腾冲新生代火山作用流体组成及其来源——火山岩流体化学组成和碳同位素制约

余明, 汤庆艳, 张铭杰, 何佩佩, 尚慧, 李立武. 腾冲新生代火山作用流体组成及其来源——火山岩流体化学组成和碳同位素制约[J]. 岩石学报, 2014, 30(12): 3635-3644.
引用本文: 余明, 汤庆艳, 张铭杰, 何佩佩, 尚慧, 李立武. 腾冲新生代火山作用流体组成及其来源——火山岩流体化学组成和碳同位素制约[J]. 岩石学报, 2014, 30(12): 3635-3644.
YU Ming, TANG QingYan, ZHANG MingJie, HE PeiPei, SHANG Hui, LI LiWu. Compositions and origin of volatiles in Tengchong Cenozoic volcanism from SE margin of the Tibetan Plateau: Constraints from chemical and carbon isotopic compositions of volatiles in volcanic rocks[J]. Acta Petrologica Sinica, 2014, 30(12): 3635-3644.
Citation: YU Ming, TANG QingYan, ZHANG MingJie, HE PeiPei, SHANG Hui, LI LiWu. Compositions and origin of volatiles in Tengchong Cenozoic volcanism from SE margin of the Tibetan Plateau: Constraints from chemical and carbon isotopic compositions of volatiles in volcanic rocks[J]. Acta Petrologica Sinica, 2014, 30(12): 3635-3644.

腾冲新生代火山作用流体组成及其来源——火山岩流体化学组成和碳同位素制约

  • 基金项目:

    本文受国家自然科学基金项目(41372095、41072056)、教育部科学与技术研究重大项目(311010)、中国地质调查局项目(12120114044401)和高等学校博士学科点专项科研基金(20120211110023)联合资助.

详细信息

Compositions and origin of volatiles in Tengchong Cenozoic volcanism from SE margin of the Tibetan Plateau: Constraints from chemical and carbon isotopic compositions of volatiles in volcanic rocks

More Information
  • 腾冲新生代火山区是青藏高原唯一幔源挥发份大量排放的火山-地热区,大规模火山作用的流体组成的系统研究具有多方面的科学意义。对腾冲马鞍山、老龟坡和打鹰山等地新生代火山岩进行流体化学组成和碳同位素分析,结果表明腾冲新生代火山岩的流体组成中H2O占有极高的比例,CO2、N2和O2的含量较高,而且不同火山区的流体组成有所差异。CO2的δ13C值为-27.1‰~-7.5‰,位于地壳和地幔范围之间;CH4、C2H6、C3H8和C4H10等甲烷同系物的碳同位素组成随碳数增高具有整体正序、C2H6与C3H8局部反序的分布特征,显示海洋环境I型有机质热裂解成因烃类气体的特征。腾冲火山作用中存在地幔来源的CO2,岩浆存在轻微的CO2去气作用。含碳流体挥发份主要表现为俯冲大洋板片脱出流体挥发份的加入,特别是俯冲洋壳沉积有机质热裂解产物,大量的H2O可能来源于岩浆上升过程中围岩流体或再循环流体的加入,不同火山区岩浆上升演化的差异造成了流体组成的不同。
  • 加载中
  • [1]

    Birkle P, Merkeb B, Portugal E and Torres AIS. 2001. The origin of reservoir fluids in the geothermal field of Los Azufres, Mexico: Isotopic and hydrological indications. Applied Geochemistry, 16(14): 1595-1610

    [2]

    Carapezza ML and Federicob C. 2000. The contribution of fluid geochemistry to the volcano monitoring of Stromboli. Journal of Volcanology and Geothermal Research, 95(1-4): 227-245

    [3]

    Chen F, Satir M, Ji J and Zhong D. 2002. Nd-Sr-Pb isotopes of Tengchong Cenozoic volcanic rocks from western Yunnan, China: Evidence for an enriched-mantle source. Journal of Asian Earth Sciences, 21(1): 39-45

    [4]

    Cheng ZH, Guo ZF, Zhang ML and Zhang LH. 2012. CO2 flux estimations of hot springs in the Tengchong Cenozoic volcanic field, Yunnan Province, SW China. Acta Petrologica Sinica, 28(4): 1217-1224 (in Chinese with English abstract)

    [5]

    Chiodini G, Caliroa S, Cardellini C, Avino R, Granieri D and Schmidt A. 2008. Carbon isotopic composition of soil CO2 efflux: A powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth and Planetary Science Letters, 274 (3-4): 372-379

    [6]

    Cong BL, Chen QY, Zhang RY, Wu GY and Xu P. 1994. Petrogenesis of Cenozoic volcanic rocks in Tengchong region of western Yunnan Province, China. Science in China (Series B), 24(4): 441-448 (in Chinese)

    [7]

    Deines P. 1992. Mantle carbon: Concentration, mode of occurrence and isotopic composition. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM and Trudinger PA (eds.). Early Organic Evolution. Berlin: Springer-Verlag, 133-146

    [8]

    Duan ZH, Møller N and Weare JH. 1992. An equation of state for the CH4-CO2-H2O system I. pure systems from 0 to 1000℃ and 0 to 8000bar. Geochimica et Cosmochimica Acta, 56(7): 2605-2617

    [9]

    Fan QC, Liu RX, Wei HQ et al. 1999. The magmatic evolution of the active volcano in the Tengchong Area. Geological Review, 45(7): 895-904 (in Chinese with English abstract)

    [10]

    Fan QC, Sui JL and Liu RX. 2001. Sr-Nd isotopic geochemistry and magmatic evolutions of Wudalianchi Volcano, Tianchi Volcano and Tengchong Volcano. Acta Petrologica et Mineralogica, 20(3): 233-238 (in Chinese with English abstract)

    [11]

    Giggenbach WF. 1997. The origin and evolution of fluids in magmatic-hydrothermal systems. In: Barnes HL (ed.). Geochem. Hydrotherm. Ore Deposits. 3rd Edition. Wiley, 737-796

    [12]

    Guo ZF, Zhang ML, Cheng ZH, Liu JQ, Zhang LH and Li XH. 2011. A link of measurements of lava flows to Palaeoelevation estimations and its application in Tengchong volcanic eruptive field in Yunnan Province (SW China). Acta Petrologica Sinica, 27(10): 2863-2872 (in Chinese with English abstract)

    [13]

    Javoy M and Pineau F. 1991. The volatiles record of a "popping" rock from the Mid-Atlantic Ridge at 14oN: Chemical and isotopic composition of gas trapped in the vesicles. Earth and Planetary Science Letters, 107(3-4): 598-611

    [14]

    Jiang CS. 1998. Tengchong region Cenozoic volcanic activity stage. Journal of Seismological Research, 21(4): 320-329 (in Chinese with English abstract)

    [15]

    Li N and Zhang LY. 2011. A study on volcanic minerals and hosted melt inclusions in newly-erupted Tengchong volcanic rocks, Yunnan Province. Acta Petrologica Sinica, 27(10): 2842-2854 (in Chinese with English abstract)

    [16]

    Li X and Liu JQ. 2012. A study on the geochemical characteristics and petrogenesis of Holocene volcanic rocks in the Tengchong volcanic eruption field, Yunnan Province, SW China. Acta Petrologica Sinica, 28(5): 1507-1516 (in Chinese with English abstract)

    [17]

    Lou H, Wang CY, Huangfu G and Qin JZ. 2002. Three-dimensional seismic velocity tomography of the upper crust in Tengchong volcanic area, Yunnan Province. Acta Seismmologica Sinica, 24(3): 243-251 (in Chinese with English abstract)

    [18]

    Mu ZG, Tong W and Curtis GH. 1987. Times of volcanic activity and origin of magma in Tengchong geothermal area, West Yunnan Province. Acta Geophysica Sinica, 30(3): 261-270 (in Chinese with English abstract)

    [19]

    Pineau F and Mathez EA. 1990. Carbon isotopes in xenoliths from the Hualalai volcano, Hawaii, and the generation of isotopic variability. Geochimica et Cosmochimica Acta, 54(1): 217-227

    [20]

    Ren JG, Wang XB and Ouyang ZY. 2005. Mantle-derived CO2 in hot springs of the Rehai geothermal field, Tengchong, China. Acta Geologica Sinica, 79(3): 426-431

    [21]

    Schoell M. 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et Cosmochimica Acta, 44(5): 649-661

    [22]

    Shangguan ZG, Sun ML and Li HZ. 1999. Active types of modem geothermal fluids at the Tengchong region, Yunnan Province. Seismology and Geology, 21(4): 435-442 (in Chinese with English abstract)

    [23]

    Shangguan ZG, Bai CH and Sun ML. 2000. Gas emission characteristics of modem mantle-derived magma in Tengchong geothermal field. Science in China (Series D), 30(4): 407-414 (in Chinese)

    [24]

    Shangguan ZG, Zhao CP, Li HZ, Gao QW and Sun ML. 2004. Evolutionary characteristics of recent hydrothermal explosions in the Tengchong Rehai volcanic geothermal region. Bulletin of Mineralogy, Petrology and Geochemistry, 23(2): 124-128 (in Chinese with English abstract)

    [25]

    Shangguan ZG, Zhao CP, Li HZ, Gao Q and Sun ML. 2005. Evolution of hydrothermal explosions at Rehai geothermal field, Tengchong volcanic region, China. Geothermics, 34(4): 518-526

    [26]

    Sherwood LB, Frape SK, Weise SM, Fritz P, Macko SA and Welhan JA. 1993. Abiogenic methanogenesis in crystalline rocks. Geochimica et Cosmochimica Acta, 57(23-24): 5087-5097

    [27]

    Tang QY, Zhang MJ, Li XY, Cong YN and Li LW. 2012. The chemical and carbon isotopic compositions of volatiles in Cenozoic high-potassic basalts in western Qinling, China and their mantle geodynamic implications. Acta Petrologica Sinica, 28(4): 1251-1260 (in Chinese with English abstract)

    [28]

    Tang QY, Zhang MJ, Li C, Yu M and Li LW. 2013. The chemical compositions and abundances of volatiles in the Siberian large igneous province: Constraints on magmatic CO2 and SO2 emissions into the atmosphere. Chemical Geology, 339: 84-91

    [29]

    Tang QY, Zhang MJ, Yu M, Zhang TW, Liu JZ and Zhang MC. 2013. Pyrolysis constraints on the generation mechanism of shale gas. Journal of China Coal Society, 38(5): 742-747 (in Chinese with English abstract)

    [30]

    Taran YA, Bernard A, Gavilanes JC, Lunezheva E, CortéSc A and Armienta MA. 2001. Chemistry and mineralogy of high-temperature gas discharges from Colima Volcano, Mexico: Implications for magmatic gas atmosphere interaction. Journal of Volcanology and Geothermal Research, 108(1-4): 245-264

    [31]

    Taran YA, Fischer TP, Cienfuegos E and Morales P. 2002. Geochemistry of hydrothermal fluids from an intraplate ocean island: Everman Volcano, Socorro Island, Mexico. Chemical Geology, 188(1-2): 51-63

    [32]

    Trull T, Nadean S, Pineau F, Polve M and Javoy M. 1993. C-He systematics in hotspot xenoliths: Implications for mantle carbon contents and carbon recycling. Earth and Planetary Science Letters, 118(1-4): 43-64

    [33]

    Ueno Y, Yamada K, Yoshida N, Maruyama S and Isozaki Y. 2006. Evidence from fluidinclusions for microbial methanogenesisin the early Archaean era. Nature, 440: 516-519

    [34]

    Wang XB, Xu S, Chen JF, Sun ML, Xue XF and Wang WY. 1993. Composition of gases and isotopic ratios of helium from thermal springs of Tengchong volcanic region. Chinese Science Bulletin, 38(9): 814-818 (in Chinese)

    [35]

    Wang Y, Zhang XM, Jiang CS, Wei RQ and Wan JL. 2007. Tectonic controls on the Late Miocene-Holocene volcanic eruptions of the Tengchong volcanic field along the southeastern margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 30(2): 375-389

    [36]

    Xu CL, Zhao WT, He YY and Li DP. 2012. Geochemistry of Cenozoic volcanic rocks from Tengchong, western Yunnan. Marine Geology and Quaternary Geology, 32(2): 65-74 (in Chinese with English abstract)

    [37]

    Xu S, Nakai SI, Wakita H and Wang XB. 2004. Carbon and noble gas isotopes in the Tengchong volcanic geothermal area, Yunnan, southwestern China. Acta Geologica Sinica, 78(5): 1122-1135

    [38]

    Xu S, Zheng GD, Nakai SI, Wakita S, Wang XB and Guo ZF. 2013. Hydrothermal He and CO2 at Wudalianchi intra-plate volcano, NE China. Journal of Asian Earth Sciences, 62: 526-530

    [39]

    Zhang MJ, Wang XB, Liu G, Wen QB and Li LW. 1998. Fluid composition and carbon and oxygen isotope geochemistry of Cenozoic alkali basalts in eastern China. Chinese Journal of Geochemistry, 18(3): 276-282

    [40]

    Zhang MJ, Wang XB and Li LW. 2000. An appraisal of different experimental method in the determination of fluid composition in mantle-derived rock. Geological Review, 46(2): 160-166 (in Chinese with English abstract)

    [41]

    Zhang MJ, Wang XB, Liu G, Zhang TW and Bo WR. 2004. The compositions of upper mantle fluids beneath eastern China. Acta Geologica Sinica, 78(1): 125-130

    [42]

    Zhang MJ, Hu PQ, Niu YL and Su SG. 2007. Chemical and stable isotopic constraints on the nature and origin of volatiles in the subcontinental lithospheric mantle beneath eastern China. Lithos, 96(1-2): 55-66

    [43]

    Zhang MJ, Niu YL and Hu PQ. 2009. Volatiles in the mantle lithosphere. In: Anderson JE and Coates RW (eds.). The Lithosphere. New York: Nova Science, 171-212

    [44]

    Zhang MJ, Tang Q, Hu PQ, Ye XR and Cong YN. 2013. Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu-(PGE) sulfide ore-bearing ultramafic intrusion, Western China. Chemical Geology, 339: 301-312

    [45]

    Zhang YT, Liu JQ and Meng FC. 2012. Geochemistry of Cenozoic volcanic rocks in Tengchong, SW China: Relationship with the uplift of the Tibetan Plateau. Island Arc, 21(4): 255-269

    [46]

    Zhao CP, Ran H and Wang Y. 2012. Present-day mantle-derived helium release in the Tengchong volcanic field, Southwest China: Implications for tectonics and magmatism. Acta Petrologica Sinica, 28(4): 1189-1204 (in Chinese with English abstract)

    [47]

    Zhao YW and Fan QC. 2010. Magma origin and evolution of Maanshan volcano, Dayingshan volcano and Heikongshan volcano in Tengchong area. Acta Petrologica Sinica, 26(4): 1133-1140 (in Chinese with English abstract)

    [48]

    Zheng YF, Fu B and Zhang XH. 1996. Effects of magma degassing on the carbon and sulfur isotope compositions of igneous rocks. Scientia Geologica Sinica, 31(1): 43-53 (in Chinese with English abstract)

    [49]

    Zhou MF, Robinson PT, Wang CY, Zhao JH, Yan DP, Gao JF and Malpas J. 2012. Heterogeneous mantle source and magma differentiation of Quaternary arc-like volcanic rocks from Tengchong, SE margin of the Tibetan Plateau. Contributions to Mineralogy and Petrology, 163(5): 841-860

    [50]

    Zhou ZH, Xiang CY and Yang HL. 2000. Geochemistry of the isotopes in the volcanic rocks in Tengchong, China. Journal of Seismological Research, 23(2): 194-200 (in Chinese with English abstract)

    [51]

    成智慧, 郭正府, 张茂亮, 张丽红. 2012. 腾冲新生代火山区温泉CO2气体排放通量研究. 岩石学报, 28(4): 1217-1224

    [52]

    丛柏林, 陈秋瑗, 张儒瑗, 吴根耀, 徐平. 1994. 中国滇西腾冲新生代火山岩的成因. 中国科学(B辑), 24(4): 441-448

    [53]

    樊祺诚, 刘若新, 魏海泉等. 1999. 腾冲活火山的岩浆演化. 地质论评,45(增): 895-904

    [54]

    樊祺诚, 隋建立, 刘若新. 2001. 五大连池火山、天池火山和腾冲火山岩Sr、Nd同位素地球化学与岩浆演化. 岩石矿物学杂志, 20(3): 233-238

    [55]

    郭正府, 张茂亮, 成智慧, 刘嘉麒, 张丽红, 李晓惠. 2011. 火山"熔岩流气泡古高度计"及其在云南腾冲火山区的应用. 岩石学报, 27(10): 2863-2872

    [56]

    姜朝松. 1998. 腾冲地区新生代火山岩活动分期. 地震研究, 21(4): 320-329

    [57]

    李霓, 张柳毅. 2011. 云南腾冲新期火山岩矿物及其熔体包裹体研究. 岩石学报, 27(10): 2842-2854

    [58]

    李欣, 刘嘉麒. 2012. 云南腾冲全新世火山岩地球化学特征及其成因. 岩石学报, 28(5): 1507-1516

    [59]

    楼海, 王椿镛, 皇甫岗, 秦嘉政. 2002. 云南腾冲火山区上部地壳三维地震速度层析成像. 地震学报, 24(3): 243-25

    [60]

    穆治国, 佟伟, Curtis GH. 1987. 腾冲火山活动的时代和岩浆来源问题. 地球物理学报, 30(3): 261-270

    [61]

    上官志冠, 孙明良, 李恒忠. 1999. 云南腾冲地区现代地热流体活动类型. 地震地质, 21(4): 435-442

    [62]

    上官志冠,白春华,孙明良. 2000. 腾冲热海地区现代幔源岩浆气体释放特征.中国科学(D辑), 30(4): 407-414

    [63]

    上官志冠, 赵慈平, 李恒忠, 高清武, 孙明良. 2004. 腾冲热海火山地热区近期水热爆炸的阶段性演化特征. 矿物岩石地球化学通报, 23(2): 124-128

    [64]

    汤庆艳, 张铭杰, 李晓亚, 丛亚楠, 李立武. 2012. 西秦岭新生代高钾质玄武岩流体组成及其地幔动力学意义. 岩石学报, 28(4): 1251-1260

    [65]

    汤庆艳, 张铭杰, 余明, 张同伟, 刘金钟, 张茂超. 2013. 页岩气形成机制的生烃热模拟研究. 煤炭学报, 38(5): 742-747

    [66]

    王先彬, 徐胜, 陈践发, 孙明良, 薛啸峰, 王文懿. 1993. 腾冲火山区温泉气体组分和氦同位素组成特征. 科学通报, 38(9): 814-817

    [67]

    徐翠玲, 赵广涛, 何雨旸, 李德平. 2012. 滇西腾冲新生代火山岩岩石地球化学特征. 海洋地质与第四纪地质, 32(2): 65-74

    [68]

    张铭杰, 王先彬, 刘刚, 文启斌, 李立武. 1998. 中国东部新生代碱性玄武岩中的流体组成及其碳、氧同位素地球化学特征. 地球化学, 27(5): 452-457

    [69]

    张铭杰, 王先彬, 李立武. 2000. 对幔源岩中流体组成不同测定方法的评价. 地质论评, 46(2): 160-166

    [70]

    赵慈平, 冉华, 王云. 2012. 腾冲火山区的现代幔源氦释放: 构造和岩浆活动意义. 岩石学报, 28(4): 1189-1204

    [71]

    赵勇伟, 樊祺诚. 2010. 腾冲马鞍山、打鹰山、黑空山火山岩浆来源与演化. 岩石学报, 26(4): 1133-1140

    [72]

    郑永飞, 傅斌, 张学华. 1996. 岩浆去气作用的碳硫同位素效应. 地质科学, 31(1): 43-53

    [73]

    周真恒, 向才英, 杨海林. 2000. 腾冲火山岩同位素地球化学研究. 地震研究, 23(2): 194-200

  • 加载中
计量
  • 文章访问数:  5828
  • PDF下载数:  5957
  • 施引文献:  0
出版历程
收稿日期:  2014-01-05
修回日期:  2014-05-29
刊出日期:  2014-12-31

目录