首页 | 官方网站   微博 | 高级检索  
     

三峡库区典型滑坡地球物理实测及其意义:以万州区四方碑滑坡为例
引用本文:林松,王薇,邓小虎,查雁鸿,周红伟,程邈.三峡库区典型滑坡地球物理实测及其意义:以万州区四方碑滑坡为例[J].地球科学,2019,44(9):3135-3146.
作者姓名:林松  王薇  邓小虎  查雁鸿  周红伟  程邈
作者单位:1.地震预警湖北省重点实验室, 中国地震局地震研究所, 湖北武汉 430071
基金项目:国家自然科学基金项目41572354
摘    要:滑坡是最严重的地质灾害之一,查明滑坡形态特征及滑坡形成机制对于滑坡体稳定性分析、滑坡灾害风险管理和政府治理决策等方面具有重要意义.前人研究滑坡形态及其形成机制较少结合地球物理实测方法,其工程地质剖面绘制多局限于点信息的获取方式,而结合地球物理实测方法有利于从线、面同时获取更丰富的滑坡体地质信息,更加准确量化滑移面埋深和透视滑床形态.鉴于此,以灾害频发的三峡库区万州区为研究对象,采用网格高密度电法实测区内不同深度地层的电阻率值,并以此生成二维电阻率剖面和构建滑床三维形态;同时,将剖面电性分布特征与钻孔资料及地质调查资料相结合,对滑坡区地层结构、滑移面埋深以及滑床形态等多个影响滑坡的重要因素综合分析.结果表明,在研究区开展网格高密度电法实测工作,可获取地层电性结构特征以及构建滑坡体三维形态;实测剖面显示四方碑滑坡属于古滑坡,且存在拉裂槽现象.将实测剖面获取的滑移面埋深和构建的三维滑床形态进行钻孔标定,可对滑坡体内部结构及物质组成进行“透视”,从而为滑坡形成机制分析提供依据,同时也给其他类似区域地质调查中的滑坡稳定性评价及预测预报工作提供理论指导和技术参考.通过高密度电法揭示三峡库区典型滑坡体三维形态特征的理论方法和技术路线成功引入滑坡形成机制分析,可为研究滑坡形成机制和理论提供新思路,具有推广意义. 

关 键 词:三峡库区    滑坡    地球物理    滑床形态    拉裂槽
收稿时间:2019-02-26

Geophysical Observation of Typical Landslides in Three Gorges Reservoir Area and Its Significance: A Case Study of Sifangbei Landslide in Wanzhou District
Abstract:Landslide is one of the most serious geological disasters. Finding out the morphological characteristics of landslide and the formation mechanism of landslide is of great significance to landslide stability analysis, risk management of landslide hazards and government decision-making. Previous studies on landslide morphology and its formation mechanism are seldom combined with geophysical approach. The engineering geological profile drawing is limited to the acquisition of point-level information. The combination of geophysical measurement methods is conducive to obtaining more abundant landslide geological information from two-three dimension, and to quantifying the buried depth of sliding surface and perspective sliding bed morphology more accurately. In view of this, we take the hazardous Wanzhou area in the Three Gorges reservoir area as the research object, and apply high density grid resistivity method to measure resistivity values of different depth strata in the study area, to generate twodimensional resistivity profiles for the first time so that we can further construct three-dimensional shape of sliding bed. At the same time, the important factors affecting the landslide, such as the stratum structure, the depth of the slip surface and the shape of the slip bed, are comprehensively analyzed by integration of the electrical features of the section with the borehole data and geological survey data. The results show that the high-density grid resistivity method can accurately acquire the electrical structure characteristics of the stratum and construct a three-dimensional shape of the landslide body. The measured profile shows that the Sifangbei landslide belongs to an ancient landslide, and there exists the phenomenon of drawing crack trough. By calibrating the buried depth of the slip surface obtained from the measured profile and the three-dimensional slip bed configuration, the internal structure and material composition of the landslide body can be "perspective", which provides a basis for the analysis of the formation mechanism of the landslide, as well as theoretical guidance and technical reference for the evaluation and prediction of landslide stability in the other similar regional geological surveys. The theoretical method and technical route of revealing the threedimensional morphological characteristics of typical landslides in the Three Gorges Reservoir area by high-density electrical method are successfully introduced into the analysis of landslide formation mechanism, which can provide new ideas and approach for the study of landslide formation mechanism and theory, and can be widely used in many areas. 
Keywords:
点击此处可从《地球科学》浏览原始摘要信息
点击此处可从《地球科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号