超级喷发(超级侵入)后成矿作用

罗照华, 周久龙, 黑慧欣, 刘翠, 苏尚国. 超级喷发(超级侵入)后成矿作用[J]. 岩石学报, 2014, 30(11): 3131-3154.
引用本文: 罗照华, 周久龙, 黑慧欣, 刘翠, 苏尚国. 超级喷发(超级侵入)后成矿作用[J]. 岩石学报, 2014, 30(11): 3131-3154.
LUO ZhaoHua, ZHOU JiuLong, HEI HuiXin, LIU Cui, SU ShangGuo. Post-supereruption (-superintrusion) metallogenesis[J]. Acta Petrologica Sinica, 2014, 30(11): 3131-3154.
Citation: LUO ZhaoHua, ZHOU JiuLong, HEI HuiXin, LIU Cui, SU ShangGuo. Post-supereruption (-superintrusion) metallogenesis[J]. Acta Petrologica Sinica, 2014, 30(11): 3131-3154.

超级喷发(超级侵入)后成矿作用

  • 基金项目:

    本文受中国地质调查局地质调查项目(1212011220921、1212011121266、12120113094100、1212011121075、12120114020901)、973项目(2011CB808901)和中俄国际合作项目(RFBR14-05-91162-NSFC)联合资助.

Post-supereruption (-superintrusion) metallogenesis

  • 本文仿照超级喷发的概念定义了超级侵入,并将超级火山对应于大型岩基.文章聚焦于这样一个科学问题:为什么大规模成矿作用发生在紧接着超级喷发和超级侵入之后?为此,首先探讨了峨嵋山地幔柱系统的活动规律.尽管少数学者对玄武质岩浆大规模喷出之前的千米级地壳隆升提出了质疑,峨嵋山火山岩系第一旋回底部玄武岩直接覆盖在喀斯特之上的新观察支持千米级隆升的认识.这表明,峨嵋山地幔柱快速上涌之初期,岩石圈子系统在相当长一段时间没有作出伸展响应,尽管局部已经发生了地壳岩石的部分熔融.因此,岩浆通道形成之后,首先喷出了巨厚层玄武岩,并且后者裹挟了部分长英质岩浆.此后,岩浆喷发的规模振荡性减小,直至消失和地表沉降.斜长石巨斑玄武岩和苦橄岩中橄榄石斑晶与基质间的不平衡表明这些晶体属于循环晶,暗示岩浆曾经在深部岩浆房滞留了相当长的时间,这将导致岩石圈受热膨胀和再次隆升以及岩浆的冻结.因此,下一阶段岩浆活动的开始要求有一个冻结岩浆房的活化机制.依据野外地质学和岩相学观察,文章详细描述了流体活化机制,并强调了提出这种机制的必要性.虽然多数作者偏好升温活化机制,流体活化机制对长英质和镁铁质岩浆成矿系统都是必需的.进而,结合地幔名义无水矿物的H2O丰度及其对岩浆产生过程的贡献,提出岩浆产量与减压速率正相关而与流体产量反相关的观点.尽管水流体可以有效降低地幔橄榄岩的固相线温度从而有可能提高岩浆产量,新生代玄武岩中橄榄岩包体依然含有未分解的角闪石和云母且名义无水矿物依然含有较多的H2O,表明快速减压条件下含水暗色矿物的分解反应和名义无水矿物的脱水作用都是低效的.将这种认识与峨嵋山地幔柱系统的振荡性运动结合在一起,结合成矿作用的基本解是成矿金属从流体中析出的认识,可以得出超大型矿床必然形成于超级喷发和超级侵入之后.攀枝花式铁矿的观察表明,两类代表性矿床都具有铁矿浆侵位发生在成矿系统演化最后阶段的特点.因此得出结论:超大型矿床的形成取决于岩浆通道向流体通道的转换.如果岩浆通道在尚未完全封闭之前被含矿流体所利用,大规模流体快速上升将产生超大型矿床.含矿流体透过残留于通道中的熔体上升,不仅冲刷通道中的残留熔体并使其聚集在火山岩系之下或侵位于其下部形成含矿小岩体,而且持续注入于小岩浆体中的含矿流体可以导致岩浆强烈分异形成层状岩体.当通道中残留熔体被消耗殆尽,沿着通道上升的只有含矿流体.这些含矿流体充填在自生长裂隙中并强烈排气,最终可形成矿浆型富矿体.考虑到通道的规模与关闭速率的关系,推测超级喷发/侵入发生时的岩浆主通道更容易转换为含矿流体通道,因而是圈定找矿靶区的首选目标.该模型似乎与观察结果相吻合,并可与岩浆成矿系统的复杂性、小岩体成大矿理论、透岩浆流体成矿理论和通道成矿假说有机地结合在一起,较合理解释了超级喷发/侵入后成矿作用的地球动力学背景和成矿过程.由于长英质和镁铁质岩浆系统中均可见岩基,我们建议将这类成矿作用统称为岩基后成矿作用.
  • 加载中
  • [1]

    Anderson DL. 2001. Top-down tectonics? Science, 293(5537): 2016-2018

    [2]

    Ardia P, Hirschmann MM, Withers AC and Tenner TJ. 2012. H2O storage capacity of olivine at 5~8GPa and consequences for dehydration partial melting of the upper mantle. Earth and Planetary Science Letters, 345-348: 104-116

    [3]

    Audétat A and Keppler H. 2004. Viscosity of fluids in subduction zones. Science, 303(5657): 514-516

    [4]

    Bachmann O and Bergantz GW. 2006. Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. Journal of Volcanology and Geothermal Research, 149(1-2): 85-102

    [5]

    Bachmann O and Bergantz GW. 2008. Deciphering magma chamber dynamics from styles of compositional zoning in large silicic ash flow sheets. Reviews in Mineralogy & Geochemistry, 69(1): 651-674

    [6]

    Baker DR. 1998. Granitic melt viscosity and dike formation. Journal of Structural Geology, 20(9-10): 1395-1404

    [7]

    Bryan SE and Ernst RE. 2008. Revised definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4): 175-202

    [8]

    Bureau H and Keppler H. 1999. Complete miscibility between silicate melts and hydrous fluids in the upper mantle: Experimental evidence and geochemical implications. Earth and Planetary Science Letters, 165(2): 187-196

    [9]

    Burgisser A, Bergantz GW and Breidenthal RE. 2005. Addressing complexity in laboratory experiments: The scaling of dilute multiphase flows in magmatic systems. Journal of Volcanology and Geothermal Research, 141(3-4): 245-265

    [10]

    Burgisser A and Bergantz GW. 2011. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature, 471(7337): 212-215

    [11]

    Campbell IH and Griffiths RW. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99(1-2): 79-93

    [12]

    Campbell IH. 2005. Large igneous provinces and the mantle plume hypothesis. Elements, 1(5): 265-269

    [13]

    Candela PA. 1997. A review of shallow, ore-related granites: Textures, volatiles, and ore metals. Journal of Petrology, 38(12): 1619-1633

    [14]

    Cheng LL, Yang ZF, Zeng L, Wang Y and Luo ZH. 2014. Giant plagioclase growth during storage of basaltic magma in Emeishan Large Igneous Province, SW China. Contributions to Mineralogy and Petrology, 167: 1-20

    [15]

    Chung SL and Jahn BM. 1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 23(10): 889-892

    [16]

    Couch S, Sparks RSJ and Carroll MR. 2001. Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature, 411(6841): 1037-1039

    [17]

    Green DH, Hibberson WO, Kovács I and Rosenthal A. 2010. Water and its influence on the lithosphere-asthenosphere boundary. Nature, 467(7314): 448-451

    [18]

    Griffiths RW and Campbell IH. 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99(1-2): 66-78

    [19]

    Guijón R, Henríquez F and Naranjo JA. 2011. Geological, geographical and legal considerations for the conservation of unique iron oxide and sulphur flows at El Laco and lastarria volcanic complexes, Central Andes, Northern Chile. Geoheritage, 3(4): 299-315

    [20]

    Hao YL, Huang QS, Zhang XR and Shi RD. 2011. Re-Os isotopes of Dali picrite (Yunnan): New constraints on the formation of Emeishan Large Igneous Province. Acta Petrologica Sinica, 27(10): 2937-2946 (in Chinese with English abstract)

    [21]

    He B, Xu YG, Chung SL, Xiao L and Wang YM. 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth Planet. Sci. Lett., 213(3-4): 391-405

    [22]

    He B, Xu YG, Guan JP and Zhong YT. 2010. Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism. Lithos, 119(1-2): 1-9

    [23]

    Heinrich CA. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Mineralium Deposita, 39(8): 864-889

    [24]

    Herzberg C and O'Hara MJ. 1998. Phase equilibrium constraints on the origin of basalts, picrites, and komatiites. Earth-Science Reviews, 44(1-2): 39-79

    [25]

    Herzberg C and O'Hara MJ. 2002. Plume-associated ultramafic magmas of Phanerozoic age. Journal of Petrology, 43(10): 1857-1883

    [26]

    Hirschmann MM, Tenner T, Aubaud C and Withers T. 2009. Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Physics of the Earth and Planetary Interiors, 176(1-2): 54-68

    [27]

    Ito G, Shen Y, Hirth G and Wolfe CJ. 1999. Mantle flow, melting, and dehydration of the Iceland mantle plume. Earth and Planetary Science Letters, 165(1): 81-96

    [28]

    Ito G. 2001. Reykjanes 'V'-shaped ridges originating from a pulsing and dehydrating mantle plume. Nature, 411(6838): 681-684

    [29]

    Jerram DA and Martin VM. 2008. Understanding crystal populations and their significance through the magma plumbing system. In: Annen C and Zellmer G (eds.). Dynamics of Crustal Magma Transfer, Storage and Differentiation. Geological Society Special Publication No. 304: 133-148

    [30]

    John DA. 2008. Supervolcanoes and metallic ore deposits. Elements, 4(1): 22

    [31]

    Kerr AC and Arndt NT. 2001. A note on the IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology, 42(11): 2169-2171

    [32]

    Langmuir CH, Klein EM and Plank T. 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In: Phipps Morgan J, Blackman DK, and Sinton JM (eds.). Mantle Flow and Melt Generation at Mid-Ocean Ridges. Washington DC: American Geophysical Union, 183-280

    [33]

    Langmuir CH and Forsyth DW. 2007. Mantle meltlng beneath mid-ocean ridges. Oceanography, 20(1): 78-89

    [34]

    Li CS, Lightfoot PC, Amelin Y and Naldrett AJ. 2000. Contrasting petrological and geochemical relationships in the Voisey's Bay and Mushuau Intrusions, Labrador, Canada: Implications for ore genesis. Economic Geology, 95(4): 771-799

    [35]

    Li DD, Luo ZH, Zhou JL, Yang ZF and Liu C. 2011. Constraints of dike thicknesses on the metallogenesis and its application to Shihu gold deposit. Earth Science Frontiers, 18(1): 166-178 (in Chinese with English abstract)

    [36]

    Li HM, Mao JW, Xu ZB, Chen YC, Zhang CQ and Xu H. 2004. Copper mineralization characteristics of the Emeishan basalt district in the Yunnan-Guizhou border area. Acta Geoscientica Sinica, 25(5): 495-502 (in Chinese with English abstract)

    [37]

    Liang T. 2010. Genesis and constraints from deep processes for Antuoling porphyry-type molybdenum deposit. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-183 (in Chinese with English summary)

    [38]

    Liao ZW and Hu GD. 2006. Geological characters and mineralization of nontraditional copper mineral resources, Emeishan basalt in Northwest Guizhou. Geological Science and Technology Information, 25(5): 47-56 (in Chinese with English abstract)

    [39]

    Lightfoot PC and Zotov IA. 2014. Geological relationships between the intrusions, country rocks, and Ni-Cu-PGE sulfides of the Kharaelakh intrusion, Noril'sk region: Implications for the roles of sulfide differentiation and metasomatism in their genesis. Northwestern Geology, 47(1): 1-36

    [40]

    Liu PP, Qin KZ, Su SG, Tang DM, Su BX and Sun H. 2010. Characteristics of multiphase sulfide droplets and its implications for conduit-style mineralization of Tulargen Cu-Ni deposit, eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 26(2): 523-532 (in Chinese with English abstract)

    [41]

    Luo ZH, Marakushev AA, Paniakh HH and Su SG. 2000. The origin of copper-nickel sulfide deposits: Exemplified by Norilsk (Russia) and Jinchuan (China). Mineral Deposits, 19(4): 330-339 (in Chinese with English abstract)

    [42]

    Luo ZH, Mo XX, Lu XX, Chen BH, Ke S, Hou ZQ and Jiang W. 2007a. Metallogeny by transmagmatic fluids-theoretical analysis and field evidence. Earth Science Frontiers, 14(3): 165-183 (in Chinese with English abstract)

    [43]

    Luo ZH, Huang ZM and Ke S. 2007b. An overview of granitoid. Geological Review, 53(Suppl.1): 180-226 (in Chinese with English abstract)

    [44]

    Luo ZH, Lu XX, Chen BH, Li ML, Liang T, Huang F and Yang ZF. 2009. Introduction to the Metallogenic Theory on the Transmagmatic Fluids. Beijing: Geological Publishing House, 1-177 (in Chinese with English abstract)

    [45]

    Luo ZH, Lu XX, Xu JY, Liu C and Li DD. 2010. Petrographic indicators of the ore-bearing intrusions. Acta Petrologica Sinica, 26(8): 2247-2254 (in Chinese with English abstract)

    [46]

    Luo ZH. 2011. The metallogenic functions of the strong fluid-melt interaction. Acta Mineralogica Sinica, (Suppl.1): 503-504 (in Chinese)

    [47]

    Luo ZH, Lu XX, Liu C, Li DD, Yang ZF and Wen SB. 2011. On failing of the magmatic hydrothermal metallogenic theory: The causes and the new departure. Journal of Jilin University (Earth Science Edition), 41(1): 1-11 (in Chinese with English abstract)

    [48]

    Luo ZH, Chen BH, Jiang XM, Wang ZQ and Wang YH. 2012. A preliminary attempt for targeting prospecting districts using the wide composition spectrum dikes warms: An example of the South Alatao Mountains, Xinjiang, China. Acta Petrologica Sinica, 28(7): 1949-1965 (in Chinese with English abstract)

    [49]

    Luo ZH, Yang ZF, Dai G, Cheng LL and Zhou JL. 2013. Crystal populations of igneous rocks and their implications in genetic mineralogy. Geology in China, 40(1): 176-181 (in Chinese with English abstract)

    [50]

    Milholland CS and Presnall DC. 1998. Liquidus phase relations in the CaO-MgO-Al2O3-SiO2 system at 3.0GPa: The aluminous pyroxene thermal divide and high-pressure fractionation of picritic and komatiitic magmas. Journal of Petrology, 39(1): 3-27

    [51]

    Miller CF and Wark DA. 2008. Supervolcanoes and their explosive supereruptions. Elements, 4: 11-16

    [52]

    Naldrett AJ. 2004. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration. Berlin, Heidelberg: Springer-Verlag, 1-728

    [53]

    Park JCF. 1961. A magnetite "flow" in northern Chile. Economic Geology, 56(2): 431-441

    [54]

    Qian ZZ, Zhang ZJ, Jiang CY, Hou SG and Tang DM. 2006. Tracer for ore-forming material sources of copper deposits in Emeishan basalt area of Northeast Yunnan. Mineral Deposits, 25(Suppl.1): 91-94 (in Chinese with English abstract)

    [55]

    Rohrbach A, Schuth S, Ballhaus C, Münker C, Matveev S and Qopoto C. 2005. Petrological constraints on the origin of arc picrites, New Georgia Group, Solomon Islands. Contrib. Mineral. Petrol., 149(6): 685-698

    [56]

    Sheth HC. 2007. 'Large Igneous Provinces (LIPs)': Definition, recommended terminology, and a hierarchical classification. Earth-Science Reviews, 85(3-4): 117-124

    [57]

    Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41

    [58]

    Tang ZL. 2002. Magmatic ore deposits in small rockbody in China. Engineering Science, 4(6): 9-12 (in Chinese with English abstract)

    [59]

    Tang ZL and Li XH. 2006. Small intrusions forming large deposits in two types of magma. Mineral Deposits, 25(S1): 35-38 (in Chinese with English abstract)

    [60]

    Tenner TJ, Hirschmann MM, Withers AC and Ardia P. 2012. H2O storage capacity of olivine and low-Ca pyroxene from 10 to 13GPa: Consequences for dehydration melting above the transition zone. Contributions to Mineralogy and Petrology, 163(2): 297-316

    [61]

    Ukstins Peate I and Bryan SE. 2008. Re-evaluating plume-induced uplift in the Emeishan large igneous province. Nature Geoscience, 1(9): 625-629

    [62]

    Ukstins Peate I, Bryan SE, Wignall PB, Jerramd DA and Ali JR. 2011. Comment on 'Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism'. Lithos, 125(3-4): 1006-1008

    [63]

    Wang M, Zhang ZC, Santosh M and Hou T. 2014. Geochemistry of Late Permian picritic porphyries and associated Pingchuan iron ores, Emeishan Large Igneous Province, Southwest China: Constraints on petrogenesis and iron sources. Ore Geology Reviews, 57: 602-617

    [64]

    Xu YG and Chung SL. 2001. The Emeishan large igneous province: Evidence for mantle plume activity and melting conditions. Geochimica, 30: 1-9

    [65]

    Xu YG, He B, Huang XL, Luo ZY, Zhu D, Ma JL and Shao H. 2007. The debate over mantle plumes and how to test the plume hypothesis. Earth Science Frontiers, 14(2): 1-9 (in Chinese with English abstract)

    [66]

    Yang SH. 1983. Approach to character and genesis of magnetite from Kuangshan-Liangzi magnetite deposit, Yanyuan, Sichuan. Bull. Chengdu Inst. Geol. M. R., Chinese Acad. Geol. Sci. 4(2): 33-49 (in Chinese with English abstract)

    [67]

    Yang ZF. 2012. Combining quantitative textural and geochemical studies to understand the solidification processes of a granite porphyry: Shanggusi, east Qinling, China. Journal of Petrology, 53(9): 1807-1835

    [68]

    Yao ZD and Yan YQ. 1991. Re-understanding metallogenesis of the Kuangshan Liangzi-Niuchang magnitite ore deposits, Yanyuan, Sichuan. Acta Sichuan Geologica, 11(2): 117-126 (in Chinese with English abstract)

    [69]

    Zeng LG. 2011. A study on metallogenic regularity of Pingchuan iron deposit in Yanyuan County, Sichuan Province. Master Degree Thesis. Wuhan: China University of Geosciences, 1-129 (in Chinese with English summary)

    [70]

    Zhang ZC, Mahoney JJ, Mao JW and Wang FS. 2006a. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. J. Petrol, 47(10): 1997-2019

    [71]

    Zhang ZC, Mao JW, Wang FS and Pirajno F. 2006b. Native gold and native copper grains enclosed by olivine phenocrysts in a picrite lava of the Emeishan large igneous province, SW China. American Mineralogist, 91(7): 1178-1183

    [72]

    Zhang ZC, Mahoney JJ, Wang FS, Zhao L, Ai Y and Yang TZ. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China: Evidence for a plume-head origin. Acta Petrologica Sinica, 22(6): 1538-1552 (in Chinese with English abstract)

    [73]

    Зотов И А. 1989. Трансмагматические флюиды вмагматизме и рудообразовании. Москва: Наука, 214с

    [74]

    郝艳丽, 黄启帅, 张晓冉. 史仁灯. 2011. 云南大理苦橄岩的 Re-Os同位素特征: 对峨眉山大火成岩省成因的制约. 岩石学报, 27(10): 2937-2946

    [75]

    李德东, 罗照华, 周久龙, 杨宗锋, 刘翠. 2011. 岩墙厚度对成矿作用的约束: 以石湖金矿为例. 地学前缘, 18(1): 166-178

    [76]

    李厚民, 毛景文, 徐章宝, 陈毓川, 张长青, 许虹. 2004. 滇黔交界地区峨眉山玄武岩铜矿化蚀变特征. 地球学报, 25(5): 495-502

    [77]

    梁涛. 2010. 安妥岭斑岩钼矿的成因及其深部约束. 博士学位论文. 北京: 中国地质大学, 1-183

    [78]

    廖震文, 胡光道. 2006. 一种非传统铜矿资源——黔西北地区峨眉山玄武岩铜矿地质特征及成因探讨. 地质科技情报, 25(5): 47-56

    [79]

    刘平平, 秦克章, 苏尚国, 唐冬梅, 苏本勋, 孙赫. 2010. 新疆东天山图拉尔根大型铜镍矿床硫化物珠滴构造的特征及其对通道式成矿的指示. 岩石学报, 26(2): 523-532

    [80]

    罗照华, 马拉库舍夫 AA, 潘妮娅 HA, 苏尚国. 2000. 铜镍硫化物矿床的成因——以诺里尔斯克(俄罗斯)和金川(中国)为例. 矿床地质, 19(4): 330-339

    [81]

    罗照华, 莫宣学, 卢欣祥, 陈必河, 柯珊, 侯增谦, 江万. 2007a. 透岩浆流体成矿作用——理论分析与野外证据. 地学前缘, 14(3): 165-183

    [82]

    罗照华, 黄忠敏, 柯珊. 2007b. 花岗质岩石的基本问题. 地质论评, 53(增刊): 180- 226

    [83]

    罗照华, 卢欣祥, 陈必河, 李明立, 梁涛, 黄凡, 杨宗锋. 2009. 透岩浆流体成矿作用导论. 北京: 地质出版社, 1-177

    [84]

    罗照华, 卢欣祥, 许俊玉, 刘翠, 李德东. 2010. 成矿侵入体的岩石学标志. 岩石学报, 26(8): 2247-2254

    [85]

    罗照华. 2011. 流体-熔体强相互作用的成矿功能. 矿物学报, (增刊): 503-504

    [86]

    罗照华, 卢欣祥, 刘翠, 李德东, 杨宗锋, 文思博. 2011. 岩浆热液成矿理论的失败: 原因和出路. 吉林大学学报(地球科学版), 41(1): 1-11

    [87]

    罗照华, 陈必河, 江秀敏, 王章棋, 王永恒. 2012. 利用宽谱系岩墙群进行勘查靶区预测的初步尝试: 以南阿拉套山为例. 岩石学报, 28(7): 1949-1965

    [88]

    罗照华, 杨宗锋, 代耕, 程黎鹿, 周久龙. 2013. 火成岩的晶体群与成因矿物学展望. 中国地质, 40(1): 176-181

    [89]

    钱壮志, 章正军, 姜常义, 侯蜀光, 唐冬梅. 2006. 滇东北地区峨眉山玄武岩铜矿成矿物源示踪. 矿床地质, 25(增刊): 91-94

    [90]

    汤中立. 2002. 中国的小岩体岩浆矿床. 中国工程科学, 4(6): 9-12

    [91]

    汤中立, 李小虎. 2006. 两类岩浆的小岩体成大矿. 矿床地质, 25(增刊): 35-38

    [92]

    徐义刚, 何斌, 黄小龙, 罗震宇, 朱丹, 马金龙, 邵辉. 2007. 地幔柱大辩论及如何验证地幔柱假说. 地学前缘, 14(2): 1-9

    [93]

    杨时惠. 1983. 四川盐源矿山梁子磁铁矿床磁铁矿特征及成因探讨. 中国地质科学院成都地质矿产研究所所刊, 4(2): 33-49

    [94]

    姚祖德, 燕永清. 1991. 四川盐源矿山梁子-牛厂铁矿成因再认识. 四川地质学报, 11(2): 117-126

    [95]

    曾令高. 2011. 四川盐源平川铁矿床成矿规律研究. 硕士学位论文. 武汉: 中国地质大学,1-129

    [96]

    张招崇, Mahoney JJ, 王福生, 赵莉, 艾羽, 杨铁铮. 2006. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学: 地幔柱头部熔融的证据. 岩石学报, 22(6): 1538-1552

  • 加载中
计量
  • 文章访问数:  7719
  • PDF下载数:  6860
  • 施引文献:  0
出版历程
收稿日期:  2014-02-28
修回日期:  2014-06-15
刊出日期:  2014-11-30

目录