doi: 10.15940/j.cnki.0001-5245.2023.04.004

基于100 nm砷化镓pHEMT工艺的C波段宽带 低噪声放大器芯片*

田洪亮1 何美林2 刘海文1†

(1 西安交通大学信息与通信工程学院 西安 710049) (2 河北雄安太芯电子科技有限公司 石家庄 050051)

摘要 作为射电天文接收机系统的关键器件, 低噪声放大器的噪声和增益性能对接收机系统的灵敏度有重要影 响. 采用100 nm砷化镓赝配高电子迁移率晶体管(pseudomorphic High Electron Mobility Transistor, pHEMT) 工艺, 研制了一款可覆盖C波段(4-8 GHz)的低噪声放大器(Low Noise Amplifier, LNA). 所设计的LNA采用3级 共源级联放大拓扑结构, 栅极、漏极双电源供电. 常温下测试表明,该LNA在4-8 GHz频段内平均噪声温度为 60 K, 在5 GHz处获得最低噪声温度50 K, 通带内增益(31±1.5) dB, 输入输出回波损耗均优于10 dB, 芯片面积 为2.1×1.1 mm², 可以应用于C波段射电天文接收机以及卫星通信系统等.

关键词 仪器, 望远镜, 技术: 射电天文, 技术: 低噪声放大器 中图分类号: P111; 文献标识码: A

1 引言

作为射电天文望远镜接收机系统的第1级有源 器件,低噪声放大器(Low Noise Amplifier, LNA)不 仅要放大望远镜接收到的来自遥远太空的极微弱 信号,还要抑制环境以及电路本身对接收信号带 来的噪声干扰.灵敏度是接收机系统的关键指标, 其决定了接收机能接收信号的最小强度,接收机 灵敏度与射电望远镜系统的噪声温度成反比^[1-2]. LNA的噪声、增益与带宽性能共同决定了接收机 系统的噪声性能.只有研制出低噪声温度、高增益 的低噪声放大器,才能提高射电天文望远镜接收机 系统的灵敏度. 更出色的噪声特性和更高的截止频率,是低噪声 放大器设计的研究热点.但是磷化铟工艺制造成本 高、击穿电压低、易损性高、稳定性差^[3],随着改 进高电子迁移率晶体管(metamorphic High Electron Mobility Transistor, mHEMT)、赝配高电子 迁移率晶体管(pseudomorphic High Electron Mobility Transistor, pHEMT)等先进工艺的出现,基 于砷化镓工艺制备的低噪声放大器可以具备同磷 化铟工艺相比拟的噪声性能,并且其稳定性高、成 本低的优势开始展现,砷化镓半导体工艺已经进入 了成熟期,已被大量应用于高性能低噪声放大器设 计^[4-10].

早期由于基于磷化铟(InP)工艺的晶体管具有

C波段(4-8 GHz)是射电天文的一个重要频段,

2022-04-13收到原稿, 2022-05-31收到修改稿

*国家自然科学基金项目(U1831201、62171363),国家重点研发计划项目(2017YFE0128200),陕西省重点研发计划国际 科技合作计划重点项目(2022KWZ-15),陕西省深空探测智能信息技术重点实验室项目(2021SYS-04)资助

[†]haiwen_liu@hotmail.com

可以应用于快速射电爆、脉冲星以及分子谱线 等观测,是诸多射电天文望远镜必备的观测频 段^[11-14].本文基于国产100 nm栅长砷化镓赝配高 电子迁移率晶体管工艺进行C波段LNA设计,其具 有相当高的截止频率和跨导、足够低的噪声系数 和寄生电阻等特性.从晶体管尺寸确定、工作点 选取出发,通过权衡输入级噪声匹配和阻抗匹配设 计,保证放大器宽频带噪声和输入回波损耗性能, 合理设计级间匹配保证通带内增益平坦度.经过电 路仿真以及版图制造,最终设计出的低噪声放大器 芯片,在常温下测量结果显示,在4-8 GHz频带内 平均噪声温度为60 K,在5 GHz处获得最低噪声温 度为50 K,通带内增益(31±1.5) dB,输入输出回 波损耗均优于10 dB,芯片面积为2.1×1.1 mm²,适

64 卷

用于C波段射电天文接收机以及卫星通信系统等应用.

2 晶体管尺寸及工作点选择

晶体管的最小噪声系数NF_{min}和最大增益 G_{max} 与栅指数 n_f 和栅宽 W_f 相关.合理选择晶体管 尺寸是放大器设计的第1步,需要兼顾噪声、增益 以及输入阻抗匹配特性.图1比较了所用工艺晶体 管在具有不同 n_f 和不同 W_f 情况下可实现的最小噪 声系数和最大增益特性.可以观察到,在栅宽保 持 $W_f = 25 \mu m$ 不变情况下,随着栅指数 n_f 增加,晶 体管最小噪声系数明显降低,最大增益稍有减小; 在保持栅指数 $n_f = 4$ 不变情况下,随着 W_f 增加,晶 体管最小噪声系数和最大增益均有所增加.

图 1 所用pHEMT晶体管在不同尺寸情况下的最小噪声系数NF_{min}和最大增益 G_{max} .图(a)、(b)分别是保持 $W_f = 25 \mu m$ 不变情况下,NF_{min}和 G_{max} 随栅指数 n_f 变化情况;图(c)、(d)分别是保持栅指数 $n_f = 4$ 不变情况下,NF_{min}和 G_{max} 随栅宽 W_f 变化情况.

Fig. 1 Minimum noise coefficient NF_{min} and maximum gain G_{max} for different sizes of the pHEMT transistors used in this work. Panels (a) and (b) are the variation of NF_{min} and G_{max} with n_f when $W_f = 25 \ \mu\text{m}$ respectively; Panels (c) and (d) are the variation of NF_{min} and G_{max} with W_f when $n_f = 4$ respectively.

在考虑晶体管尺寸对最小噪声系数和最大增益的影响的同时,还需要考虑晶体管尺寸对输入噪声匹配的影响.单级晶体管噪声可表示为^[15]:

$$NF = NF_{min} + \frac{4R_n}{Z_0} \frac{|\Gamma_{opt} - \Gamma_s|^2}{(1 - |\Gamma_s|^2)|1 + \Gamma_{opt}|^2}, \quad (1)$$

其中, R_n 为二端口网络的等效噪声阻抗, Z_0 为特征 阻抗, Γ_s 为源端反射系数, Γ_{opt} 为晶体管取得最小 噪声系数时对应的最佳源反射系数, 其直接影响 着晶体管匹配电路设计.固定 $W_f = 50 \mu m$, 当 n_f 分 别为2、4、6和8时, 观察Smith圆图上 Γ_{opt} 的移动. 图2的Smith圆图中给出了晶体管最小噪声匹配源 反射系数随 n_f 变化规律, 可以看出随着栅指数增加, 4-8 GHz频率范围内 Γ_{opt} 逐渐向50 Ω等电阻圆上移 动,这样就可以有效减小匹配电路设计复杂度, 进 而减少由匹配电路引入的额外噪声. 然而, 随着晶 体管尺寸的增加, 其漏极电流也将随之增加, 从而 增加放大器的功耗.因此, 需要根据所设计放大器 的性能指标折中考虑.

图 2 晶体管最小噪声匹配源反射系数 Γ_{opt} 随 n_f 变化, j为虚数单位.

晶体管的工作偏置电压控制着晶体管的静态 工作点,进而控制着晶体管的噪声和增益性能. 图3比较了不同漏源偏压V_{ds}和不同栅源偏压V_{gs}状 态下晶体管的最小噪声和最大增益特性.可以观察 到,在V_{gs}保持-0.6 V不变情况下,随着V_{ds}增加,晶 体管最小噪声系数明显增加,最大增益稍有增加; 在V_{ds}保持2 V不变情况下,随着V_{gs}增加,晶体管最 小噪声系数和最大增益同样有所增加.

综合以上分析,在本文低噪声放大器设计中, 在优先保证噪声性能的前提下,考虑增益特性,各 级晶体管选择尺寸为8×50 μ m,偏置电压选择为 $V_{\rm ds} = 1.5$ V、 $V_{\rm gs} = -0.6$ V,此时晶体管静态工作点 为:漏源偏压 $V_{\rm ds} = 1.5$ V、漏源电流 $I_{\rm ds} = 34.4$ mA.

3 电路设计

3.1 输入级电路设计

根据级联系统噪声公式, n级级联低噪声放大器噪声系数可表示为:

$$NF = NF_{1} + \frac{NF_{2} - 1}{G_{1}} + \frac{NF_{3} - 1}{G_{1}G_{2}} + \dots + \frac{NF_{n} - 1}{\Pi G_{n-1}},$$
(2)

其中, NF_i、G_i分别为第*i*级电路所具有的噪声系数 和增益. (2)式表明, 多级低噪声放大器的整体噪声 性能主要由输入级的噪声系数决定, 后级电路的噪 声可通过前级的高增益性能得到抑制.因此, 输入 级电路的设计直接影响低噪声放大器的整体噪声 性能.从偏置电路拓扑结构、稳定性、输入最小噪 声匹配以及输入阻抗匹配等多角度考虑, 最终设计 的输入级电路如图4所示, 其中RF_{in}、RF_{out}为输入 输出端口, L_g、L_{d1}为电感, C_{g1}、C_P、C_{d1}为电容, R_{d1}为电阻, TL_{s1}为源极负反馈传输线, V_{GG}和V_{DD} 分别为栅极、漏极电压.

Fig. 2 The variation of optimum source reflection coefficient Γ_{opt} for minimum noise matching, with different n_{f} , j is the imaginary unit.

0.6 28 $V_{\rm ds}$ =2.0 V $V_{\rm ds}$ =2.0 V 0.5 26 $V_{\rm ds}$ =1.5 V $V_{\rm ds}$ =1.5 V V_{ds}=1.0 V V_{ds}=1.0 V 0.4 gp/ 10.3 24 $G_{\rm max}/{\rm dB}$ 22 É 0.2 20 0.1 18 16 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Frequency /GHz 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Frequency /GHz (a) **(b)** 0.6 28 $f_{gs} = -0.5 V$ $V_{gs} = -0.5 V$ 0.5 26 _{gs}=-0.6 V $V_{\rm s} = -0.6 \, {\rm V}$ **8**p/ **0.4** "=-0.7 V $V_{\rm s} = -0.7 \, {\rm V}$ 24 G_{max} /dB UIII 0.3 22 20 0.1 18 16∟ 1.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 1.0 2.0 3.0 **Frequency** /GHz **Frequency** /GHz (d) (c)

图 3 不同偏置电压下pHEMT晶体管NF_{min}和G_{max}的变化.图(a)和(b)分别是保持 $V_{gs} = -0.6$ V时NF_{min}和G_{max}随 V_{ds} 变化情况; 图(c)和(d)分别是保持 $V_{ds} = 2$ V时NF_{min}和G_{max}随 V_{gs} 变化情况.

Fig. 3 NF_{min} and G_{max} of pHEMT with different bias voltages. Panels (a) and (b) are the variation of NF_{min} and G_{max} with V_{ds} when $V_{\text{gs}} = -0.6$ V; Panels (c) and (d) are the variation of NF_{min} and G_{max} with V_{gs} when $V_{\text{ds}} = 2$ V.

图 4 设计LNA的输入级电路结构

偏置电路供电方式采用栅级、漏极双电源供 电,相较于单电源供电方式,可以提高放大器工 作效率,同时可以提高设计的灵活性.然而,双电 源供电方式需要特别注意栅级、漏极的加电顺序, 以免晶体管被瞬时电压击穿.电路稳定性是电路 性能能够实现的基础,在LNA设计过程中,需要保 证LNA在全频段范围内都能实现绝对稳定.放大器 绝对稳定的充分必要条件是保证稳定性判据μ>1, μ可由两端口散射参数(S₁₁, S₂₂, S₁₂, S₂₁)计算为:

$$\mu = \frac{1 - |S_{11}|^2}{|S_{22} - S_{11}^* \Delta| + |S_{21}S_{12}|}, \ \Delta = S_{11}S_{22} - S_{21}S_{12},$$
(3)

其中上标星号表示对应变量的复共轭.

本文输入级电路设计中,高频稳定性可由TL_{s1} 实现,通过在漏极偏置接入L_{d1}和R_{d1}串联网络来提 高低频的稳定性能.图5给出了输入级电路稳定性 因子μ和噪声系数仿真结果.其中图5 (a)可以看出, 在0-100 GHz频率范围内的μ值均大于1.4,具有十 分可靠的稳定性能.

图 5 输入级NF₁和µ的仿真结果

Fig. 5 The simulation results of NF_1 and μ of the input stage

与窄带放大器的噪声匹配不同的是,在进行宽 带低噪声放大器的噪声匹配设计时,为了保证放大 器在整个工作频带内的噪声性能,可以采取的方法 是适当偏离中心频点进行匹配,这里我们选择在高 频点(8 GHz)处进行噪声匹配.由于在前述晶体管 尺寸选择时已经考虑栅指数对噪声匹配的影响,减 小了噪声匹配电路的难度,如图4所示,在输入级只 需引入电感Lg就可以起到良好的噪声匹配的作用. 同时,由于该电感串联在栅极上,也可以帮助提升 电路的稳定性.并且为了降低电感引入的额外噪声, 设计中使用空气桥电感,减小了电感中介质损耗, 进而减小匹配网络引入的额外噪声.图5 (b)给出了 输入级电路噪声系数的仿真结果,可以看出,在高 频和低频处实现了噪声匹配,并且全频段噪声系数 低于0.75 dB.

值得关注的是, 低噪声放大器输入级电路设计时需要同时兼顾最小噪声匹配和阻抗匹配. 而实际设计中, 由于最佳噪声匹配阻抗与最佳阻抗匹配点差别较大, 在宽带低噪声放大器设计中, 往往难以保证在取得良好噪声匹配的同时获得好的输入阻抗匹配. 解决办法是在漏极并联接地电容. 图6给出了不同并联电容C_p对输入级电路输入反射系数S₁₁

和最小噪声匹配反射系数 Γ_{opt} 以及增益的影响. 图6 (a)的Smith圆图为不同 C_p 值下的 S_{11} 和 Γ_{opt} . 可以 看到,随着 C_p 增加, S_{11} 逐步向圆图中心移动,而 Γ_{opt} 没有变化. 因此,通过控制 C_p ,可以兼顾最小 噪声匹配和阻抗匹配. 然而, C_p 的引入会对放大器 的增益特性产生影响. 如图6 (b)所示,随着 C_p 的增 加,放大器高频处的增益有明显下降,因此 C_p 的选 择需要综合考虑增益需求.

3.2 级间匹配与输出匹配设计

为使所设计低噪声放大器获得增益大于30 dB, 从图6 (b)输入级增益曲线看到,至少需要3级放大 器级联方可满足增益需求.为了保证电路的低噪声 性能和稳定性,本文3级电路晶体管尺寸和静态工 作点均保持一致.

3级级联低噪声放大器匹配设计结构如图7所 示.为了进一步减小后级电路对输入级噪声的影响, 在输入级最小噪声匹配基础上,第1、2级级间匹配 同样采取最小噪声匹配,也就是使第1级电路的输 出阻抗与第2级电路的最佳噪声阻抗共轭匹配.同 时为保证放大器增益,第2、3级级间匹配采取最佳 增益匹配,即第2级的输出阻抗和第3级的最大增益 阻抗共轭匹配.输出级电路作为低噪声放大器的最 后一级,在补偿增益的同时需要保证输出端口阻抗 匹配.在经过3级级联放大之后,输出和输入端口之 间的将具有足够的隔离度,因此,在进行输出匹配 时可以不考虑对输入匹配产生的影响.同时,对于 宽带低噪声放大器设计而言,为了保证频带内的增 益平坦度,需要补偿信号增益随频率的衰减.因此, 在2、3级的级间匹配以及输出匹配过程中,为了补 偿高频增益,匹配频点逐步向高频偏移,以此来获 得工作频段内平坦的增益特性.最终所设计的低噪 声放大器原理图如图8所示.M₁、M₂和M₃表示所 设计LNA电路中采用的3级晶体管,偏置电路采用 双电源供电方式,3级电路均采用相同的V_{DD}来提供 漏极所需的正偏压,采用相同的V_{GG}提供栅极所需 的负偏压.

图 6 不同 C_p 对输入级 S_{11} 和 Γ_{opt} 以及增益的影响. 图(a)是 C_p =0.2、0.4、0.8 pF时的 S_{11} 和 Γ_{opt} , 图(b)是 C_p =0.2、0.4、0.8 pF时的输入级增益.

Fig. 6 The influence of different $C_{\rm p}$ on S_{11} , $\Gamma_{\rm opt}$ and gain of the input stage. Panel (a) is S_{11} and $\Gamma_{\rm opt}$ with $C_{\rm p}=0.2$, 0.4, 0.8 pF respectively, and panel (b) is the gain of the input stage with $C_{\rm p}=0.2$, 0.4, 0.8 pF respectively.

4 版图设计与加工测试

由于所设计LNA芯片工作在微波频段, LNA芯 片的传输线的分布参数效应以及各元件单元之间 的电磁耦合变得不可忽略.在原理图仿真中, LNA 的传输线以及各元件之间的相互影响不能完全模 拟.因此,在完成LNA电路的原理图仿真设计后,需 要进行LNA芯片版图设计以及电磁和原理图联合 仿真.同时,由于所使用半导体工艺比较昂贵,电路 面积相对比较珍贵,在版图设计中需要在保证减小 元件相互耦合影响的前提下合理布局布线.本文采 用先进设计系统(Advanced Design System, ADS) 仿真软件提供的版图设计工具,其采用矩量法进行 微波电磁仿真,能够进行精细化网格划分,对所设 计的微带线、电容、电感、电阻等无源器件以及 芯片工艺多层结构进行电磁特性的仿真.通过原理 图-电磁联合仿真,不断优化布局布线以及各无源 元件尺寸选择,使原理图-电磁联合仿真结果符合 既定设计指标,从而完成最后的版图设计.

Fig. 8 Circuit schematic of the proposed C-band broadband LNA

图9为最终流片得到的低噪声放大器芯片实物 图片,芯片面积为2.1×1.1 mm².采用微波探针 台、矢量网络分析仪以及噪声仪等测量仪器对所 设计低噪声放大器芯片进行在片测量,静态工作 点 $V_{\rm ds} = 1.5$ V、 $I_{\rm ds} = 34.4$ mA, 偏置电压设置 为 $V_{\rm DD} = 2.5$ V、 $V_{\rm GG} = -0.7$ V, 直流功耗 $P_{\rm dc} = 51.6$ mW.

图 9 C波段宽带低噪声放大器芯片照片

Fig. 9 Photograph of the proposed C-band broadband LNA

图10给出了该放大器仿真测试结果对比,实线 为仿真结果,虚线为测试结果.从图中可以看出,在 4-8 GHz频带内,放大器平均噪声温度为60 K,并 且在5 GHz处获得最低噪声温度50 K,噪声性能优 异;频带内增益大于31 dB,增益平坦度小于1.5 dB, 具有较高的增益和良好的增益平坦度;输入输出回 波损耗均大于10 dB, 输入输出匹配良好; 稳定性判 据μ在1-10 GHz范围内均大于1, 具有绝对稳定特 性. 从测试仿真结果对比上看, 所设计LNA的输入 输出回波损耗的测试结果和仿真结果具有较高的 吻合度, 而噪声温度在5-8 GHz处差别较大, 增益 在低频处明显降低. 造成结果差异的可能原因有: 测试校准精确度不够、测试探针引入的阻抗失配 以及仿真所用模型与实际工艺误差等.本文与其他 文献中具有相似工作频段的低噪声放大器芯片的 主要参数对比如表1所示.从表中数据可以看到,文 献中放大器设计各有特点,本文设计的低噪声放大 器在具备较低噪声特性的同时,实现了高增益和良 好回波损耗,与同类低噪放相比,具有一定的优势.

Fig. 10 Simulation and measured results of the proposed C-band broadband LNA

Table 1 Comparison of main parameters of LINA in this paper with other works							
Ref.	Technology	Bandwidth	Noise Temp.	Gain	S_{11}/S_{22}	$P_{\rm dc}/{ m mW}$	Chip Size
		$/\mathrm{GHz}$	$/\mathrm{K}$	$/\mathrm{dB}$	$/\mathrm{dB}$		$/\mathrm{mm}^2$
[6]	$0.15~\mu\mathrm{m}~\mathrm{pHEMT}$	3.7 - 10.5	110 - 170	10 ± 2	< -10 / < -8	45	1.5×1
[7]	$0.25~\mu\mathrm{m}$ pHEMT	6-10	110 - 120	17 ± 2	$<\!-7/\!<\!-10$	40	1.5×1
[8]	$0.25~\mu\mathrm{m~pHEMT}$	4-6	> 120	13 ± 1	$<\!-7/\!<\!-10$	_	0.495
[10]	$0.15~\mu\mathrm{m}$ pHEMT	2.8 – 5.2	65 - 85	$29{\pm}1.5$	$<\!-8/\!<\!-10$	51.8	2×1
This Work	100 nm pHEMT	4-8	50 - 67	$31{\pm}1.5$	< -10 / < -10	51.6	2.1×1.1

表 1 与其他文献中的低噪声放大器芯片主要指标对比 1 Comparison of main parameters of LNA in this paper with other worl

5 结论

本文采用国产100 nm GaAs pHEMT工艺,设 计了一款C波段单片微波集成低噪声放大器芯片. 所设计LNA采用3级共源级联放大拓扑结构,栅 极、漏极双电源供电.静态工作点 $V_{\rm ds} = 1.5$ V、 $I_{\rm ds} = 34.4$ mA. 4–8 GHz频段内平均噪声温度60 K, 在5 GHz处获得最低噪声温度为50 K,通带内增益 (31±1.5) dB,输入输出回波损耗均优于10 dB,芯 片面积为2.1×1.1 mm²,可用于C波段射电天文接 收机以及卫星通信系统等应用.

参考文献

- Kelly M, Angelov I, Starski J P, et al. Proceedings of 2006 European Microwave Integrated Circuits Conference. Manchester: IEEE, 2006: 118
- [2] 刘文豪, 姜鹏, 刘鸿飞, 等. 天文学报, 2022, 63: 30
- [3] Jimenez-Martin J L, Gonzalez-Posadas V, Parra-Cerrada A, et al. Proceedings of 2019 European Microwave Conference in Central Europe. Prague: IEEE, 2019: 91

- [4] 江龙,李建斌,刘鸿飞,等.天文研究与技术,2020,17:276
- [5] 文晓敏, 李斌. 天文研究与技术, 2019, 16: 278
- [6] Hsiao Y C, Meng C, Li M C. ITMTT, 2018, 66: 987
- [7] Shimizu H, Iwashita Y, Iwamoto R, et al. Proceedings of 2020 IEEE International Symposium on Radio-Frequency Integration Technology. Hiroshima: IEEE, 2020: 103
- [8] Shang K P, Yuan D D, Zhang Z H, et al. Proceedings of 2021 IEEE International Conference on Signal Processing, Communications and Computing. Xi'an: IEEE, 2021: 1
- [9] 吴晓文, 陈晓东, 刘轶. 现代电子技术, 2019, 42: 108
- [10] Chou C F, Chang Y C, Wang H, et al. Proceedings of 2015 European Microwave Conference (EuMC). Paris: IEEE, 2015: 235
- [11] 王锦清, 虞林峰, 赵融冰, 等. 天文学报, 2015, 56: 63
- [12] Wang J Q, Yu L F, Zhao R B, et al. ChA&A, 2015, 39: 394
- [13] 王锦清, 赵融冰, 虞林峰, 等. 天文学报, 2015, 56: 278
- [14] Wang J Q, Zhao R B, Yu L F, et al. ChA&A, 2016, 40: 108
- [15] Fukui H. ITED, 1990: 67

C Band Broadband LNA MMIC in 100 nm GaAs pHEMT

TIAN Hong-liang¹ HE Mei-lin² LIU Hai-wen¹

(1 School of Information and Communication Engineering, Xi'an Jiaotong University, Xi'an 710049) (2 Hebei Xiong'an Taixin Electronic Technology Co. LTD, Shijiazhuang 050051)

ABSTRACT As the key component of radio astronomy receiver system, the noise and gain performance of Low Noise Amplifier (LNA) have important influence on the sensitivity of receiver system. In this paper, a broadband LNA which can cover the C-band (4–8 GHz) is developed by using the 100 nm gallium arsenide (GaAs) pseudomorphic High Electron Mobility Transistor (pHEMT) technology. The amplifier adopts three-stage common source cascade amplifier topology and dual power supply structure. Measured results show that the average noise temperature of the amplifier is 60 K in the frequency range of 4–8 GHz with the lowest noise temperature of 50 K being achieved at 5 GHz. The gain is (31 ± 1.5) dB in the whole bandwidth and the input and output return loss is better than 10 dB. The chip area is 2.1×1.1 mm². This designed LNA can be used in the C-band radio astronomy receiver and satellite communication system.

Key words instrumentation, telescopes, techniques: radio astronomy, techniques: low noise amplifier (LNA)