首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
A comparison of monthly mean values of total ozone at South Pole, Buenos Aires (Argentina), Cachoeira Paulista and Natal (Brazil), and Huancayo (Peru) revealed that whereas South Pole showed an ozone depletion of 45% in October 1987 (as compared to October, 1977), Buenos Aires showed a small decrease (10%) while the other locations showed very small decreases (1–2%). When daily values are considered, the Antarctic ozone hole of October 1987 seems to have caused 10% depletion at Buenos Aires and 5% at Natal and Huancayo in December 1987. However, a large part of this is normal seasonal variation, except at Huancayo, where a residual effect of 5% depletion in December 1987 remains. The QBO effects (5–8% changes in the ozone level in 2–3 years) could cause 10–15% fluctuations in solar UVB on the ground on clear-sky days and could be a possible health hazard unless factors like cloudiness reduce the UVB intensities.  相似文献   

2.
Summary Ozone observations made during 1964 and 1965 at nine Mediterranean, central and southeast European stations (latitudes 38–52°N, longitudes 9–23°E) reveal patterns of seasonal and shorter time-variations in total ozone as well as in vertical ozone distribution. During the winter-spring season, a significant increase (20%) of ozone occurs essentially simultaneously with the spring stratospheric warming, and is noticed at all stations.—Autocorrelation coefficients show that the total ozone on any day is strongly related to the total ozone of the preceding four days in summer or one or two days in winter-spring or autumn. Changes of total ozone in southeast Europe correlate closely with those in Mediterranean Europe, and less closely with those from north central Europe.—Power spectrum analysis detects the dependence of ozone changes on processes with periods longer than 6–8 days, and indicates a significant oscillation with a period of 14–15 days, perhaps a result of the direct influence of lower stratospheric circumhemispheric circulation. — Reliable vertical ozone soundings were not available from all stations. The mean vertical profiles at Arosa, Switzerland (47°N) and Belsk, Poland (51°) are very similar. More than 60% of the variability of the total ozone is contributed by changes in ozone concentration between 10 and 24 km; less than 10% is due to variations above 33 km. Changes in ozone partial pressure at different altitudes, and relationships of those changes to total ozone, indicates that a mean vertical ozone distribution may be described adequately by considering the ozone changes in four layers: a) the troposphere, b) the lower stratosphere up to 24 km, c) a transition layer from 24 km to a variable upper border at 33–37 km, and d) the layer above 33–37 km.Part of this paper was presented at the Ozone Seminar in Potsdam, Germany, 27 September 1966.  相似文献   

3.
Airglow all sky imaging observation has been carried out in three different locations in south America, at Cachoeira Paulista (22.7°S, 45.0°W) in 1999, São João do Cariri (7.5°S, 36.5°W) in 2001 and Boa Vista (2.8°N, 60.7°W) in 2002. Comparing the atmospheric gravity wave characteristics retrieved from the image data for the three different sites and including a previous work at Alcântara (2.3°S, 44.5°W) carried out by Taylor et al. [1997. Journal of Geophysical Research 102 (D22) 26,283–26,299], we found that there is a preferential propagation direction, from the Continent to the Atlantic Ocean. The observed wave propagation directions reveal that a major part of the waves have their direction from Continent toward Ocean. The possible source of the wave generation is discussed.  相似文献   

4.
The climatology of ionospheric plasma bubbles is studied here by means of a comparison of the frequency of occurrence of the spread-F/plasma bubble events over the South American region using the images from two OI 630 nm imager systems located at the subequatorial station São João do Cariri—CA (7.4 S, 36.5 W, 20 S dip) and the low-latitude station Cachoeira Paulista—CP (22.5 S, 45 W, 33 S dip) in Brazil during the years of 2004 and 2005. The results are discussed in the light of current theory and geomagnetic parameters of the two observation stations.  相似文献   

5.
The spatial and temporal distribution of total ozone over India and its vertical distribution in theatmosphere during 1964–1969 was studied using Dobson spectrophotometer data at a network of six stations in India, Srinagar (34°N), New Delhi (28°N), Varanasi (24°N), Ahmedabad (23°N), Dum Dum (22°N), and Kodaikanal (10°N). The annual and seasonal variations show a clear phase-shift in the occurrence of the ozone maxima and minima as one proceeds from higher to lower latitudes in the tropics. In the northern stations (north of 25°N) the increase in total ozone during the course of the annual variation is caused by the fractional increase in all layers from the ground to 28 km, the main contribution coming from 10–24 km. Above 28 km the concentration changes roughly in accordance with photochemical production.In lower latitudes (south of 25°N) an increase in total ozone amount during the annual cycle is caused by a gradual increase in all the layers from the ground to 36 km above which the variation is negligible.  相似文献   

6.
The variations of total ozone at Alma-Ata (43°N, 76 °E) and ozone profiles obtained by balloon sounding at Tateno (36°N, 140°E), Wallops Island (38°N, 75°W) and Cagliari (39°N, 9°E) in the periods of Forbush decreases (FD) in galactic cosmic rays have been analysed. A decrease of total ozone was observed in the initial stage of the FD and an increase 10–11 days later. The average total deviations calculated using the superposed epoch method for 9 FD events are equal to 30 D. U. in the positive and to –18 D. U. in the negative phase. The changes of average ozone profiles, associated with 26 FD events, are more significant in the lower stratosphere and upper troposphere. The decrease of the partial ozone pressure at a height of 12–15 km is about 30 mb. These vertical variations of ozone coincide with the average changes of the respective temperature profiles. A cooling, on the average, of 3°C was observed at 12–15 km, and a heating of 4°C below this level.  相似文献   

7.
HF radar stations (utilizing the spaced-antenna partial-reflection technique) located at Adelaide (35°S, 138°E) and Mawson Station (67°S, 63°E) have observed horizontal mesospheric winds continuously since mid-1984. Observations in the period 1984–87 are compared with the Northern Hemisphere [latitude conjugate] stations of Kyoto (35°N, 136°E) and Poker Flat (65°N, 147°W), and with satellite-derived circulation models. Particular reference is made to the equinoctial changeovers in zonal flow and to the temporal and altitude variations in the planetary wave activity at Mawson and Adelaide.  相似文献   

8.
Evaluations of radiosonde soundings over North America and Europe, measurements aboard commercial airlines, and permanent ozone registrations at nineteen ground-based stations between Tromsö, Norway, and Hermanus, South Africa, yield three belts of higher ozone intrusion from the stratosphera and maximum values of the annual means at about 30°N, at between 40°–45°N and at about 60°N. A marked decrease of the annual mean values of the tropospheric ozone is detected towards the equator and the pole, respectively.In the northen hemisphere the maximum of the annual cycle of the tropospheric ozone concentration occurs in spring at high latitudes and in summer at mid-latitudes.For the tropical region from 30°S to 30°N a strong asymmetry of the northern and southern hemisphere occurs. This fact is discussed in detail. The higher troposphere of the tropics seems to be a wellmixed reservoir and mainly supplied with ozone from the tropopause gap region in the northern hemisphere. The ozone distribution in the lower troposphere of the whole tropics seems to be controlled by the up and down movements of the Hadley cell. The features of large-scale and seasonal variation of tropospheric ozone are discussed in connection with the ozone circulation in the stratosphere, the dynamic processes near the tropopause and the destruction rate at the earth's surface.  相似文献   

9.
During solar cycle 21 (1976–86), the primary solar irradiance at 300 nm was steady during 1980–82 and thereafter decreased until 1986 by only 2–3%. The stratospheric ozone in middle latitudes had a QBO of 3–4% in this interval but the long-term ozone trend was less than 3% per decade, which could result in a UVB increase of only 5–6% per decade. Thus, the combined effect of changes in primary solar irradiance and ozone changes could be an increase of 5–6% in UVB, observed at ground during 1977–81 and a steady level during 1981–86. During 1976–86, the average cloudiness changed by less than 5% indicating UVB changes of 5% or less on this count. The aerosol level was almost constant during 1976–82 and increased abruptly in 1982 due to the E1 Chichon eruption and decayed slowly unitl 1986. Thus, due to aerosols only, the UVB was expected to be constant during 1976–82, to decrease sharply in 1982 and to recoup slowly thereafter.Measurements of clear-sky solar UVB at ground made at Jungfraujoch (Swiss Alps, 47°N, 8°E) during 1981–89 and at Rockville, USA (39°N, 77°W) were not comparable between themselves and did not follow the above expected patterns. Neither did the all-day R-B meter UVB measurements at Philadelphia, USA (40°N, 75°W) and Minneapolis, USA (45°N, 93°W). We suspect that some of these measurements are erroneous. This needs further detailed scrutiny.  相似文献   

10.
Coherency spectra derived from time series of stratospheric quantities indicate oscillations in the frequency range below 0.5 d–1 which are correlated on a global scale. Satellite observations of total ozone and stratospheric radiance (BUV and SIRS, Nimbus4, April–November 1970) have been used to derive phase relationships of such oscillations. As an example, an oscillation of total ozone with a period of 7.5 d and zonal wave number zero is analyzed in detail. The basic assumption is made and tested, that the oscillation reflects stratospheric planetary waves as obtained from Laplace's tidal equations. The observed latitudinal phase shifts for the total ozone oscillation are in good agreement with theoretical predictions. It is concluded from the observations of ozone and radiance that mainly divergence effects related to global-scale waves are responsible for the 7.5 d oscillations of total ozone at high and middle latitudes and at the equator whereas in the latitude range 10°S–20°S predominantly temperature effects are important. Meridional wind amplitudes of some 10 cm/s are sufficient to explain the high and mid-latitude ozone oscillations. At low latitudes vertical wind amplitudes of about 0.2 mm/s corresponding to height changes of the ozone layer of roughly ±20 m are obtained.  相似文献   

11.
A statistical study of underestimates of wind speeds by VHF radar   总被引:1,自引:0,他引:1  
Comparisons are made between horizontal wind measurements carried out using a VHF-radar system at Aberystwyth (52.4°N, 4.1°W) and radiosondes launched from Aberporth, some 50 km to the southwest. The radar wind results are derived from Doppler wind measurements at zenith angles of 6° in two orthogonal planes and in the vertical direction. Measurements on a total of 398 days over a 2-year period are considered, but the major part of the study involves a statistical analysis of data collected during 75 radiosonde flights selected to minimise the spatial separation of the two sets of measurements. Whereas good agreement is found between the two sets of wind direction, radar-derived wind speeds show underestimates of 4–6% compared with radiosonde values over the height range 4–14 km. Studies of the characteristics of this discrepancy in wind speeds have concentrated on its directional dependence, the effects of the spatial separation of the two sets of measurements, and the influence of any uncertainty in the radar measurements of vertical velocities. The aspect sensitivity of radar echoes has previously been suggested as a cause of underestimates of wind speeds by VHF radar. The present statistical treatment and case-studies show that an appropriate correction can be applied using estimates of the effective radar beam angle derived from a comparison of echo powers at zenith angles of 4.2° and 8.5°.  相似文献   

12.
The rocketsonde data obtained from the launchings made at Thumba (8°3215N, 76°5148E) during the winter period 1970–71, as already reported, have indicated that warmings of noticeable magnitude occurred at high levels (upper stratosphere and mesosphere) over this tropical station during the period mentioned. The mean monthly radiosonde temperatures of 50, 100 and 300 mb levels at Thumba (Trivandrum) and Delhi (28°35N, 77°12E) during the same period have also pointed out certain anomalies consistent with the warmings referred to above at Thumba. The radiosonde temperatures of the two stations, Thumba (Trivandrum) and Delhi, have now been examined, along with the values of total ozone, for the ten winter periods commencing from 1961–1962. The analysis has pointed out the possibility of high-level warmings also having occurred in the past over the Indian region during the winters of 1963–1964 and 1967–1968, which are also the periods when prominent warmings are definitely known to have occurred at higher latitudes. The behaviour of total ozone has been found to be different in the different years of the warmings. The features noticed have been presented and discussed.  相似文献   

13.
14.
Ozonesonde data are matched with concomitant rawinsonde data to provide a direct determination of horizontal, meridional, flux of ozone by the transient eddies. Data are from 27 stations in 4 regions: Eastern and western North America, western Europe, and Japan. Results confirm the existence of significant northward flux near 40°N, 10–18 km, in winter and spring, as shown by previous investigators. However, areas of significant equatorward flux are found at high mid-latitudes, 10–16 km, over North America in winter and spring, and at all 3 Japanese stations, 10–18 km, in spring. Transient eddy fluxes are typically small in summer, and are also small throughout the troposphere and most of the middle stratosphere.  相似文献   

15.
16.
A study is presented of a possible correlation between ozone and Aitken nuclei concentration measured between 6 km and 19 km by the instruments installed on the WB-57F aircraft. Samples were taken between 48°N and 9°S latitudes over the U.S., the Gulf of Mexico, and Central and South America between March 1974 and February 1975.A weak negative correlation between AN and ozone concentrations was found at altitudes higher than the tropical tropopause. Scattering of the signs and magnitudes of correlation coefficients was found below the tropopause. Largest variations of the coefficient values were related to the stratospheric pollution following the eruption of the Guatemalan volcano Fuego.  相似文献   

17.
Total ozone data from some European stations have been analyzed to detect the ozone decrease in different seasons from 1979 to 1995. The differences between the winter–spring (December–March) and summer (May–August) total ozone means have decreased distinctly during the last three decades, by 10 Dobson Units per decade, showing that the winter–spring decrease is significantly stronger than the summer one. Applying a multiple regression model to the monthly means of tropopause height, positive trends in the summer and winter–spring seasons have been found, especially since 1979. This corresponds to the accelerating ozone decrease then. The possibility of using tropopause height variations as an indicator of dynamical variability in the total ozone trend model is discussed. The total ozone response to the changes of tropopause height seems to be independent of timescale over which the tropopause-total ozone relationship has been examined (month-to-month, interannual). The total ozone trends, as well as the accelerated rate of ozone decrease since 1979 in the winter–spring and summer seasons, respectively, are reduced by about 0.5–1% per decade after inclusion of the tropopause height effect on the ozone model.  相似文献   

18.
Aboard commercial airliners twenty registrations of the ozone concentration of the upper troposphere were carried out within a period of 14 months between Europe and South Africa. Nearly each of these meridional ozone profiles shows an approximately constant ozone content between 25°S and 25°N with a pronounced seasonal variation. Most of these profiles show two marked peaks of the ozone concentration at about 30°N and between 40° and 45°N. Though the number of these registrations is not sufficient for statistical computations, the first results confirm the meridional ozone distribution, which was expected from studies with ozone-radiosonde soundings. Moreover a strong asymmetry of the northern and southern hemisphere is confirmed by these ozone measurements.  相似文献   

19.
The Global Ozone Monitoring Experiment (GOME) onboard the ERS-2 satellite has been in operation since July 1995. The Norwegian ground-based total ozone network has played an important role both in the main validation during the commissioning phase and in the validation of upgraded versions of the analysis algorithms of the instrument. The ground-based network consists of various spectrometer types (Dobson, Brewer, UV filter instruments). The validation of the second algorithm version used until January 1998 reveals a very good agreement between GOME and ground-based data at solar zenith angles <60° and deviations of GOME total ozone data from ground-based data of up to ±60 DU (∼20%) at zenith angles ≥60°. The deviations strongly depend on the season of the year, being negative in summer and positive in winter/spring, The deviations furthermore show a considerable scattering (up to ±25 DU in monthly average values of 5° SZA intervals), even in close spatial and temporal coincidence with ground-based measurements, especially in the high Arctic. The deviations are also dependent on the viewing geometry/ground pixel size with an additional negative offset for the large pixels used in the backswath mode and at solar zenith angles ≥85°, compared to forward-swath pixels.  相似文献   

20.
Summary Atmospheric total ozone contents over three stations in north India have been studied. A power spectrum analysis has been made of daily values recoreded at these stations during the winter season. Three types of periodicities have been observed in the available records, namely, oscillations with a period of (a) 2.5–3.5 days, (b) 4.0–5.3 days and (c) 8.0–9.6 days. The first and third type of oscillations were also observed when the data were extended to cover an entire year, instead of the winter season alone. A possible mechanism for the occurrence of these periodicities is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号