甘肃西成盆地小沟里*一*三羊坝 金矿床地球化学特征

康亚龙1,刘继顺1,张旺定2,尹利君1

(1. 中南大学 地学与环境工程学院,长沙 410083;

2. 新疆维吾尔自治区有色地质矿产勘查院,乌鲁木齐 830000)

摘 要: 文章在分析甘肃西成盆地小沟里一三羊坝金矿床地质特征的基础上,研究了矿床地球 化学、稳定同位素的特征。结果表明,大部分黄铁矿的 Co/Ni 比值大于 1,反映成矿物质主要来自 于岩浆热液;稀土总量 w (REE) = $6.07 \times 10^{-6} \sim 227.20 \times 10^{-6}$, LREE/ HREE = $1.372 \sim 4.582$,轻 稀土富集;在稀土元素标准化模式图中,围岩、矿石、含金石英脉的稀土配分型式相似,呈平缓的右 倾特征,具有弱的铕负异常;硫同位素 $\&({}^{34}S) = -6.15 \times 10^{-3} \sim +13.62 \times 10^{-3}$,显示多源的特征; 铅同位素组成显示铅为壳幔混合源;包裹体主要为气液两相,液相成分中的阳离子以 Na⁺和 K⁺为 主,阴离子主要为 Cl⁻,气相成分以 H₂O 和 CO₂ 为主;包体的均一温度为 115 ~ 205 °C,盐度为 7.2% ~ 11.5 %;成矿流体以大气降水为主。

关键词: 小沟里一三羊坝金矿床;矿床地球化学;稀土元素地球化学;包裹体地球化学;西成盆 地;甘肃省

中图分类号: P613; P618.51 文献标识码: A 文章编号: 100+1412(2011) 02-0188-07

0 引言

西秦岭处于华北板块与扬子板块的交界部位, 是中国西部重要的构造成矿带,具有极其重要的地 质研究意义和潜在的矿产资源开发价值^[1]。肖力等 对西秦岭地区金矿控矿因素和资源潜力进行了分 析^[2];赵彦庆等以西秦岭大水金矿的花岗岩为研究 对象,讨论了该区花岗岩的成矿作用^[3];路彦明等对 寨上金矿床中石英和绢云母的⁴⁰ Ar/³⁹ Ar 定年进行 了研究^[4]。

西成盆地是西秦岭的组成部分,与东秦岭共同 构成秦岭贵金属多金属成矿带。它不仅是秦岭造山 带的重要组成部分,还是衔接古特提斯北部分支裂 谷带的关键部位,使秦岭带与川西北在三叠纪形成 统一海槽,构成著名的"西北金三角"。一些学者也 对西成盆地的矿床地质进行了系统研究^[5-13],本文 在分析研究前人资料的基础上,对小沟里一三羊坝 金矿床地质地球化学特征进行了研究,以期推动该 区的矿床地质研究工作。

1 矿区地质概况

西成盆地小沟里一三羊坝金矿床位于吴家山古隆 起的西南部, 广金坝背斜的南翼(图1)。区域地层主要 为中泥盆统西汉水组上部层(D₂x²), 为一套浅海相或 局限洼地相的细碎屑岩夹不纯碳酸盐岩复理石建造。 区域构造线以 NW 向、近 EW 向为主, 构造变形南强北 弱, 发育韧性, 脆性等不同层次的变形。由南向北, 从 以韧性变形为主转变为以韧– 脆性变形为主; 南部的 层间塑性流动构造、膝折带等韧性、韧性向脆性转变期 的构造形迹发育; 向北依次发育膝折带、推覆褶皱, 断 层构造; 成矿区以层间剪切构造为主。表现出由南到 北逆冲推覆构造的变形特征。

在矿区南约2km 处有大山黑云母花岗岩侵 入;中酸性岩脉(黑云母斜长花岗斑岩、正长花岗斑

收稿日期: 2010-03-01 改回日期: 2011-05-03

作者简介: 康亚龙(1967),男,甘肃陇西人,博士研究生,矿产普查与勘探专业,主要从事有色金属地质工作。 Email: kangyalong2009@

图 1 甘肃西成盆地小沟里一三羊坝金矿床地质略图(据文献[14]) Fig. 1 The geological map of Xiaogouli-Sanyangba gold deposit in Xihe-Chengxian basin in Gansu 1. 第四系 2. 上泥盆统洞山组 3. 中泥盆统西汉水组 4. 中泥盆统安家山组 5. 砂岩 6. 千枚岩 7. 灰岩 8. 花岗岩 9. 花岗闪长岩 10. 推覆逆断层 11. 剪切滑动断层 12. 韧- 脆性剪切带 13. 断层 14. 不整合界线 15. 铅锌矿床(点) 16. 金矿床(点) 17. 砂金矿点

岩)顺层侵入。大山黑云母花岗岩与上覆灰岩间以 推覆断层构造相接触,灰岩底部具大理岩化,这表明 岩体侵位早于逆冲推覆构造期。另外,矿区发育钠 质热水沉积岩,与南侧瘳坝层状钠质岩同属沉积期 海底热水沉积作用的产物。成矿区从沉积- 成岩期 - 构造岩浆作用期,处于异常地热状态。

2 矿床地质特征

2.1 矿石特征

小沟里一三羊坝金矿矿石主要为石英脉型,金 属矿物主要为黄铁矿、毒砂,次为方铅矿、闪锌矿及 少量黄铜矿、磁黄铁矿;自然金、银金矿为金的独立 矿物。脉石矿物主要有石英、绢云母、绿泥石、铁白 云石、钠长石。

矿石主要有草莓结构、变晶结构、共生结构、固 熔体结构,层纹构造、浸染构造。

2.2 金的赋存状态

金主要以自然金形式存在,次有少量银金矿。 有2种主要嵌布形态,一种为在黄铁矿、黄铜矿、毒 砂、闪锌矿等金属硫化物和石英、钠长石、方解石、铁 白云石等脉石矿物间晶隙中分布,以不规则状为主; 一种在载金黄铁矿等矿物内呈包裹体金。金的粒度 范围为 0.07~1.00 mm,属微细粒浸染型。

3 地球化学特征

3.1 微量元素特征

矿物中 Co/Ni 值被广泛用于成因判别^[15-16]:沉 积成因一般小于 1,岩浆热液成因一般大于 1。小沟 里一三羊坝金矿黄铁矿 Co,Ni 的质量分数测试结 果和 Co/Ni 比值(表 1)表明,2 个样品的 Co/Ni= 1, 另外 2 个样品的 Co/Ni= 13,均大于 1。与邓家山铅 锌矿和安家岔金矿不同,小沟里一三羊坝金矿显示 出内生成因的特点。考虑到矿石中沉积期和变质期 有黄铁矿的大量存在,成矿物质有可能来源于岩浆 热液(表 1)。

3.2 稀土元素特征

小沟里 — 三 羊坝金矿 稀土元素 分析结果 见表 2,稀土元素标准化配分模式图见图 2。

从表 2 可看出:稀土总量 w (ΣREE) = 6.07× 10⁻⁶~227.20×10⁻⁶,平均117.55×10⁻⁶;轻稀土 w (LREE) = 4.89×10⁻⁶~167.00×10⁻⁶,平均 90.10×10⁻⁶;重稀土 w (HREE) = 1.18×10⁻⁶~ 60.20×10⁻⁶,平均27.44×10⁻⁶; LREE/HREE = 1.372~4.582,平均3.31; Lav/YbN = 7.079~ 16.855,平均10.42; δ (Eu) = 0.54~0.80,平均 0.65; δ (Ce) = 0.81~1.04,平均0.89。从稀土元素 表1 不同类型矿床中黄铁矿的 Co, Ni 质量分数和 Co/Ni 比值

Table 1 The value of Co, Ni, Co/Ni of pyrite in different types of deposits

矿床类型	样品数	w (Co) / 10 ⁻⁶	w(Ni)/10 ⁻⁶	Co/Ni	资料来源
小沟里一三羊坝	2	0.09	0.09	1	世町 中(13)
金矿床	2	0.13	0.01	13	5KHI KE
安家岔金矿床	6	81.17	214.17	0.44	李万华[17]
邓家山型铅锌矿	9	74	342	0. 22	
沉积型黄铁矿	12	10.50	44.0	0.01	
层控铅锌矿矿床	27	247.5	531.0	0.47~ 0.29	谢文安[18]
岩浆热液型	29	44.5	49.0	14.8~ 3.13	

图 2 小沟里一三羊坝金矿稀土元素配分模式[15]

Fig. 2 Chondrite nomalized REE patterns of

Xiaogouli Sanyangba gold deposit

标准化模式图(图 2)可以看出,围岩(XB11, XB23, XB27, XB28)、矿石(XY11, XY12)、含金石英脉(XY3)的 稀土配分曲线形式相似,具有弱的 Eu, Ce 负异常,以较 缓的右倾曲线为特征,而稀土总量依次减少(表 2,图 2)。其中细碎屑岩、花岗斑岩脉、铁白云石钠长岩及毒 砂的特征更为相似,稀土总量高,分异相对小,配分形 式相似,为一组缓密集平行的右倾斜线,这表明其稀土 的来源一致,均属壳源。黄铁矿及含金石英脉具稀土 总量低,弱的负 Eu, Ce 异常,表明二者具有相似的地质 演化,成因联系密切。而黄铁矿的 LREE/H REE 及 Lax/Ybx 最低, Sm/Nd 最高,具有深源特征(地幔型 Sm/Nd为 0.26~0.375,地壳、沉积岩小于 0.3)。

表 2 小沟里一三羊坝金矿稀土元素分析结果

样号	X Y 3	XY11	X Y 12	XB11	X B 23	X B27	XB28
La	1.500	20.500	2.310	44.600	42.400	33.500	24.300
Ce	2.560	31.200	3.240	73.200	67.100	56.600	42.000
Pr	0.150	2.760	0.300	7.980	6.950	6.000	4.770
Nd	0.540	14.900	1.360	33.700	31.300	26.800	19.100
Sm	0.110	2.560	0.410	6.580	5.800	4.970	3.740
Eu	0.034	0.460	0.120	1.430	1.120	1.080	0.770
Gd	0.160	2.760	0.560	7.520	6.410	5.550	4.110
Тb	0.023	0.310	0.100	1.240	0.850	0.690	0.600
Ηo	0.035	0.300	0.092	1.470	1.000	0.790	0.710
Er	0.077	0. 940	0.260	4.550	2.750	2.390	2.200
Τm	0.012	0. 160	0.040	0.700	0.420	0.370	0.310
Yb	0.060	1. 160	0. 220	4.240	2.560	2.110	2.010
Lu	0.010	0. 190	0.032	0.550	0.350	0.250	0.220
Y	0.640	8. 220	3.750	32.600	22.600	19.500	17.100
ΣREE	6.070	88.200	13.380	227.200	197.100	165.180	125.700
LREE	4.890	72.400	7.740	167.000	155.000	129.000	94.700
HREE	1.180	15.800	5.640	60.200	42.100	36.180	31.000
LREE/HREE	4.144	4. 582	1.372	2.774	3.682	3.566	3.055
La_N/Yb_N	16.855	11.915	7.079	7.092	11.166	10.704	8.151
δ(Eu)	0.80	0.54	0.78	0.63	0.57	0.64	0.61
δ(Ce)	1.04	0.87	0.81	0.87	0.86	0.89	0.89

Table 2 The content of REE of Xiaogouli-Sanyangba gold deposit

测试单位:国土资源部宜昌矿产地质研究所测试室;量的单位:w_B/10-6。

注: 样品 X Y 3 采自1 号切层石英脉; X Y 11 采自 1 号含矿层毒砂; XY 12 为 22 号矿体黄铁矿; X B 11 采自 22 号矿体上盘的花岗岩; XB23 为 20 号矿体黑色铁质千枚岩; X B 27 为 1 号钠长岩; X B 28 为砂岩。

4 同位素特征

4.1 硫同位素

小沟里一三羊坝金矿床硫化物矿物的 $\delta(^{34}S) =$ - 6.15×10⁻³~ + 13.62×10⁻³,平均值为+ 5.48× 10⁻³(表 3)。 & ³⁴S) 的变化范围较大, 离散值为9.27× 10⁻³,以轻度富集重硫为特征。通常将成矿热液的总 硫同位素分为 3 种类型^[19]: ①&³⁴S) 值接近于 0, 一般 认为是地幔源或是地壳深部大量物质均一化的结果: ② (^{34}S) 值为较大的正值(+ 20×10⁻³左右),多认为 来自于海水或沉积地层; ③β³⁴S)值介于上述两种类 型之间(+ $5 \times 10^{-3} \sim + 15 \times 10^{-3}$), 被认为是局部围 岩或混合来源。从表 3 可看出,本区的硫同位素 δ (³⁴S) 多为+ 5×10⁻³~+ 15×10⁻³, 硫来自局部围岩 或混合来源。中矿带黑色钙质千枚岩中黄铁矿的 $\delta(^{34}S) = -6.15 \times 10^{-3}$, 具生物硫的特征, 与岩层生物 有机质发育相一致。多数硫化物的 δ(³⁴S) 值接近花 岗岩的硫同位素组成 $(-4 \times 10^{-3} - + 9 \times 10^{-3})$, 与邓 家山铅锌矿床硫同位素组成相似。

表 3 小沟里一三羊坝金矿硫同位素组成

Table 3 Composition of sulfur isotope of

V:	1: 0	1.1	1
Alaogou	1+ Sanyangi	ba gola	deposit

地质产状	测试矿物	δ(³⁴ S) / 10 ⁻³
含金(方解)石英脉	方铅矿	+ 4.36
蚀变花岗岩		+ 5.22
黑色钙质千枚岩		- 6.15
1 号矿体	黄铁矿	+ 5.16
4 号矿体		+ 13.63
蚀变岩		+ 4.88
4 号矿体	闪锌矿	+ 11.26

测试单位:国土资源部宜昌矿产地质研究所测试室。

4.2 铅同位素

小沟里 —三羊坝金矿床的铅同位素组成(表 4) 显示, 矿石的铅同位素²⁰⁶ Pb/²⁰⁴ Pb = 18. 201 ~ 18.222, ²⁰⁷ Pb/²⁰⁴ Pb = 15. 628~15.782, ²⁰⁸ Pb/²⁰⁴ Pb = 38.452~38.508; 含金石英脉的铅同位素²⁰⁶ Pb/²⁰⁴ Pb = 18.140~18.701, ²⁰⁷ Pb/²⁰⁴ Pb = 15.601~ 15.796, ²⁰⁸ Pb/²⁰⁴ Pb = 38.374~39.340; 花岗岩的铅 同位素²⁰⁶ Pb/²⁰⁴ Pb = 18.407~18.519, ²⁰⁷ Pb/²⁰⁴ Pb = 15.648~15.766, ²⁰⁸ Pb/²⁰⁴ Pb = 38.877~39.175; 铁 白云石石英钠长岩的铅同位素²⁰⁶ Pb/²⁰⁴ Pb = 18.405 ~ 18.419, ²⁰⁷ Pb/²⁰⁴ Pb = 15.801~15.826, ²⁰⁸ Pb/ ²⁰⁴ Pb= 38.883~39.115。在铅同位素构造演化模 式图(图3)中,铅同位素多数投影在上部地壳铅线 和造山带铅线附近,仅有个别的样品投于造山带铅 线与地幔铅线之间,这显示出壳幔混合来源的特点。 与北部的安家岔金矿相似^[17],与硫同位素显示的信 息也基本一致。

图 3 小沟里-三羊坝金矿铅同位素构造演化模式图 (底图据文献[21])

Fig. 3 Tectonic model of lead isotope evolution for Xiaogouli-Sanyangba gold deposit

5 流体包裹体特征

5.1 流体包裹体类型

采取含金石英脉中的石英流体包裹体作为测试 对象。样品中包裹体十分发育,形态多样、种类繁 多,单相-三相包体共存,以气液两相包裹体为主, 以 CO₂ 含量高、出现 CO₂ 液相包体为特征,富 CO₂ 的包体占包体总量的 25%。

5.2 包体成分

采用爆裂–超波提取法和激光拉曼法分析。包 体成分测试结果(表 5,表 6)表明,成矿流体液相成 分属 Na⁺ (K⁺) – Ca²⁺ (Mg²⁺) – CF 型。主成矿 期: K⁺ / Na⁺ = 0. 53, F⁻ / Cl⁻ = 0. 02, Na⁺ / (Ca²⁺ + Mg²⁺) = 3.93~13.6, SO²⁻ 仅在激光拉曼法测试时 部分包体有微量显示;气相成分复杂,以 CO₂ 和 H₂O 为主,其次为 CO, H₂, H₂S 和 CH₄。成矿流体 以低盐度为主, w(NaCl) = 7.2%~11.5%。中低温 H₂O 体系包裹体< 10, 中高温 CO₂+ H₂O 体系包裹 体> 10;流体密度 ρ_{iik} = 0.776~0.936 g/cm³, 主成 矿期高于晚期; pH 值相对稳定(6.65~6.7), 显弱 碱性。流体成分中以 CO₂, Na⁺ 和 K⁺ 为主, 并且具 有富 Cl⁻, 低 Ca²⁺ 和 M g²⁺, 低盐度、弱碱性的特征。 表 4 小沟里一三羊坝金矿铅同位素组成

Table 4 Lead isotope composition of Xiaogouli-Sanyangba gold deposit

			e . e	e 1	
采样位置	测试矿物	²⁰⁶ Pb/ ²⁰⁴ Pb	207 Pb/ 204 Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	资料来源
25 号含金方解石英脉	╈╓┎┢	18.140	15.601	38.374	立 赤(12)
4 号含金石英脉	刀扣W	18.197	15.672	38.447	X HA[15]
1号矿体	苦牲矿	18.222	15.782	38.452	☆ 赤+[12]
4 号矿体	與 仄 1/	18.201	15.628	38. 508	X HA [13]
蚀变花岗岩脉		18.519	15.648	39.175	
花岗闪长岩脉		18.407	15.766	38.877	
铁白云石石英钠长岩	黄铁矿	18.405	15.826	39.115	文献[20]
		18.419	15.801	38.883	
含金石英脉		18.701	15.796	39.340	

表 5 小沟里一三羊坝金矿包裹体的气相成分及参数

Table 5 Gas phase parameters and composition of fluid inclusion in Xiaogouli-Sanyangba gold deposit

HY 므		气相	目成分 w _B /1	0-6		$\delta(13 C_{ac}) m m/10=3$		扑 度(N-Cl)/(/
1775	H_2O	CO_2	CO	CH_4	${\rm H}_{2}$	= 0(+ C(0 ₂) pDB/10	hu JE	mj v (NaCl) / %
1	2080	878.8	0.15	0.05	0.02	- 0.89	6.65	9.1~11.3
2	520	383.5	0.05	0.01	0.07	- 3.31	6.7	7.2~ 11.5

测试单位:国土资源部宜昌矿产地质研究所包体组。

表 6 小沟里一三羊坝金矿包裹体的液相成分及参数

Table 6 Fluid phase parameters and composition of fluid inclusion in Xiaogouli-Sanyangba gold deposit

#¥ 므	液相成分 w _B /10 ⁻⁶							$-V^{+}/N^{+}$	E= / C1=		
177 55	K+	N a+	Ca ²⁺	Mg^{2+}	L i+	Cl-	F-	SO_4^{2-}	$HCO_{\overline{3}}$	K / Na	r /Ci
1	0.64	0.49	0.001	0.035	0.001	1.2	0.03	0	0	1.31	0.03
2	0.75	1.42	0.29	0.071	0	2.2	0.04	0	0	0.53	0.02

测试单位:国土资源部宜昌矿产地质研究所包体组。

 $K^{+} / Na^{+} < 1, F^{-} / C\Gamma < 1, 是沉积或地下水形$ 成的流体特征, 而这两个比值大于1则是流体来自岩浆的主要证据之一^[22]; 王莉娟的研究^[23]表明, 中低温、Ca²⁺ – Na⁺ – Cl⁻型或Na⁺ – Ca²⁺ – Cl⁻型,贫K⁺和Mg²⁺的流体, 可能为大气降水及同生沉积来源的成矿流体; 而低盐度、较高温度和还原条件的CO₂+ H₂O 流体则具有变质成矿流体的共同特征。对金矿而言, 中高温、低盐度、高 CO₂ 和相对富K⁺的Na⁺ – Ca²⁺ – Cl⁻型或K⁺ (Na⁺) – Ca²⁺ – Cl⁻型流体可能是变质流体的代表性特征^[9]。从此可以看出, 小沟里一三羊坝金矿流体既具有大气降水特征, 又具变质流体特征。成矿流体来源极有可能属混合源。

5.3 均一温度

H₂O 体系包裹体的均一温度低,为 115~205 ℃,峰值区间为 140~160 ℃;主成矿期 135~205 ℃,晚期温度有所降低;CO₂+H₂O 两相或三相包体 的中高温范围为 225~335 ℃,峰值为 270 ℃。盐度 为 7.2% ~ 11.5%。结果表明成矿过程中存在两种 流体:浅部以水为主的低温流体和来自深部富 CO₂ 中高温流体的混合。

5.4 氢氧同位素特征

对矿床热液成因石英流体包裹体水氢氧、碳同 位素的分析结果表明,在成矿过程中,氢同位素保持 稳定,氧同位素具有反向漂移特征(表7)。

据研究, 西成盆地泥盆系沉积建造的氧同位素 值很高^[27]; 中国不同地区的卡林型金矿床具有较为 一致的铅源, 成矿流体均以大气降水为主, 并显示出 矿床的内生成因特点^[28]。小沟里一三羊坝金矿床 流体包裹体的氢氧同位素特征(图4)表明: 成矿过 程中有大气降水参与; 主成矿期流体碳同位素 δ (¹³C) = -3.31×10⁻³, 显示具深源性。从表 7 和图 4 可以看出, 区域范围内不同矿床的成矿流体来源 复杂, 主要为大气降水, 同时明显受到变质水或岩浆 水的影响。

表 7 小沟里—三羊坝金矿床石英氢、氧同位素组成

Table 7 Hydrogen and oxygen isotope composition of quartz in Xiaogouli-Sanyangba gold deposit

矿床	产状	δ(¹⁸ O _{H2} O) _{SMOW} /10 ⁻³	δ(D _{H2} 0) _{SM OW} / 10 ⁻³	资料来源
小沟里一三羊坝金矿	20 号切层石英脉	- 4.38	- 65.5	* •
	37 号顺层石英脉	- 1.17	- 64.8	平文
	少黄铁矿石英脉(II 1)	11.45	- 73.55	
安家岔金矿	黄铁矿碳酸盐石英脉(II 2)	10.19	- 77. 2	据文献[24]
	黄铁矿石英碳酸盐脉(II 3)	11.09	- 72.45	
邓家山	6号团块状矿石	10.98	- 65.5	
	1号矿体硅岩	13. 27	- 87.9	据文献[25]
	9 号矿体团块状矿石	10.36	- 70. 2	
	1号矿体	- 8.9	- 73	
	含矿碳质硅岩	+ 1.3	- 87	据文献[26]
	含矿方解重晶石岩	- 8.6	- 82	

测试单位:国土资源部宜昌矿产地质研究所同位素室。

- 图 4 小沟里一三羊坝金矿床 δ(¹⁸ O) δ(D) 图解
 Fig. 4 δ(¹⁸ O) δ(D) Plot of
 Xiaogouli Sanyangba gold deposit
 O. 小沟里一三羊坝金矿床
 (1. 20 号切层石英脉 2. 37 号顺层石英脉)
 - □. 安家岔金矿床 ■. 邓家山铅锌矿床(据文献[25])
 ▲. 邓家山铅锌矿床(据文献[26])
- 6 结论

(1) 黄铁矿的 Co/Ni 比值为 1 或大于 1, 反映成 矿物质主要来自于岩浆热液。稀土总量 w(REE) = 6.07 × 10⁻⁶ ~ 227.20 × 10⁻⁶, 轻稀土 w(LREE) = 4.89 × 10⁻⁶ ~ 167.00 × 10⁻⁶, 重稀土 w(HREE) = 1.18 × 10⁻⁶ ~ 60.20 × 10⁻⁶, LREE/HREE = 1.372 ~ 4.582, La_N/Yb_N = 7.079~ 16.855, δ (Eu) = 0.54 ~ 0.80, δ (Ce) = 0.81~ 1.04。围岩、矿石和含金石 英脉的稀土元素标准化模式曲线相似, 以弱 Eu 和 Ce 的负异常、缓右倾曲线为特征, 而稀土总量依次 减少。

(2) 硫同位素 $\mathfrak{A}^{34}S$) = - 6. 15 × 10⁻³ ~ + 13.62 × 10⁻³, 平均+ 5.48 × 10⁻³, 显示出硫的多源性特 点; 铅同位素具有壳幔混合源的特征。

(3) 小沟里 —三羊坝金矿床中的流体包裹体主 要为气液两相, 另有液相包裹体和气相包裹体。成 矿流体的液相成分阳离子以 Na^{+} 和 K^{+} 为主, 阴离 子主要以 Cl^{-} 为主; 气相成分以 H_2O 和 CO_2 为主。

(4)小沟里一三羊坝金矿床中的流体包裹体的
 均一温度为 115~205 ℃;盐度为 7.2%~11.5%。

(5)小沟里一三羊坝金矿床的氢氧同位素显示 成矿流体以大气降水为主,并受变质水和岩浆水的 影响。

参考文献:

- [1] 杜子图, 吴淦国. 西秦岭地区构造体系及金矿成矿构造动力学[M]. 北京: 地质出版社, 1998.
- [2] 肖力,张继武,崔龙,等.西秦岭地区金矿控矿因素和资源潜力 分析[J].黄金,2008,29(7):12-17.
- [3] 赵彦庆, 叶得金, 李永琴, 等. 西秦岭大水金矿的花岗岩成矿作 用特征[J]. 现代地质, 2003, 17(2):15-156.
- [4] 路彦明,李汉光,陈勇敢.西秦岭寨上金矿床中石英和绢云母 ⁴⁰Ar/³⁹Ar 定年[J]. 矿床地质,2006,25(5):590-597.
- [5] 张复新.秦岭浸染型金矿与热水沉积铅-锌矿地球化学特征 及其富集关系——值得重视的成矿系列和找矿方向[J].西北 地质,1996,17(2):13-17.
- [6] 张复新,马建秦,陈衍景.秦岭卡林型金矿床金、砷地球化学探 讨[J].地球化学,1999,28(5):453-463.
- [7] 张旺定,龙晓平,张复新. 南秦岭地块构造背景与金矿类型[J]. 西北地质科学,2000,21(2):28-36.
- [8] 张传林,杨志华,朱立华,等.甘肃西和一成县地区区域构造演 化[J].中国区域地质,1998,17(2):208-212.

- [9] 杜远生,黎观城,赵锡文.西秦岭西成地区泥盆系研究新进展[J].地球科学,1988,13(5):487-493.
- [10] 张复新,季军良,龙灵利,等. 南秦岭卡林型- 似卡林型金矿 床综合地质地球化学特征[J]. 地质论评, 2001, 47(5): 492-499.
- [11] 卢纪英,李作华,张复新,等.秦岭板块金矿床[M].西安:陕 西科技出版社,2001:375-378.
- [12] 张复新,陈衍景,李超,等. 金龙山-丘岭金矿床地质地球化
 学特征及成因:秦岭式卡林型金矿床成矿动力学机制[J].中 国科学 D 辑,2000,30(增刊):73-81.
- [13] 张旺定.甘肃西成地区金、铅锌矿床成矿系列与时空分布规 律[D].西安:西北大学,2001.
- [14] 祁思敬,李英.秦岭泥盆系铅锌矿带[M].北京:地质出版社, 1993.
- [15] 赵振华.微量元素地球化学原理[M].北京:科学出版社, 1997: 224-225.
- [16] 牟保磊.元素地球化学[M].北京:北京大学出版社,1999.
- [17] 李万华. 安家岔矿床地质特征(科研报告)[R]. 银川:核工业 西北地勘局 217 大队, 1995.
- [18] 谢文安. 湘东南硫化物矿床中黄铁矿的地球化学标型特征及 其地质意义[J]. 地质与勘探, 1982(6): 38-41.
- [19] 刘伟. 冀西石湖金矿床地球化学特征、矿床成因及成矿预测 研究[D]. 长沙:中南大学, 2007.

- [20] 吴烈善,韦龙明,卢汉堤,等.甘肃西成地区层状的花岗质岩脉地质地球化学特征及其与金矿关系[J].矿产与地质, 1997,11(5):303-308.
- [21] DOE B R, ZARTMAN R E. Plum botectonics [M] # Barnes H L. Geochemistry of Hydrothermal Ore Deposits, Tinehart and Winston, New York, 1979: 22-70.
- [22] 卢焕章,李秉伦,等. 包裹体地球化学[M]. 北京: 地质出版 社, 1990: 1-246.
- [23] 王莉娟. 华北地台北缘及北邻地区铜、铅、锌、锡矿床流体包裹体研究[J]. 矿床地质, 1998, 17(3): 256-263.
- [24] 李万华. 安家岔矿床地质特征[R].银川:核工业部 217 队, 1995.
- [25] 曾章仁,刘廷朝,魏宽义.邓家山铅锌矿床地质特征及成因——秦岭热水沉积型铅锌(铜)矿床[M].北京:地质出版 社,1993.
- [26] 王集磊,何伯墀,李健中,等.中国秦岭型铅锌矿床[M].北 京:地质出版社,1996: +36.
- [27] 张复新,陈衍景,李超,等. 金龙山一丘岭金矿床地质地球化 学特征及成因:秦岭式卡林型金矿床成矿动力学机制[J].中 国科学 D辑,2000,30(增刊):73-81.
- [28] 张贻侠, 寸圭, 刘连登. 中国金矿床: 进展与思考[M]. 北京: 地质出版社, 1996.

Geochemical characteristics of Xiaogouli-Sanyangba gold deposit of Xihe-Chengxian basin in Gansu province

KANG Yalong¹, LIU Ji shun¹, ZHANG Wang ding², YIN Li jun¹

(1. School of geosciences and environmental engineering, Central South University, Changsha 410083, China; 2. Xinjiang Institute of Geological Exploration for Nonferrous Resources, Urumqi 830000, China)

Abstract: On the basis of detailed investigation of geological setting and ore deposit features, this paper deals with geochemistry and sulfur and lead isotopes of Xiaogouli-Sanyangba gold deposit in Xihe Chengxian basin, Gansu province. The results show that the Co/Ni of pyrite is mostly more than 1 indicating that the ore-forming material is derived from magmatie-hydrothermal fluid. The total REE and LREE/HREE from 6.07×10^{-6} to 227. 20×10^{-6} , and from 1. 372 to 4. 582 with light REE enrichment. The REE pattern of surrounding rocks is similar to that of ores and gold-bearing quartz veins. The normalized REE pattern is gently right inclined with weak Eu negative anomaly. The sulfur isotope composition is $\delta(^{34}S)$ from -6.15×10^{-3} to $+13.62 \times 10^{-3}$ with typical multi-resource signature of fluid. The lead isotope composition is of the mixed crust-mantle origin. M ineral inclusions is mainly in 2 phases, gas and liquid. Analysis showed that in liquid pahse Na⁺, K⁺ are the dominant cation and Cl⁻ the dominant anion, in gas phase H₂O and CO₂ dominant. The homogenization temperature, salinity range in 115 °C to 205 °C and 7. 2% to 11.5% respectively. The ore fluid is mainly composed of meteoric water.

Key Words: geochemistry; Xiaogouli-Sanyangba gold deposit; REE geochemistry; Xihe-Chengxian basin fluid enclusion geochemistry; Gansu province