首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. Rose 《地学学报》1994,6(5):435-443
Central and southern Britain was drained by two main river systems during the larger part of the Early and Middle Pleistocene: the Thames and Bytham rivers. Evidence for these rivers and their Quaternary history is represented by their sediments (the Kesgrave and Bytham Sands and Gravels, respectively), the geomorphological position of the sediments, biostratigraphy and amino acid geochronology. Evidence from the earlier parts of the Early Pleistocene (Tiglian C4b and earlier) indicates low-energy river systems and marine conditions over much of East Anglia. For most of the Early Pleistocene (Tiglian C4c to the Cromerian Complex) the ancestral Thames was the main river with, at its maximal extent, a catchment that extended into Wales, and across East Anglia and what is now the North Sea, to join the ancestral Rhine. During this period, glaciers in the uplands of Wales and periglacial mass movement elsewhere supplied material to the catchment and it was at this time that the bulk of the sorted Quaternary ssediments of lowland Britain were deposited. The Bytham river system has no successor because the landscape now in existence has been fundamentally altered by glacial erosion. This catchment drained most of Midland England and joined the Thames in central East Anglia. Initially, the Bytham river was a tributary of the Thames, but over time it extended its catchment and at the beginning of the 'Cromerian Complex'it became the main river of southern Britain. With the Anglian Glaciation (01 Stage 121, the Bytham river was destroyed and the Thames was diverted to its present route through London.  相似文献   

2.
The unique Middle and Late Pleistocene sedimentary record preserved along the Sussex/Hampshire Coastal Corridor between Romsey and Brighton contains a wealth of deposits including highstand marine sediments associated with a variety of different aged beaches, fluvial sediments associated with rivers crossing the coastal plain and cold stage deposits accumulating above the marine and fluvial sediments. Although quarrying activity has been extensive across much of the area it has been undertaken in flooded workings due to the high level of the watertable. Consequently little is known in detail about the sequences except where they outcrop on the foreshore around the coast. This paper examines recent work from the lower coastal plain using a multi-disciplinary approach these deposits to elucidate the age of the sequences and their associated environments of deposition.OSL dates from two of the beaches, the Aldingbourne and Brighton/Norton Beaches, place both within MIS 7. Although these OSL dates cannot differentiate between sub-stages within MIS 7, coupling these results with inferences from local geography, lithology and contained microfossils it is clear that the beaches belong to two different phases within MIS 7. These two beaches are clearly divided by a major phase of erosion and downcutting associated with a fall in sea-level. Fluvial sediments from Solent Terrace 2 and Arun Terrace 4 also date within MIS 7 and are tentatively ascribed to the downcutting event between the beaches. Together this information allows us to propose, for the first time, a robust independently dated framework for the lower parts of the coastal plain integrating for the first time the marine and terrestrial record.  相似文献   

3.
Geoconservation measures in the River Tejo, the Portuguese reach of the Tagus, are compared with those in the Thames downstream of London (UK). Both are fluvio-estuarine reaches with staircases of Pleistocene depositional terraces, each with important sedimentary, palaeontological and archaeological records. In both rivers, conservation measures are in place that aim to protect these records, promote research and inform the public. Inevitably there are differences in approach. Whereas Thames Quaternary interests are protected by a network of British statutory site designations, outreach is to the fore in the Tejo. Contrasting examples are highlighted here. The Tejo has interpretative materials in local museums and detailed explanatory displays at the low-terrace archaeo-geological site of Foz do Enxarrique, near the border with Spain, and at other sites. The Thames, in contrast, has few examples of physical outreach provision and limited formal protection for Pleistocene archaeological material outside the geological network, although extensive informal protection is provided by interaction between local geological groups and county and local-authority administrations. There is also a considerable difference in the degree of threat, with the Tejo above Lisbon being a relatively undeveloped valley, albeit with sporadic quarrying for aggregate, whereas the Lower Thames is an established area for infrastructure development, lying to the east of London, close to the river crossing of the orbital motorway. The different climate in the two regions profoundly influences the longevity of exposures in Quaternary deposits, with significant implications for management strategies. The comparison exercise reveals that each region would benefit from greater development of approaches used more prominently in the other; outreach measures in the Portuguese style would greatly enhance some of the Thames sites, but formal designation of Tejo exposures could prevent damaging operations being undertaken by owners who lack knowledge of their value, as exemplified by a case study of sites at Alpiarça, ~ 130 km upstream from Lisbon.  相似文献   

4.
通过地表观察和钻孔资料,对洞庭盆地安乡凹陷及其西缘第四纪构造沉积特征和环境演化进行了研究,为江汉—洞庭盆地第四纪地质研究补充了新的资料。凹陷总体呈南北向,周边为正断裂。凹陷内第四系厚一般为100-220 m,最厚达300 m,自下而上依次为早更新世华田组、汨罗组,中更新世洞庭湖组,晚更新世坡头组和全新世湖冲积。第四系以砾石层、砂层为主,次为(含)粉砂质黏土、黏土,岩性、岩相横向变化大。安乡凹陷西缘(即太阳山隆起东缘),呈自西向东缓倾的丘岗地貌。区内主要发育中更新世白沙井组,其中南部下部以砂、砾石层为主,上部为黏土;北部以粉砂质黏土沉积为主,下部可发育砂层。根据地貌、沉积及控凹断裂特征,重塑安乡凹陷及其西缘第四纪构造活动与环境演化过程:早更新世—中更新世早期,凹陷西边的北北东向周家店断裂伸展活动,安乡凹陷不均匀沉降,总体具河流和过流性湖泊环境并接受沅水沉积;同期凹陷西缘构造抬升,处于剥蚀的山地环境。中更新世中期断陷活动向西扩展,凹陷区为过流性湖泊环境;凹陷西缘地区转为河流(南部)和湖泊(北部)环境并接受沉积。中更新世晚期安乡凹陷及其西缘整体抬升并遭受剥蚀,凹陷西缘同时具有自西向东的掀斜。晚更新世安乡凹陷拗陷沉降,具河流和湖泊环境;同期凹陷西缘遭受剥蚀。晚更新世末受区域海平面下降影响,安乡凹陷遭受剥蚀。全新世安乡凹陷拗陷沉降,具泛滥平原之河流、湖泊环境。  相似文献   

5.
The Thame is one of the principal left-bank affluents of the Thames, the largest river in southern England; it joins the Upper Thames at Dorchester, ∼20 km downstream of Oxford. Its terraces include a younger group of four, which date from the late Middle Pleistocene and Late Pleistocene, are disposed subparallel to the modern river, and represent drainage within the modern catchment. At higher levels there are three older terraces, the Three Pigeons, Tiddington and Chilworth terraces, which are assigned to MIS 16, 14 and 12. With much gentler downstream gradients, these are fragmentary remnants of much more substantial fluvial deposits, indicating a much larger river that was disrupted by the Anglian (MIS 12) glaciation. This interpretation supersedes an earlier view that the glacigenic deposits in the Thame headwaters correlate with the Blackditch terrace, the highest of the younger group, which has hitherto provided an argument that the glaciation in this region occurred in MIS 10. It is suggested that the headwaters of the pre-Anglian ‘Greater Thame’ river were located near Northampton and that the Milton Sands of that area represent an upstream counterpart of the Chilworth terrace deposits. It is envisaged that this early Middle Pleistocene drainage geometry, located between the Jurassic limestone and Chalk escarpments, developed as a result of the increase in uplift rates that followed the Mid-Pleistocene Revolution (MPR). It is suggested that before this time, including during the Early Pleistocene, the modern Thame catchment and adjacent regions drained southeastward through the Chalk escarpment, but these small rivers lacked the erosional power to cut through the Chalk in pace with the faster uplift occurring in the early Middle Pleistocene, and so became diverted to the southwest, subparallel to the Chalk escarpment, to form the pre-Anglian ‘Greater Thame’ tributary of the Upper Thames. The post-MPR uplift is estimated to decrease northwestward from 90 m in the Middle Thames to 75 m near the Thame-Thames confluence and to 65 m upstream of Oxford. The post-Anglian (post-450 ka) component of uplift decreases northward from 33 m near the Thame-Thames confluence to an estimated ∼20 m in the Northampton area; the relative stability of the latter area makes feasible the proposed correlation between the Milton Sands and the pre-Anglian River Thame. Limited post-Anglian uplift in the Northampton area is also inferred from the upstream convergence of the terraces of the modern rivers Nene and Great Ouse. These observed lateral variations in vertical crustal motions reflect lateral variations in crustal properties (including heat flow, crustal thickness, and thickness of underplating at the base of the crust) that are known independently. This study thus provides, for the first time, an integrated explanation of the Pleistocene drainage development across a large region of central-southern England.  相似文献   

6.
中国北方末次造貌期及环境变迁   总被引:2,自引:0,他引:2       下载免费PDF全文
1987年杨怀仁提出造貌运动一词,笔者进而将较新地质时期内最终形成现代地貌的一次运动时期称为末次造貌运动期(简称本次造貌期)。据中国北方几个大盆地、大平原和黄土高原的造貌剖析,认为末次造貌期主要发生在晚更新世晚期至全新世早期,其形式以缓慢的大面积的抬升(或下降)运动为主。在某些构造单元中,还受气候因素的影响。由于未次造貌期地质时期较新,与人类关系更为密切,故对其研究有较重要的意义。  相似文献   

7.
The archaeology of Britain during the early Middle Pleistocene (MIS 19–12) is represented by a number of key sites across eastern and southern England. These sites include Pakefield, Happisburgh 1, High Lodge, Warren Hill, Waverley Wood, Boxgrove, Kent's Cavern, and Westbury-sub-Mendip, alongside a ‘background scatter’ lithic record associated with the principal river systems (Bytham, pre-diversion Thames, and Solent) and raised beaches (Westbourne–Arundel). Hominin behaviour can be characterised in terms of: preferences for temperate or cool temperate climates and open/woodland mosaic habitats (indicated by mammalian fauna, mollusca, insects, and sediments); a biface-dominated material culture characterised by technological diversity, although with accompanying evidence for distinctive core and flake (Pakefield) and flake tool (High Lodge) assemblages; probable direct hunting-based subsistence strategies (with a focus upon large mammal fauna); and generally locally-focused spatial and landscape behaviours (principally indicated by raw material sources data), although with some evidence of dynamic, mobile and structured technological systems. The British data continues to support a ‘modified short chronology’ to the north of the Alps and the Pyrenees, with highly sporadic evidence for a hominin presence prior to 500–600 ka, although the ages of key assemblages are subject to ongoing debates regarding the chronology of the Bytham river terraces and the early Middle Pleistocene glaciations of East Anglia.  相似文献   

8.
Meteoric-water flux and formation of kaolinite owing to the dissolution of detrital silicates are common features of continental and paralic sandstones. In deep-water marine sandstones, meteoric-water flux is commonly considered unlikely to occur. However, the study of deep-water, marine sandstones of the Shetland–Faroes Basin on the British continental shelf revealed widespread and extensive dissolution and kaolinitization of mica and feldspar grains, which are attributed to meteoric-water flux during a sea-level lowstand. We suggest that this apparently enigmatic meteoric-water flux mechanism is likely to have occurred by hyperpycnal flow. Hyperpycnal flow occurs when river effluent directly transfers into sediment gravity flow, and enters seawater as a mixture of sediment and fresh water. The likelihood for hyperpycnal flows increases at times when rivers and distributary channels reach the shelf edge, and their flows are delivered directly onto the deepwater slope.  相似文献   

9.
One of the major geological structures across the Brahmaputra valley, which stretches from the Eastern Himalayas up to the Naga Hills, is the Bomdila Fault. Parts of the courses of the rivers – the Brahmaputra, Dhansiri (south-S), Bargang and many others – are aligned along this structure. The influence of this structure on the courses of these rivers has been studied in detail using topographic maps, satellite data and field evidences. The signatures obtained such as: (a) an unusually linear course of the lower part of the Dhansiri (S) river from Golaghat up to Dhansirimukh, (b) the abandonment of the westerly course of the earlier Dhansiri (S) river (flowing through Kaziranga) towards the present NW direction by avulsion, (c) knick bends in the MBT–MCT and Naga Thrust of Belt of Schuppen, (d) a linear 15 m high topographic scarp on the left bank of the Dhansiri (S) near Numaligarh and (e) an anomalous SE–NW trending course of the Brahmaputra from Dhansirimukh up to Hartamuli along with the parts of the rivers Buroi and Bargang on the north in the same trend infers the influence of a fault-type structure. Since all these linear segments of the rivers align along the NW–SE trending Bomdila Fault, it infers the influence of the later on the courses of these rivers. The neotectonic activity along this fault might have caused the linear high scarp and abandonment of earlier river courses.  相似文献   

10.
Prior to its disruption during the Anglian glaciation (MIS 12), the Ingham or Bytham River used to flow eastwards across central England and East Anglia into the southern North Sea. It thus had a much larger catchment than any extant river system in Britain; its headwaters may well have been as far away as North Wales and/or NW England. Terrace deposits of this former river system crop out across East Anglia and, as for any other river, can be used to investigate uplift, landscape evolution and the physical properties of the underlying continental crust. However, such an investigation has hitherto been hampered by inconsistencies between different authors' terrace schemes; furthermore, and controversially, one such scheme has formed the basis for the inference that the region was affected by a pre‐Anglian (MIS 16) glaciation. By re‐examining the raw data, the Ingham River deposits are shown to be disposed in three terraces, inferred to date from MIS 16, 14 and 12. The evidence previously attributed to pre‐Anglian glaciation is associated with the youngest of these terraces, and thus marks the MIS 12 (i.e. Anglian) glaciation; the argument for glaciation of the region in MIS 16 is thus an artefact of previous miscorrelation of the terrace deposits. It is inferred that development of the very large Ingham River was synchronous with decapitation of the former ‘Greater Thames’, or ‘High‐level Kesgrave Thames’ river, some time between MIS 18 and MIS 16. Uplift histories at representative localities across East Anglia have been modelled using composite data sets, combining the terrace deposits of the Ingham River and of the post‐Anglian rivers Lark and Waveney. The sites modelled are typefied by much faster uplift in the early Middle Pleistocene than in the late Middle Pleistocene; this effect is shown to be a consequence of the relative thinness (no more than ~7–8 km thick) of the mobile lower‐crustal layer, itself a consequence of the low surface heat flow in the London Platform crustal province. The post‐Early Pleistocene uplift tapers eastward, consistent with the observed downstream convergence of the Ingham and Waveney terraces, and is close to zero near the modern coastline around Lowestoft and Great Yarmouth. Stratigraphic relationships between the Ingham terrace deposits and temperate‐stage marine and terrestrial deposits in this coastal area allow sites to be dated; thus, Pakefield and Corton date from MIS 15, whereas Norton Subcourse dates from MIS 17. The oldest known Lower Palaeolithic sites in the region, characterized by flake artefacts, are Pakefield (MIS 15) and Hengrave (?MIS 14); younger pre‐Anglian sites that have yielded handaxes and/or fossil material of the water vole Arvicola cantiana date from MIS 13. The minimal vertical crustal motion in this coastal area, where temperate‐stage deposits from different climate cycles crop out close to present‐day sea level, does not imply high crustal stability; instead, it indicates a ‘hinge zone’ between the uplifting hinterland and the subsiding depocentre in the southern North Sea.  相似文献   

11.
This paper discusses the results of the investigation of Pleistocene sediments at the Royal Oak Portal (ROP) site on the new Crossrail scheme near Paddington Station, London. The site was sampled and recorded in May 2011 by archaeologists from Oxford Archaeology commissioned by Crossrail Ltd. The investigation revealed a sedimentary sequence associated with cool climate waterlain deposition towards the edge of the River Westbourne floodplain. During excavation an assemblage of around 100 identifiable large mammal bones was recovered, dating to the Late Pleistocene. The major concentration of bones, from bison and reindeer, was located and excavated from a shallow sequence of sediments. Analysis of the bones indicates that they represent a natural death assemblage, scavenged and subsequently disarticulated, transported by water, exposed and further dispersed and broken by trampling. The site is of regional and national importance because the assemblage derives from a well-constrained geological context, with associated dating evidence suggesting accumulation during the later parts of Marine Isotope Stage (MIS) 5 and continuing within MIS 4. The site is also of significance because it is one of a growing number of recently discovered sites away from the main fluvial archive for the British Middle and Upper Pleistocene. These sites have the potential to add significantly to our understanding of parts of the Pleistocene record that remain difficult to document through the investigation of the more active systems associated with major rivers such as the Thames, Severn or Trent.  相似文献   

12.
VALLEY SLOPE DEFORMATION BY INTERACTION OF MASS ROCK CREEP,TALUS CREEP AND RAPID LANDSLIDES ALONG THE KALI GANDAKI RIVER IN THE HIMALAYAS OF WESTERN NEPAL1 AmatyaKM ,InavaliBM .GeologicalMapofNepalwithExplanatoryNote[M ].DepartmentofMinesandGeology(DMG) ,Kathmandu ,Nepal,1994 2 ChigiraM .Long termGravitationalDeformationofRocksbyMassRockCreep[J].EngineeringGeology ,1992 ,32 :15 7~ 184. 3 SELBYMJ .HillslopeMate…  相似文献   

13.
Studies of photographs, maps, and channel morphology permit identification of greatly different Mississippi River reaches. From this, it becomes apparent that this large alluvial river is not monotonous in appearance, and therefore, it is not completely controlled by hydrology and hydraulics. In fact, the Mississippi River has reacted to uplift, faults, clay plugs, outcrops of Tertiary clay, and Pleistocene gravel in its bed, and tributaries. This classic example of a large alluvial river has major geological controls on its shape, pattern, and magnitude of change through time. In addition, the same controls plus the effect of plutonic intrusives and fault zones have significantly affected smaller rivers and the alluvial valley of the Mississippi River.  相似文献   

14.
Glaciotectonized sediments and palaeosol at Great Sampford, western Suffolk, England are reconstructed to their original positions in order to determine the form of the original land surface and the associated soil development. The restored stratigraphy consists of Early Pleistocene Kesgrave Sands and Gravels which were deposited by the 'pre-glacial' river Thames, with the Early-Middle Pleistocene Valley Farm Soil developed on a terrace surface. These units are overlain by Sampford Deformation Till and Lowestoft Till, which were formed during the Middle Pleistocene Anglian glaciation. The micromorphological features of the reconstructed soil are interpreted in terms of three climatic cycles, each comprising a period of temperate climate soil formation followed by cold climate soil disruption. The final stage of disruption is associated with the periglacial climate that preceded Anglian glacierization. This pedological reconstruction is the most complex yet recognized from British Early and Middle Pleistocene palaeosols and provides an insight into major climatic oscillations prior to the Anglian Glaciation. The surface upon which the soil developed is one of the oldest terraces of the 'pre-glacial' River Thames that were formed when this river flowed northwards through East Anglia.  相似文献   

15.
This paper outlines evidence from Pakefield (northern Suffolk), eastern England, for sea‐level changes, river activity, soil development and glaciation during the late Early and early Middle Pleistocene (MIS 20–12) within the western margins of the southern North Sea Basin. During this time period, the area consisted of a low‐lying coastal plain and a shallow offshore shelf. The area was drained by major river systems including the Thames and Bytham. Changes in sea‐level caused several major transgressive–regressive cycles across this low‐relief region, and these changes are identified by the stratigraphic relationship between shallow marine (Wroxham Crag Formation), fluvial (Cromer Forest‐bed and Bytham formations) and glacial (Happisburgh and Lowestoft formations) sediments. Two separate glaciations are recognised—the Happisburgh (MIS 16) and Anglian (MIS 12) glaciations, and these are separated by a high sea level represented by a new member of the Wroxham Crag Formation, and several phases of river aggradation and incision. The principal driving mechanism behind sea‐level changes and river terrace development within the region during this time period is solar insolation operating over 100‐kyr eccentricity cycles. This effect is achieved by the impact of cold climate processes upon coastal, river and glacial systems and these climatically forced processes obscure the neotectonic drivers that operated over this period of time. © British Geological Survey/Natural Environment Research Council copyright 2005. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

16.
This paper appraises and compares the Middle-Upper Pleistocene sedimentary sequences preserved in the fluvial systems draining into the Fenland Basin and the Wash estuary. Of the main Fenland rivers the longest records, which extend back to the initial Anglian (glacial) formation of the basin, are found in the Great Ouse and its tributaries, particularly the Cam and the Nar. These sequences preserve sediments representing all four post-Anglian interglacials. The Nene also has an extensive post-Anglian history, with evidence for a Hoxnian estuary that is presumed to have been the precursor of the Wash. North of the Nene, however, the Welland and Witham (proto-Trent) have relatively short sequences, which are thought to commence with a later (post-Anglian-pre-Devensian) glaciation that affected Lincolnshire and fed the previously-recognized Tottenhill outwash delta south of Kings Lynn. Prior to Devensian deglaciation the Witham valley was occupied by the Trent, which was the trunk river of the late Middle Pleistocene Wash system. During periods of low sea level the river would have extended north-eastwards across what is now the floor of the North Sea, possibly via the Inner Silver Pit. Several of the central Fenland sequences show evidence of infrequent terrace formation during the late Quaternary, although this might in part be due to poor vertical separation between terraces, so that differentiating them has been difficult; this has been exacerbated by mixed biostratigraphical signals due to the preservation of sediments representing more than one interglacial beneath a single terrace surface. In several of the systems there is evidence for valley rejuvenation to the lowest terrace or valley-floor level during the MIS 4-3 transition. The observed differences within what, during the predominant periods of lower sea level, would have been a single Wash river system are difficult to explain.  相似文献   

17.
This study was carried out to analyze the hydrological characteristics and assess the distinguished hydrological periods of Upper Indus Basin (UIB) Rivers of Pakistan. For this purpose, statistical analysis (variation coefficient, the auto-correlation coefficient, sequential Mann–Kendall’s test) and a proposed method for distinguishing hydrological periods (described in methodology section) were applied. The results revealed that all rivers reflect moderate variability. The results of auto-correlation displayed that the river flow observed at Astore gauging station only indicated independency, while for Gilgit, Hunza and Kachura guaging at Indus River exhibited 2, 2, 4-year lag. The mutation analysis indicated that after 1980, the change point occurred at all UIB rivers. During analysis, it was also observed that river regimes have the same hydrological periods (i.e., 4), but with different dates of occurrence. The Gilgit River showed a low high-flow hydrological period compared to Astore, Hunza and Kachora (Indus). This difference may be due to the river’s own area natural conditions. The current analysis may be helpful for planning and management of water resources, designing of hydraulic structures and to make better policies in response to agricultural water requirement downstream of UIB River.  相似文献   

18.
The lithic record from the Solent River and its tributaries is re‐examined in the light of recent interpretations about the changing demography of Britain during the Lower and early Middle Palaeolithic. Existing models of the terrace stratigraphies in the Solent and its tributary areas are reviewed and the corresponding archaeological record (specifically handaxes) for each terrace is assessed to provide models for the relative changes in human occupation through time. The Bournemouth area is studied in detail to examine the effects of quarrying and urbanisation on collection history and on the biases it introduces to the record. In addition, the effects of reworking of artefacts from higher into lower terraces are assessed, and shown to be a significant problem. Although there is very little absolute dating available for the Solent area, a cautious interpretation of the results from these analyses would suggest a pre‐Marine Isotope Stage (MIS) 12 date for the first appearance of humans, a peak in population between MIS 12 and 10, and a decline in population during MIS 9 and 8. Owing to poor contextual data and small sample sizes, it is not clear when Levallois technology was introduced. This record is compared and contrasted to that from the Thames Valley. It is suggested that changes in the palaeogeography of Britain, in particular land connections to the continent, might have contributed to differences in the archaeological records from the Solent and Thames regions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Early and Middle Pleistocene landscapes of eastern England   总被引:1,自引:1,他引:0  
This paper reviews the pattern of climate and environmental change in eastern England over the period of the Early and Middle Pleistocene, focussing especially upon northern East Anglia. Particular attention is given to the climate and tectonics that have brought about these changes and the distinctive geology, topography and biology that has developed. Throughout, an attempt is made to describe the new models that have been proposed for the Early and Middle Pleistocene of eastern England, and explain the reasons for these changes. The Early Pleistocene experienced relatively high insulation and relatively low magnitude climatic change and is represented primarily by non-climatically forced processes in the form of tidal current- and wave-activity which formed shallow marine deposits. It is possible to recognise a tectonic control in the distribution of deposits of this age because the surface processes do not have the power to remove this signature. The early Middle Pleistocene was dominated by higher magnitude climatic change involving, occasionally, climatic extremes that ranged from permafrost to mediterranean. The landscape at this time was dominated by the behaviour of major rivers (Thames, Bytham, Ancaster) and extensive coastal activity. In the latter part of the early Middle Pleistocene and the Late Middle Pleistocene the climate experienced major changes which resulted in periods of lowland glaciation and short intervals when the climate was warmer than the present. Details of tectonic activity are difficult to identify because they are removed by powerful surface processes, but it is possible to infer uplift focussed on the major interfluves of central England and subsidence in the North Seas basin. In the areas of glaciation the landscape changed radically from an organised terrain dominated by large rivers and extensive shallow coastal zones to complex, with small valleys, disrupted drainage and often discontinuous river, slope and coastal deposits. Likewise the switching off of the North Sea Delta and the opening of the Strait of Dover, separating Britain from continental Europe can be attributed to the onset of lowland glaciation. The case is made that eastern England was glaciated four times during the Middle Pleistocene: during MIS 16, 12, 10 and 6, and attention is given to recent evidence contradicting this model. Over the period of the Middle Pleistocene there is evidence for high biomass production occurring over short intervals coinciding with the climatic optima of MIS 19, 17, 15, 13, 11, and 7c, 7a and during most of these warmer periods, extending back to c. 750 ka (MIS 19/17), there is evidence in the region for the brief appearance of humans.  相似文献   

20.
Lower Palaeolithic artefacts have been reported at Happisburgh, north Norfolk, in sediments that have been assigned to the late Early Pleistocene, in either marine isotope stage (MIS) 25 or 21, using magnetostratigraphy, biostratigraphy and clast lithology. However, the proposal that these sediments were deposited by the ancestral River Thames is inconsistent both with the established late Early Pleistocene palaeogeography of the region and with the dispositions of the contemporaneous Thames terraces. The Happisburgh deposits were evidently emplaced by a local river, which reworked older sediments that from their lithology had been derived largely from the Bytham River rather than the Thames catchment. Nonetheless, the potential significance of this sedimentary succession for early human dispersal and behaviour requires a conservative assessment of its youngest possible age. Although its basal part is clearly Early Pleistocene, there is nothing to preclude an early Middle Pleistocene age for the overlying sediments that have yielded the artefacts and the mammalian biostratigraphic evidence. It is indeed arguable that these sediments date from the cooling transition at the end of MIS 15c, and are thus younger than the artefact-bearing succession at Pakefield. Pending the availability of additional dating evidence, future discussion of the Happisburgh site should be qualified with respect to any claim for an Early Pleistocene age for the human occupation indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号