Mafaroon Fault and the adjacent Garou shaly strata lead to increased EC in the Sousan Spring at the end of the dry season, a flow pulse from two adjoining anticlines (Mahalbakh and Shirgoon) arrives at the same time to increase the discharge and deplete the δ18O signal. Apparently the spring did not experience true base flow conditions during the recorded hydrological year. Although the spring response to specific precipitation events was similar to typical karst aquifers, standard interpretation of recession curves and related coefficients will not be practical at Sousan.  相似文献   

19.
An approach is presented to investigate the regional evolution of groundwater in the basin of the Amacuzac River in Central Mexico. The approach is based on groundwater flow cross-sectional modeling in combination with major ion chemistry and geochemical modeling, complemented with principal component and cluster analyses. The hydrogeologic units composing the basin, which combine aquifers and aquitards both in granular, fractured and karstic rocks, were represented in sections parallel to the regional groundwater flow. Steady-state cross-section numerical simulations aided in the conceptualization of the groundwater flow system through the basin and permitted estimation of bulk hydraulic conductivity values, recharge rates and residence times. Forty-five water locations (springs, groundwater wells and rivers) were sampled throughout the basin for chemical analysis of major ions. The modeled gravity-driven groundwater flow system satisfactorily reproduced field observations, whereas the main geochemical processes of groundwater in the basin are associated to the order and reactions in which the igneous and sedimentary rocks are encountered along the groundwater flow. Recharge water in the volcanic and volcano-sedimentary aquifers increases the concentration of HCO3 , Mg2+ and Ca2+ from dissolution of plagioclase and olivine. Deeper groundwater flow encounters carbonate rocks, under closed CO2 conditions, and dissolves calcite and dolomite. When groundwater encounters gypsum lenses in the shallow Balsas Group or the deeper Huitzuco anhydrite, gypsum dissolution produces proportional increased concentration of Ca2+ and SO4 2–; two samples reflected the influence of hydrothermal fluids and probably halite dissolution. These geochemical trends are consistent with the principal component and cluster analyses.  相似文献   

20.
In the Tivoli Plain (Rome, Central Italy) the interaction between shallow and deep groundwater flow systems enhanced by groundwater extraction has been investigated using isotopic and chemical tracers. A conceptual model of the groundwater flowpaths has been developed and verified by geochemical modeling. A combined hydrogeochemical and isotopic investigation using ion relationships such as DIC/Cl, Ca/(Ca + Mg)/SO4/(SO4 + HCO3), and environmental isotopes (δ18O, δ2H, 87Sr/86Sr, δ34S and δ13C) was carried out in order to determine the sources of recharge of the aquifer, the origin of solutes and the mixing processes in groundwater of Tivoli Plain. Multivariate statistical methods such as principal component analysis and Cluster analyses have confirmed the existence of different geochemical facies and the role of mixing in the chemical composition of the groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号