首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lesser Himalaya in central Nepal consists of Precambrian to early Paleozoic, low- to medium-grade metamorphic rocks of the Nawakot Complex, unconformably overlain by the Upper Carboniferous to Lower Miocene Tansen Group. It is divided tectonically into a Parautochthon, two thrust sheets (Thrust sheets I and II), and a wide shear zone (Main Central Thrust zone) from south to north by the Bari Gad–Kali Gandaki Fault, the Phalebas Thrust and the Lower Main Central Thrust, respectively. The Lesser Himalaya is overthrust by the Higher Himalaya along the Upper Main Central Thrust (UMCT). The Lesser Himalaya forms a foreland-propagating duplex structure, each tectonic unit being a horse bounded by imbricate faults. The UMCT and the Main Boundary Thrust are the roof and floor thrusts, respectively. The duplex is cut-off by an out-of-sequence fault. At least five phases of deformation (D1–D5) are recognized in the Lesser Himalaya, two of which (D1 and D2) belong to the pre-Himalayan (pre-Tertiary) orogeny. Petrographic, microprobe and illite crystallinity data show polymetamorphic evolution of the Lesser and Higher Himalayas in central Nepal. The Lesser Himalaya suffered a pre-Himalayan (probably early Paleozoic) anchizonal prograde metamorphism (M0) and a Neohimalayan (syn- to post-UMCT) diagenetic to garnet grade prograde inverted metamorphism (M2). The Higher Himalaya suffered an Eohimalayan (pre or early-UMCT) kyanite-grade prograde metamorphism (M1) which was, in turn, overprinted by Neohimalayan (syn-UMCT) retrograde metamorphism (M2). The isograd inversion from garnet zone in the Lesser Himalaya to kyanite zone in the Higher Himalaya is only apparent due to post-metamorphic thrusting along the UMCT. Both the Lesser and Higher Himalayas have undergone late-stage retrogression (M3) during exhumation.  相似文献   

2.
White micas (phengites) in the metasediments of the Scottish Dalradian display a large range of compositions within single samples. The variations in the composition of these phengites are strongly controlled by their structural age, with early fabrics containing a paragonite-poor, celadonite-rich phengite whereas in later fabrics the micas are generally paragonite-rich and celadonite-poor. Retrograde phengite growth, identified using back scattered electron imaging, occurs as celadonite-rich rims on micas within all existing fabrics and appears to be preferentially developed along existing white mica-plagioclase grain boundaries. The presence of these chemically distinct phengite populations within single samples implies that chemical exchange between the individual micas was inefficient. It is proposed that diffusion-controlled exchange reactions in phengites have relatively high closure temperatures below which major element exchange is effectively impossible. This closed system behaviour of micas questions the ease with which phengites may equilibrate with other phases during prograde greenschist and lower amphibolite facies metamorphism. Many of the chemical variations preserved in phengites from such metamorphic rocks may reflect deformation/recrystallization controlled equilibria.  相似文献   

3.
Santanu Kumar Bhowmik   《Lithos》2006,92(3-4):484-505
In the present study from the southern margin of the Central Indian Tectonic Zone, it is demonstrated how the metamorphic PT path of ultrahigh-temperature granulite terranes can be reconstructed using the metamorphic transition in corundum granulites from early biotite melting to later FMAS solid–solid reaction. The extreme metamorphism in these rocks caused two-stage biotite melting, resulting in initial porphyroblastic garnet1 and later sapphirine–spinel1 incongruent solid mineral assemblages. During this process, the leucocratic and melanocratic layers in the corundum granulites evolved from an initial silica-oversaturated to a later silica-undersaturated domain. In the melanocratic layer, this allowed localized concentration of sapphirine-spinel1 and residual sillimanite1, producing an extremely restitic assemblage, at the culmination of peak metamorphism, BM1. BM1 is constrained at  1000 °C at relatively deep crustal levels (P  9 kbar) from the stability of ferroaugite in a co-metamorphosed Iron Formation granulite. During subsequent metamorphism (BM2), the reaction path and history in the corundum granulites shifted to the restitic domain allowing reacting sapphirine, spinel1 and sillimanite to produce coronal garnet2–corundum assemblage via a FMAS univariant reaction. In the final stages of reaction history, biotite2–sillimanite2–spinel2 assemblage was produced after garnet2–corundum due to localized melt–crystal interaction. The metamorphic sequence, when interpreted with the help of a newly constructed, qualitative KFMASH petrogenetic grid, reveals successive stages of heating, increasing pressure and cooling around the KFMASH invariant point, [Opx,Crd], which is consistent with a counterclockwise metamorphic PT path. The near isobaric nature of post-peak cooling (ΔT  250–300 °C) is also evident from multistage pyroxene exsolution and by the appearance of lamellar and coronal garnets in the Iron Formation granulites. This study provides the first tight constraint for ultrahigh-T metamorphism along a counter clockwise PT trajectory in the Central Indian Tectonic zone, and has important bearing for terrane correlations in this part of East Gondwanaland. In addition, the new KFMASH grid allows evaluation of metamorphic phase relations in ultrahigh-T, corundum-bearing and corundum-absent aluminous granulites.  相似文献   

4.
POLYPHASE METAMORPHISM AND INVERTED THERMAL GRADIENT IN THE LESSER HIMALAYA OF CENTRAL NEPAL: CONSTRAINTS FROM WHITE MICA COMPOSITIONS  相似文献   

5.
The 5-km deep Chinese Continental Scientific Drilling Main Hole penetrated a sequence of ultrahigh pressure (UHP)-metamorphic rocks consisting mainly of eclogite, gneiss and garnet-peridotite with minor schist and quartzite. Zircon separates taken from thin layers of schist and gneiss within eclogite were investigated. Cathodoluminescence images of zircon grains show that they have oscillatory zoned magmatic cores and unzoned to patchy zoned metamorphic rims. Zircon rims contain rare coesite and calcite inclusions whereas cores contain inclusions of both low- P minerals (e.g. feldspar, biotite and quartz) and coesite and other eclogite-facies minerals such as phengite and jadeite. The zircon cores give highly variable 206Pb/238U ages ranging from 760 to 431 Ma for schist and from 698 to 285 Ma for gneiss, and relatively high but variable Th/U ratios (0.16–1.91). We suggest that the coesite and other eclogite facies mineral inclusions in zircon cores were not magmatic but formed through metasomatic processes caused by fluids during UHP metamorphism, and that the fluids contain components of SiO2, Al2O3, K2O, FeO, MgO, Na2O and H2O. Metasomatism of the Sulu UHP rocks during continental subduction to mantle depths has partly altered magmatic zircon cores and reset isotopic systems. This study provides key evidence that mineral inclusions within magmatic zircon domains are not unequivocal indicators of the formation conditions of the respective domain. This finding leads us to conclude that the routine procedure for dating of metamorphic events solely based on the occurrence of mineral inclusions in zoned zircon could be misleading and the data should be treated with caution.  相似文献   

6.
Chris D. Parkinson   《Lithos》2000,52(1-4):215-233
Coarse-grained whiteschist, containing the assemblage: garnet+kyanite+phengite+talc+quartz/coesite, is an abundant constituent of the ultrahigh-pressure metamorphic (UHPM) belt in the Kulet region of the Kokchetav massif of Kazakhstan.

Garnet displays prograde compositional zonation, with decreasing spessartine and increasing pyrope components, from core to rim. Cores were recrystallized at T=380°C (inner) to 580°C (outer) at P<10 kbar (garnet–ilmenite geothermometry, margarite+quartz stability), and mantles at T=720–760°C and PH20=34–36 kbar (coesite+graphite stability, phengite geobarometer, KFMASH system reaction equilibria). Textural evidence indicates that rims grew during decompression and cooling, within the Qtz-stability field.

Silica inclusions (quartz and/or coesite) of various textural types within garnets display a systematic zonal distribution. Cores contain abundant inclusions of euhedral quartz (type 1 inclusions). Inner mantle regions contain inclusions of polycrystalline quartz pseudomorphs after coesite (type 2), with minute dusty micro-inclusions of chlorite, and more rarely, talc and kyanite in their cores; intense radial and concentric fractures are well developed in the garnet. Intermediate mantle regions contain bimineralic inclusions with coesite cores and palisade quartz rims (type 3), which are also surrounded by radial fractures. Subhedral inclusions of pure coesite without quartz overgrowths or radial fractures (type 4) occur in the outer part of the mantle. Garnet rims are silica-inclusion-free.

Type 1 inclusions in garnet cores represent the low-P, low-T precursor stage to UHPM recrystallization, and attest to the persistence of low-P assemblages in the coesite-stability field. Coesites in inclusion types 2, 3, and 4 are interpreted to have sequentially crystallized by net transfer reaction (kyanite+talc=garnet+coesite+H2O), and were sequestered within the garnet with progressively decreasing amounts of intragranular aqueous fluid.

During the retrograde evolution of the rock, all three inclusion types diverged from the host garnet PT path at the coesite–quartz equilibrium, and followed a trajectory parallel to the equilibrium boundary resulting in inclusion overpressure. Coesite in type 2 inclusions suffered rapid intragranular H2O-catalysed transformation to quartz, and ruptured the host garnet at about 600°C (when inclusion P27 kbar, garnet host P9 kbar). Instantaneous decompression to the host garnet PT path, passed through the kyanite+talc=chlorite+quartz reaction equilibrium, resulting in the dusty micro-assemblage in inclusion cores. Type 3 inclusions suffered a lower volumetric proportion transformation to quartz at the coesite–quartz equilibrium, and finally underwent rupture and decompression when T<400°C, facilitating coesite preservation. Type 4 coesite inclusions are interpreted to have suffered minimal transformation to quartz and proceeded to surface temperature conditions along or near the coesite–quartz equilibrium boundary.  相似文献   


7.
Polyphase metamorphism and the development of the Main Central Thrust   总被引:2,自引:0,他引:2  
ABSTRACT Along a cross-section through the Lesser and Higher Himalayan units at the Kishtwar window area (north-west India), a polyphase, Barrovian-type metamorphism has been delineated in relation to the development of the Main Central Thrust (MCT). In the metapelitic mineral assemblages, three metamorphic phases have been distinguished:
  • (a) conditions up to amphibolite grade at moderate to high pressures (alm + rut + ilm + kya + qtz) characterize the M1 phase;
  • (b) pressure release and/or temperature increase as a result of movement along the MCT and the formation of gneiss domes in the Higher Himalaya, as expressed by oriented (N70°-100° E) fibrolite, defines the M2 phase; and,
  • (c) finally during uplift of the Kishtwar window area, a retrogressive M3 phase is characterized by the assemblage quartz-muscovite-chlorite.
Both optically zoned and single-stage garnets have been examined with the electron microprobe to determine their element partitioning. Normal zoning has been found in samples below the MCT in the Lesser Himalaya, indicating prograde growth during the M2 phase, whereas tectonically above, in the Higher Himalaya unit, the garnets reveal double-stage growth with a complex zoning pattern due to reaction-partitioning during M1 and M2 and reverse-zoning at their rims during the retrogressive M3 phase. Geothermometry on metapelites along a cross-section through the MCT zone and the Higher Himalaya imply distinct readjustments of garnet-biotite exchange equilibria and indicate isothermal conditions (500-600° C) throughout the section during the M3 retrogression. Pressure calculations (gro-an-kya-qtz and alm-rut-ilm-kya-qtz) suggest a decrease in pressure towards the top of the section (6-7.5 to 4.5-5 kbar), as corroborated by fibrolite replacing kyanite. The spatially inverse metamorphism exposed within the Lesser Himalaya of the Kishtwar window is regarded as a product of polyphase metamorphism combined with ongoing thrusting and shearing and is reflected by condensed M2 isograds around the Kishtwar window.  相似文献   

8.
Crustal architecture of the Himalayan metamorphic front in eastern Nepal   总被引:4,自引:0,他引:4  
The Himalayan Metamorphic Front consists of two basinal sequences deposited on the Indian passive margin, the Mesoproterozoic Lesser Himalayan Sequence and the Neoproterozoic–Cambrian Greater Himalayan Sequence. The current paradigm is that the unconformity between these two basinal sequences coincides with a crustal-scale thrust that has been called the Main Central Thrust, and that this acted as the fundamental structure that controlled the architecture of the Himalayan Metamorphic Front. Geological mapping of eastern Nepal and eight detailed stratigraphic, kinematic, strain and metamorphic profiles through the Himalayan Metamorphic Front define the crustal architecture. In eastern Nepal the unconformity does not coincide with a discrete structural or metamorphic discontinuity and is not a discrete high strain zone. In recognition of this, we introduce the term Himalayan Unconformity to distinguish it from high strain zones in the Himalayan Metamorphic Front. The fundamental structure that controls orogen architecture in eastern Nepal occurs at higher structural levels within the Greater Himalayan Sequence and we suggest the name; High Himal Thrust. This 100–400 m thick mylonite zone marks a sharp deformation discontinuity associated with a steep metamorphic transition, and separates the Upper-Plate from the Lower-Plate in the Himalayan Metamorphic Front. The high-T/moderate-P metamorphism at  20–24 Ma in the Upper-Plate reflects extrusion of material between the High Himal Thrust and the South Tibet Detachment System at the top of the section. The Lower-Plate is a broad schistose zone of inverted, diachronous moderate-T/high-P metamorphic rocks formed between  18 and 6 Ma. The High Himal Thrust is laterally continuous into Sikkim and Bhutan where it also occurs at higher structural levels than the Himalayan Unconformity and Main Central Thrust (as originally defined). To the west in central Nepal, the Upper-Plate/Lower-Plate boundary has been placed at lower structural levels, coinciding with the Himalayan Unconformity and has been named the Main Central Thrust, above the originally defined Main Central Thrust (or Ramgarh Thrust).  相似文献   

9.
Petrology and phase equilibria of rocks from two profiles inEastern Nepal from the Lesser Himalayan Sequences, across theMain Central Thrust Zone and into the Greater Himalayan Sequencesreveal a Paired Metamorphic Mountain Belt (PMMB) composed oftwo thrust-bound metamorphic terranes of contrasting metamorphicstyle. At the higher structural level, the Greater HimalayanSequences experienced high-T/moderate-P metamorphism, with ananticlockwise P–T path. Low-P inclusion assemblages ofquartz + hercynitic spinel + sillimanite have been overgrownby peak metamorphic garnet + cordierite + sillimanite assemblagesthat equilibrated at 837 ± 59°C and 6·7 ±1·0 kbar. Matrix minerals are overprinted by numerousmetamorphic reaction textures that document isobaric coolingand re-equilibrated samples preserve evidence of cooling to600 ± 45°C at 5·7 ±1·1 kbar.Below the Main Central Thrust, the Lesser Himalayan Sequencesare a continuous (though inverted) Barrovian sequence of high-P/moderate-Tmetamorphic rocks. Metamorphic zones upwards from the loweststructural levels in the south are: Zone A: albite + chlorite + muscovite ± biotite; Zone B: albite + chlorite + muscovite + biotite + garnet; Zone C: albite + muscovite + biotite + garnet ± chlorite; Zone D: oligoclase + muscovite + biotite + garnet ± kyanite; Zone E: oligoclase + muscovite + biotite + garnet + staurolite+ kyanite; Zone F: bytownite + biotite + garnet + K-feldspar + kyanite± muscovite; Zone G: bytownite + biotite + garnet + K-feldspar + sillimanite+ melt ± kyanite. The Lesser Himalayan Sequences show evidence for a clockwiseP–T path. Peak-P conditions from mineral cores average10·0 ± 1·2 kbar and 557 ± 39°C,and peak-metamorphic conditions from rims average 8·8± 1·1 kbar and 609 ± 42°C in ZonesD–F. Matrix assemblages are overprinted by decompressionreaction textures, and in Zones F and G progress into the sillimanitefield. The two terranes were brought into juxtaposition duringformation of sillimanite–biotite ± gedrite foliationseams (S3) formed at conditions of 674 ± 33°C and5·7 ± 1·1 kbar. The contrasting averagegeothermal gradients and P–T paths of these two metamorphicterranes suggest they make up a PMMB. The upper-plate positionof the Greater Himalayan Sequences produced an anticlockwiseP–T path, with the high average geothermal gradient beingpossibly due to high radiogenic element content in this terrane.In contrast, the lower-plate Lesser Himalayan Sequences weredeeply buried, metamorphosed in a clockwise P–T path anddisplay inverted isograds as a result of progressive ductileoverthrusting of the hot Greater Himalayan Sequences duringprograde metamorphism. KEY WORDS: thermobarometry; P–T paths; Himalaya; metamorphism; inverted isograds; paired metamorphic belts  相似文献   

10.
The Chinese Continental Scientific Drilling (CCSD) main drill hole (0–3000 m) in Donghai, southern Sulu orogen, consists of eclogite, paragneiss, orthogneiss, schist and garnet peridotite. Detailed investigations of Raman, cathodoluminescence, and microprobe analyses show that zircons from most eclogites, gneisses and schists have oscillatory zoned magmatic cores with low-pressure mineral inclusions of Qtz, Pl, Kf and Ap, and a metamorphic rim with relatively uniform luminescence and eclogite-facies mineral inclusions of Grt, Omp, Phn, Coe and Rt. The chemical compositions of the UHP metamorphic mineral inclusions in zircon are similar to those from the matrix of the host rocks. Similar UHP metamorphic PT conditions of about 770 °C and 32 kbar were estimated from coexisting minerals in zircon and in the matrix. These observations suggest that all investigated lithologies experienced a joint in situ UHP metamorphism during continental deep subduction. In rare cases, magmatic cores of zircon contain coesite and omphacite inclusions and show patchy and irregular luminescence, implying that the cores have been largely altered possibly by fluid–mineral interaction during UHP metamorphism.

Abundant H2O–CO2, H2O- or CO2-dominated fluid inclusions with low to medium salinities occur isolated or clustered in the magmatic cores of some zircons, coexisting with low-P mineral inclusions. These fluid inclusions should have been trapped during magmatic crystallization and thus as primary. Only few H2O- and/or CO2-dominated fluid inclusions were found to occur together with UHP mineral inclusions in zircons of metamorphic origin, indicating that UHP metamorphism occurred under relatively dry conditions. The diversity in fluid inclusion populations in UHP rocks from different depths suggests a closed fluid system, without large-scale fluid migration during subduction and exhumation.  相似文献   


11.
The series of four different, steeply inclined thrusts which sharply sever the youthful autochthonous Cenozoic sedimentary zone, including the Siwalik, from the mature old Lesser Himalayan subprovince is collectively known as the Main Boundary Thrust (MBT). In the proximity of this trust in northwestern and eastern sectors, the parautochtonous Lesser Himalayan sedimentary formations are pushed up and their narrow frontal parts split into imbricate sheets with attendant repetition and inversion of lithostratigraphic units. The superficially steeper thrust plane seems to flatten out at depth. The MBT is tectonically and seismically very active at the present time.The Main Central Thrust (MCT), inclined 30° to 45° northwards, constitutes the real boundary between the Lesser and Great Himalaya. Marking an abrubt change in the style and orientation of structures and in the grade of metamorphism from lower amphibolitefacies of the Lesser Himalayan to higher metamorphic facies of the Great Himalayan, the redefined Main Central Thrust lies at a higher level as that originally recognized by A. Heim and A. Gansser. They had recognized this thrust as the contact of the mesozonal metamorphics against the underlying sedimentaries or epimetamorphics. It has now been redesignated as the Munsiari Thrust in Kumaun. It extends northwest in Himachal as the Jutogh Thrust and farther in Kashmir as the Panjal Thrust. In the eastern Himalaya the equivalents of the Munsiari Thrust are known as the Paro Thrust and the Bomdila Thrust. The upper thrust surface in Nepal is recognized as the Main Central Thrust by French and Japanese workers. The easterly extension of the MCT is known as the Khumbu Thrust in eastern Nepal, the Darjeeling Thrust in the Darjeeling-Sikkim region, the Thimpu Thrust in Bhutan and the Sela Thrust in western Arunachal. Significantly, hot springs occur in close proximity to this thrust in Kumaun, Nepal and Bhutan. There are reasons to believe that movement is taking place along the MCT, although seismically it is less active than the MBT.  相似文献   

12.
Zircon U–Pb ages and trace elements were determined for granulites and gneiss at Huangtuling, which are hosted by ultrahigh-pressure metamorphic rocks in the Dabie Orogen, east-central China. CL images reveal core–rim structure for most zircons in the granulites. The cores show oscillatory zoning, relatively high Th/U ratios, and HREE enriched patterns, consistent with a magmatic origin. They gave a weighted mean 207Pb/206Pb age of 2766 ± 9 Ma, interpreted as dating magma emplacement of the protolith. The rims are characterized by sector or planar zoning, low Th/U ratios, negative Eu anomalies and flat HREE patterns, consistent with their formation under granulite-facies metamorphic conditions. Zircon U–Pb dating yields a weighted mean 207Pb/206Pb age of 2029 ± 13 Ma, which is interpreted to record a metamorphic event, possibly during assembly of the supercontinent Columbia. The gneiss has a protolith age of 1982 ± 14 Ma, which is younger than the zircon age of the granulite-facies metamorphism, suggesting a generally delay between HT metamorphism and the intrusion of post-collisional granites. A few inherited cores with igneous characteristics have 207Pb/206Pb ages of 2.90, 3.28 and 3.53 Ga, suggesting the presence of Mesoarchean to Paleoarchean crustal remnants in the Yangtze Craton. A few Cretaceous metamorphic ages were also obtained, suggesting the influence of post-collisional collapse in response to Cretaceous extension of the Dabie Orogen. It is inferred that the recently discovered Archean basement of the Yangtze Craton occurs as far north as the Dabie Orogen.  相似文献   

13.
GEOLOGY OF THE NORTHERN ARUN TECTONIC WINDOW1 BordetP .Recherchesg啨ologiquesdansl’HimalayaduN啨pal,r啨gionduMakalu[R].EditionsduCNRS ,Paris ,196 12 75 . 2 BordetP .G啨ologiedeladalleduTibet (Himalayacentral) [J].M啨moireshorss啨riedelaSociet啨g啨ologiquedeFrance,1977,8:2 35~ 2 5 0 . 3 BurcfielBC ,ChenZ ,HodgesKV ,etal.TheSouthTibetanDetachmentSystem ,Hima…  相似文献   

14.
The metamorphism in the Central Himalaya   总被引:10,自引:0,他引:10  
ABSTRACT All along the Himalayan chain an axis of crystalline rocks has been preserved, made of the Higher Himalaya crystalline and the crystalline nappes of the Lesser Himalaya. The salient points of the metamorphism, as deduced from data collected in central Himalaya (central Nepal and Kumaun), are:
  • 1 The Higher Himalaya crystalline, also called the Tibetan Slab, displays a polymetamorphic history with a first stage of Barrovian type overprinted by a lower pressure and/or higher temperature type metamorphism. The metamorphism is due to quick and quasi-adiabatic uplift of the Tibetan Slab by transport along an MCT ramp, accompanied by thermal refraction effects in the contact zone between the gneisses and their sedimentary cover. The resulting metamorphic pattern is an apparent (diachronic) inverse zonation, with the sillimanite zone above the kyanite zone.
  • 2 Conversely, the famous inverted zonation of the Lesser Himalaya is basically a primary pattern, acquired during a one-stage prograde metamorphism. Its origin must be related to the thrusting along the MCT, with heat supplied from the overlying hot Tibetan Slab, as shown by synmetamorphic microstructures and the close geometrical relationships between the metamorphic isograds and the thrust.
  • 3 Thermal equilibrium is reached between units above and below the MCT. Far behind the thrust tip there is good agreement between the maximum temperature attained in the hanging wall and the temperature of the Tibetan Slab during the second metamorphic stage; but closer to the MCT front, the thermal accordance between both sides of the thrust is due to a retrogressive metamorphic episode in the basal part of the Tibetan Slab.
  相似文献   

15.
Because of late metamorphic and tectonic overprints, the reconstruction of prograde parts of PT paths is often difficult. In the SW Variscan French Massif Central, the Thiviers-Payzac Unit (TPU) is the uppermost allochthon emplaced above underlying units. The TPU experienced a Barrovian metamorphism coeval with a top-to-the-NW ductile shearing (D2 event) in Early Carboniferous times (ca. 360–350 Ma). The tectonic setting of the D2 event, compression or synconvergence extension, remains unclear. Using the THERMOCALC software and the model system MnNCKFMASH, the peak PT conditions are estimated from garnet rims and matrix minerals and the prograde evolution is deduced from garnet core compositions. The combination of these two approaches demonstrates that the TPU experienced pressure and temperature increases before reaching peak conditions at 6.6–9.0 +/− 1.2 kbar and 615–655 +/− 35 °C. This kind of PT path shows that the regional D2 event corresponds to crustal thickening.  相似文献   

16.
浙西南遂昌-大柘地区八都岩群在印支期变质事件影响下发生变质变形,通过详细野外调查和岩相学研究,可将其划分为3期变质变形序列:S1变形期,NW向片麻理记录的残留紧闭褶皱,共生矿物组合为石榴子石变斑晶及其内部定向分布的包裹体矿物,石榴子石+黑云母+石英(泥质)和石榴子石+角闪石+斜长石+石英(长英质);S2变形期,区域性宽缓褶皱及NE向缓倾透入性片麻理,共生矿物组合为石榴子石变斑晶及定向分布的基质矿物,矽线石+石榴子石+黑云母+石英+斜长石±钾长石(泥质)和石榴子石+钾长石+斜长石+黑云母+石英(长英质);S3变形期,NE向陡倾透入性片麻理及韧脆性断裂大部分被花岗斑岩脉填充,共生矿物组合为石榴子石变斑晶及其周围退变矿物,石榴子石+矽线石+堇青石+斜长石+黑云母+石英±钾长石(泥质)和角闪石+斜长石+黑云母+钛铁矿(长英质)。结合前人研究成果,八都岩群印支期变质事件峰期变质程度达到麻粒岩相,显示顺时针近等温降压(ITD)型的p-T演化轨迹,S1-S3变质变形反映出从俯冲碰撞到快速折返冷却的演化过程,伴随S3同期侵位的花岗斑岩锆石U-Pb定年结果,将该演化过程完成时间约束在229.7 Ma,可能是浙西南地区对印支期古特提斯洋域内印支-华南-华北板块之间俯冲-碰撞过程的响应。  相似文献   

17.
METAMORPHISM IN THE LESSER HIMALAYAN CRYSTALLINES AND MAIN CENTRAL THRUST ZONE IN THE ARUN VALLEY AND AMA DRIME RANGE (EASTERN HIMALAYA)1 BrunelM ,KienastJR . tudep啨tro structuraledeschevauchementsductileshimalayenssurlatrans versaledel’Everest Makalu (N啨paloriental) [J].CanadianJ .EarthSciences,1986 ,2 3:1117~ 1137. 2 LombardoB ,RolfoF .TwocontrastingeclogitetypesintheHimalayas :implicationsfortheHimalayanorogeny…  相似文献   

18.
The metamorphic core of the Himalaya in the Kali Gandaki valley of central Nepal corresponds to a 5-km-thick sequence of upper amphibolite facies metasedimentary rocks. This Greater Himalayan Sequence (GHS) thrusts over the greenschist to lower amphibolite facies Lesser Himalayan Sequence (LHS) along the Lower Miocene Main Central Thrust (MCT), and it is separated from the overlying low-grade Tethyan Zone (TZ) by the Annapurna Detachment. Structural, petrographic, geothermobarometric and thermochronological data demonstrate that two major tectonometamorphic events characterize the evolution of the GHS. The first (Eohimalayan) episode included prograde, kyanite-grade metamorphism, during which the GHS was buried at depths greater than c. 35 km. A nappe structure in the lowermost TZ suggests that the Eohimalayan phase was associated with underthrusting of the GHS below the TZ. A c. 37 Ma 40Ar/39Ar hornblende date indicates a Late Eocene age for this phase. The second (Neohimalayan) event corresponded to a retrograde phase of kyanite-grade recrystallization, related to thrust emplacement of the GHS on the LHS. Prograde mineral assemblages in the MCT zone equilibrated at average T =880 K (610 °C) and P =940 MPa (=35 km), probably close to peak of metamorphic conditions. Slightly higher in the GHS, final equilibration of retrograde assemblages occurred at average T =810 K (540 °C) and P=650 MPa (=24 km), indicating re-equilibration during exhumation controlled by thrusting along the MCT and extension along the Annapurna Detachment. These results suggest an earlier equilibration in the MCT zone compared with higher levels, as a consequence of a higher cooling rate in the basal part of the GHS during its thrusting on the colder LHS. The Annapurna Detachment is considered to be a Neohimalayan, synmetamorphic structure, representing extensional reactivation of the Eohimalayan thrust along which the GHS initially underthrust the TZ. Within the upper GHS, a metamorphic discontinuity across a mylonitic shear zone testifies to significant, late- to post-metamorphic, out-of-sequence thrusting. The entire GHS cooled homogeneously below 600–700 K (330–430 °C) between 15 and 13 Ma (Middle Miocene), suggesting a rapid tectonic exhumation by movement on late extensional structures at higher structural levels.  相似文献   

19.
在开展“青海省河南县托叶玛地区I47E007023、I47E008023、I47E009023、1I47E009024四幅1:5万区域地质矿产调查”时,为验证该地区三叠系变质情况,针对三叠系中泥岩(页岩)的伊利石结晶度做了分析测试。30件样品的实验结果表明: 北部宗务隆—泽库地层分区三叠系泥岩(页岩)伊利石Kübler结晶度指数为0.312~0.537,晶胞参数b0为0.898 0~0.903 2 nm,判断其变质温度小于350 ℃,具葡萄石-绿纤石和沸石相; 南部西倾山地层分区三叠系泥岩(页岩)的伊利石Kübler结晶度指数为0.21~0.318,b0为0.898 1~0.901 4 nm,变质温度主要分布在200~350 ℃,局部>350 ℃,具葡萄石-绿纤石和绿片岩相。研究认为青海省河南县地区区域变质程度较低,为极低级变质作用或者未发生区域变质作用,且南部西倾山地层分区的变质程度略高于北部宗务隆—泽库地层分区变质程度。这一变质相带研究结论与前人认为的“区域低温动力变质作用及低绿片岩相变质带”不一致,变质程度相对更低。该研究证实了在青海省河南县地区三叠系地层中不存在大面积区域变质作用,仅存在极低级区域变质作用。  相似文献   

20.
The High Himalayan Crystalline Sequence in north-central Nepal is a 15-km-thick pile of metasediments that is bound by the Main Central Thrust to the south and a normal fault to the north. The Langtang section through the metasediments shows an apparent inversion of metamorphic isograds with high-P, kyanite-grade rocks exposed beneath low-P, sillimanite-grade rocks. Textural evidence confirms that the observed inversion is a result of a polyphase metamorphic history and phase equilibria studies indicate that thermal decoupling has occurred within a mechanically coherent section of crust. Rocks now exposed at the base of the High Himalayan thrust sheet underwent Barrovian regional metamorphism (M1) prior to 34 Ma in the early stages of the Himalayan orogeny, recording metamorphic conditions of T= 710 ± 30° C, P= 9 ± 1 kbar. After the activation of the Main Central Thrust, which emplaced these metapelites southwards onto the lower grade Lesser Himalayan formations, the upper part of the thrust sheet was overprinted by a second heating event (M2), resulting in sillimanite-grade metamorphism and anatexis of metapelites at T= 760 ± 30° C, P= 5.8 ± 0.4 kbar between 17 and 20 Ma. Crustally derived, leucogranite magmas have been emplaced into low-grade Tethyan sediments on the hangingwall of the normal fault that bounds the northern limit of the metapelitic sequence. The cause of the selective heating of the upper section of the metasediments during M2 cannot be reconciled with either post-thrusting thermal relaxation or advection models. The cause of M2 remains problematical but it is suggested that heat focusing has occurred at the top of the High Himalayan Crystalline Sequence as a result of movement on the normal fault blanketing metapelites of high heat productivity with low-grade sediments of low thermal conductivity. This model implies that the normal fault was active before M2, consistent with decompression textures that formed during, or shortly after, sillimanite-grade metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号