热液金刚石压腔在地质流体研究中的应用

周义明. 热液金刚石压腔在地质流体研究中的应用[J]. 岩石学报, 2003, 19(2): 213-220.
引用本文: 周义明. 热液金刚石压腔在地质流体研究中的应用[J]. 岩石学报, 2003, 19(2): 213-220.
I-Ming CHOU 954 National Center,U.S. Geological Survey,Reston,VA 20192,U.S.A.. Hydrothermal diamond-anvil cell: application to studies of geologic fluids[J]. Acta Petrologica Sinica, 2003, 19(2): 213-220.
Citation: I-Ming CHOU 954 National Center,U.S. Geological Survey,Reston,VA 20192,U.S.A.. Hydrothermal diamond-anvil cell: application to studies of geologic fluids[J]. Acta Petrologica Sinica, 2003, 19(2): 213-220.

热液金刚石压腔在地质流体研究中的应用

  • 基金项目:

    国家自然科学基金,中国科协和中国科学院出版基金

Hydrothermal diamond-anvil cell: application to studies of geologic fluids

  • 热液金刚石压腔(HDAC)是专为模拟地壳温压条件下的地质作用而设计的,它尤其适用于观测水或其它流体与地质物质之间的相互作用。HDAC可时-190~1200℃,0~10GPa的热液体系进行实验,并可在实验的温压条件下.用各种先进的光学方法分析样品,更可以把实验的全程录像存档。充满流体的HDAC本身就可当做是一个人工合成的流体包裹体。因此它可以用来研究流体的状态方程和相关系。它又可时其它流体包裹体样品施加外压力,因此在热分析的过程中可免除包裹体的膨胀或爆破的困境。HDAC可应用到颇为宽广的温压范围,它已被广泛地用来观测各种化学体系的临界现象,包括在地质方面特别有用的含水硅酸盐体系。HDAC也可与同步辐射X光源相结合,而取得各种金属或稀土元素水溶液的x射线吸收精细结构(X-ray absorption fine structure;XAFS)光谱,因而时在热液里的金属或稀土元素络合物的组分和结构提供了最基本的资料。然而,X光的强度在透过金刚石时,因绕射和吸收而大大地减弱,因此应用一般的HDAC来获取那些吸收边在10keV以下的元素的XAFS光谱颇为困难。目前已有两种改良式的HDAC解除了这方面的困难,而时在元素周期表上的第一排过渡性金属元素和稀土元素的水溶液,提供清晰的XAFS光谱。这些资料可用来研究金属或稀土元素络合物在地质热液里的特性,及其在元素迁移和成矿作用方面的效应。而这些元素在地质应用方面特别重要。
  • 加载中
  • [1]

    [1]Abramson E, and Brown J M. 2002. Speed of sound and equation of state of water at high pressures and temperatures. EOS,83(47): F1379

    [2]

    [2]Anderson A J, and Chou I-Ming. 1999. Direct observation of crystallization in thesystem NaAlSi3O8-SiO2-LiAlSiO4-H2O using the hydrothermal diamond anvil cell: Insightsinto the formation of gem pockets in miarolitic pegmatites. Joint Annual Meeting ofGeological Association of Canada and Mineralogical Association of Canada, May 26-28, 1999,Sudbury, Canada, 24: 2

    [3]

    [3]Anderson A J, Jayanetti S, Mayanovic R A, Bassett W A, and Chou I-Ming. 2002. X-rayspectroscopic investigations of fluids in the hydrothermal diamond anvil cell: Thehydration structure of aqueous La3+ up to 300℃ and 1600 bars. American Mineralogist, 87:262 - 268

    [4]

    [4]Bassett W A, Shen A H, Bucknum M, and Chou I-Ming. 1993. A new diamond anvil cellfor hydrothermal studies to 10 GPa and -190℃ to 1100℃: Reviews of ScientificInstruments, 64 (8): 2340 - 2345

    [5]

    [5]Bassett W A, Wu T C, Chou I-Ming, Haselton H T, Jr., Frantz J, Mysen B O, Huang WL, Sharma K, and Schiferl D. 1996. The hydrothermal diamond anvil cell (HDAC) and itsapplications. In: "Mineral Spectroscopy: A Tribute to Roger G. Burns", M.D.Dyar, C. McCammon, and M.W. Schaefer eds., The Geochemical Society Special Publication No.5: 261 - 272

    [6]

    [6]Bassett W A, Anderson A J, Mayanovic R A, and Chou I-Ming. 2000a. Hydrothermaldiamond anvil cell for XAFS studies of first-row transition elements in aqueous solutionup to supercritical conditions. Chemical Geology, 167: 3 - 10

    [7]

    [7]Bassett W A, Reichmann H J, Angel R J, Spetzler H, and Smyth J R. 2000b. Newdiamond anvil cells for gigahertz ultrasonic interferometry and X-ray diffraction.American Mineralogist, 85: 283~287

    [8]

    [8]Bassett W A, Anderson A J, Mayanovic R A, and Chou I-Ming. 2000c. Modifiedhydrothermal diamond anvil cells for XAFS analyses of elements with low energy absorptionedges in aqueous solutions at sub- and supercritical conditions. Zeitschrift f黵Kristallographie, 215: 711 - 717

    [9]

    [9]Bodnar R J, and Sterner S M. 1987. Synthetic fluid inclusions. In Hydrothermalexperimental Techniques (ed. G C Ulmer and H L Barnes), 423-457. Wiley

    [10]

    [10]Bureau H, and Keppler H. 1999. Complete miscibility between silicate melts andhydrous fuids in the upper mantle: experimental evidence and geochemical implications.Earth and Planetary Science Letters, 165:187-196

    [11]

    [11]Chou I-Ming, Shen A H, and Bassett W A. 1994. Applications of the hydrothermaldiamond-anvil cells in fluid-inclusion research, in De Vivo, B., and Frezzotti, M.L., ed.,Fluid Inclusions in Minerals: Methods and Applications. Short course of the working group(IMA) "Inclusions in Minerals", 215 - 230

    [12]

    [12]Chou I-Ming, Bassett W A, and Bai T B. 1995. Hydrothermal diamond-anvil cell studyof melts: Eutectic melting of the assemblage Ca(OH)2-CaCO3 with excess H2O and lack ofevidence for "portlandite II" phase. American Mineralogist, 80: 865 - 868

    [13]

    [13]Chou I-Ming, and Anderson A J. 1998. Direct observation of low temperature meltingin the system petalite-quartz-H2O using a hydrothermal diamond-anvil cell: methods andgeological implications. Goldschmidt Conference, Toulouse, France. Mineralogical Magazine,62A: 327 - 328

    [14]

    [14]Chou I-Ming, Blank J G, Goncharov A F, Mao Ho-kwang, and Hemley R J. 1998. In situobservations of a high-pressure phase of H2O ice. Science, 281: 809 - 812

    [15]

    [15]Chou I-Ming. 2000a. The hydrothermal diamond-anvil cell for geologicalapplications. The second World Chinese Conference on Geological Sciences, extendedabstracts with programs, A-384 - 388

    [16]

    [16]Chou I-Ming, Sharma A, Burruss R C, Shu Jinfu, Mao Ho-kwang, Hemley R J, GoncharovA F, Stern L A, and Kirby S H. 2000b. Transformations in methane hydrates. Proceedings ofNational Academy of Sciences, 97(25): 13484 - 13487

    [17]

    [17]Chou I-Ming, Sharma A, Burruss R C, Hemley R J, Goncharov A F, Stern L A, andKirby S H. 2001. Diamond-anvil cell observations of a new methane hydrate phase in the100-MPa pressure range. Journal of Physical Chemistry A, 105: 4664 - 4668

    [18]

    [18]Cooper A, Wood B J, and Ragnarsdottir K V. 1998. The properties of carbonatedfluids in the system Na2CO3-H2O and K2CO3-H2O to 1000℃ and 20 kbar. GoldschmidtConference, Toulouse, France. Mineralogical Magazine, 62A: 347 - 348

    [19]

    [19]Darling R S, and Bassett W A. 2002. Analysis of natural H2O-CO2-NaCl fluidinclusions in the hydrothermal diamond anvil cell. American Mineralogist, 87: 67 - 78

    [20]

    [20]Frantz J D, Dubessy J, and Mysen B O. 1994. Ion-pairing in aqueous MgSO4 solutionsalong an isochore to 500℃ and 11 kbar using Raman spectroscopy in conjunction with thediamond-anvil cell. Chemical Geology, 116: 181 - 188

    [21]

    [21]Gehrig M, Lentz H, and Franck E U. 1986. The system water-carbon dioxide-sodiumchloride to 773 K and 300 MPa. Berichte der Bunsen-Gesellschaft f黵 Physikalische Chemie,90: 525 - 533

    [22]

    [22]Haar L, Gallagher J S, and Kell G S. 1984. NBS/NRC steam tables: Thermodynamic andtransport properties and computer programs for vapor and liquid states of water in SIunits, 320 p. Hemisphere, Washington, D.C.

    [23]

    [23]Haselton H T, Jr., Chou I-Ming, Shen A H, and Bassett W A. 1995. Techniques fordetermining pressure in the hydrothermal diamond-anvil cell: The behavior of icepolymorphs (I, III, V, VI): American Mineralogist, 80: 1302 - 1306

    [24]

    [24]Hosieni K R, Howald R A, and Scanlon M W. 1985. Thermodynamics of the lambdatransition and the equation of state of quartz. American Mineralogist, 70: 782 - 793

    [25]

    [25]Hu Shuming, and Zhang Ronghua. 2000. Study of aqueous solutions at elevatedtemperatures and pressures using hydrothermal diamond anvil cell and in-situ FT-IRspectroscopy. The second World Chinese Conference on Geological Sciences, extendedabstracts with programs, A-399 - 404

    [26]

    [26]Huang W L, Bassett W A, Wu T C. 1994. Dehydration and hydration of montmorilloniteat elevated temperatures and pressures monitored using synchrotron radiation. AmericanMineralogist, 79: 683 - 691

    [27]

    [27]Huang W, and Otten G A. 2001. Cracking kinetics of crude oil and alkanesdetermined by diamond anvil cell-fluorescence spectroscopy pyrolysis: techniquedevelopment and preliminary results. Organic Chemistry, 32: 817 - 830

    [28]

    [28]Jayanetti S, Mayanovic R A, Anderson A J, Bassett W A, and Chou I-Ming. 2001. Analysis of radiation-induced small Cu particle cluster formation in aqueous CuCl2. Journal of Chemical Physics, 115: 954 - 962

    [29]

    [29]King H E, Jr, Herbolzheimer E, and Cook R L. 1992. The diamond-anvil cell as ahigh-pressure viscometer. J. Appl. Phys., 71(5): 2071 - 2081

    [30]

    [30]Li Zhao-lin. 2000. Application of hydrothermal diamond anvil cell to geology andthe experiment in synthesis of methane hydrates. Earth Science Frontiers, 7(1):271 - 285(in Chinese with English abstract)

    [31]

    [31]Mayanovic R A, Anderson A J, Bassett W A, and Chou I-Ming. 1999. XAFS measurementson zinc chloride aqueous solutions from ambient to supercritical conditions using thediamond anvil cell. Journal of Synchrotron Radiation, 6: 195 -197

    [32]

    [32]Mayanovic R A, Anderson A J, Bassett W A, and Chou I-Ming. 2001. Hydrogen bondbreaking in aqueous solutions near the critical point. Chemical Physics Letters, 336: 212- 218

    [33]

    [33]Mayanovic R A, Jayanetti S, Anderson A J, Bassett W A, and Chou I-Ming. 2002. Thestructure of Yb3+ aquo ion and chloro complexes in aqueous solutions at up to 500℃ and270 MPa. Journal of Physical Chemistry, 106: 6591 - 6599

    [34]

    [34]Mayanovic R A, Jayanetti S, Anderson A J, Bassett W A, and Chou I-Ming. 2003. Relaxation of the structure of simple metal ion complexes in aqueous solutions at up tosupercritical conditions. Journal of Chemical Physics, 118(2): 719 - 727

    [35]

    [35]Peacock S M. 1996. Thermal and petrologic structure of subduction zones, in: G EBebout, D W Scholl, S H Kirby, and J P Platt (eds.), Subduction top to bottom. AGUGeophys. Monogr., 96: 119 -133

    [36]

    [36]Poli S, Schmidt M W. 1995. H2O transport and release in subduction zones:experimental constraints on basaltic and andesitic systems. J. Geophys. Res., 100: 22299 -22314

    [37]

    [37]Schmidt C, Chou I-Ming, Bodnar R J, and Bassett W A. 1998. Microthermometricanalysis of synthetic fluid inclusions in the hydrothermal diamond-anvil cell. AmericanMineralogist, 83: 995 - 1007

    [38]

    [38]Schmidt C, and Bodnar R J. 2000. Synthetic fluid inclusions: XVI. PVTX propertiesin the system H2O-NaCl-CO2 at elevated temperatures, pressures, and salinities. Geochim.Cosmochim. Acta, 64: 3853 - 3869

    [39]

    [39]Schmidt C, and Ziemann M A. 2000. In-situ Raman spectroscopy of quartz: A pressuresensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. AmericanMineralogist, 85: 1725 - 1734

    [40]

    [40]Schmidt C, and Rickers K. 2003. In-situ determination of mineral solubilities influids using a hydrothermal diamond-anvil cell and SR-XRF: solubility of AgCl in water.American Mineralogist, 88: 288- 292

    [41]

    [41]Seward T M, and Barnes H L. 1997. Metal transport by hydrothermal ore fluids. In:Geochemistry of hydrothermal ore deposits. 3rd ed. H.L. Barnes (ed.). New York John Wiley& Sons, Inc. 435- 486

    [42]

    [42]Sharma A, Cody G D, Goncharov A, Hazen R M, Hemley R J, Mao Ho-kwang, and ChouI-Ming. 2000. Direct observations on the hydrothermal organic synthesis reactions withimplications on CO2 phase behavior at high pressure and temperature. EOS, 81: S38

    [43]

    [43]Sharma A, Scott, J H, Cody, G D, Fogel, M L, Hazen, R M, Hemley, R J, andHuntress, W T. 2002. Microbial activity at gigapascal pressures. Science, 295: 1514 -1516

    [44]

    [44]Shen A H, Bassett W A, and Chou I-Ming. 1993a. The α-β quartz transitionobserved at simultaneous high temperatures and high pressures in a diamond-anvil cell bylaser interferometry: American Mineralogist, 78: 694 - 698

    [45]

    [45]Shen,A H, Chou I-Ming, and Bassett W A. 1993b. Experimental determination ofisochores of H2O in a diamond-anvil cell up to 1200 MPa and 860℃ with preliminaryresults in the NaCl-H2O system. Proceedings of the 4th International Symposium onHydrothermal Reactions, 235 - 239

    [46]

    [46]Shen A, and Keppler H. 1995a. Direct observations of supercritical behaviour inalbite-H2O system. Nature, 358: 710 - 714

    [47]

    [47]Shen A, and Keppler H. 1995b. Infrared spectroscopy of hydrous silicate melts to1000℃ and 10 kbar: Direct observation of H2O speciation in a diamond-anvil cell,American Mineralogist, 80: 1335 - 1338

    [48]

    [48]Shen A H, Hammon L T, and Zheng H. 2000. Direct observation of dehydration ofmelts in the K2O-SiO2-CO2-H2O system. EOS, 81: S37

    [49]

    [49]Smith J, Abramson E H, and Brown J M. 2002. Viscosity of fluids in the diamondanvil cell. EOS, 83: F1379 -1380

    [50]

    [50]Sowerby J R, and Keppler H, 2002. The effect of fluorine, boron and excess sodiumon the critical curve in the albite-H2O system. Contrib. Mineral. Petrol., 143: 32 - 37

    [51]

    [51]Sterner S M, and Bodnar R J. 1984. Synthetic fluid inclusions in natural quartz.I: Compositional types synthesized and applications in experimental geochemistry. Geochim.Cosmochim. Acta, 48: 2659 - 2668

    [52]

    [52]Stein C A, and Stein A. 1992. A model for the global variation in oceanic depthand heat flow with lithospheric age. Nature, 359: 123 - 129

    [53]

    [53]Wu T C, Shen A H, Weathers M S, Bassett W A, and Chou I-Ming. 1995. Anisotropicthermal expansion of calcite at high pressures: An in-situ X-ray diffraction study in ahydrothermal diamond-anvil cell. American Mineralogist, 80: 941 - 946

    [54]

    [54]Wu T C, Bassett W A, Huang W L, Guggenheim S, and Koster van Groos G F. 1997. Montmorillonite under high H2O pressure: stability of hydrate phases, rehydrationhysteresis, and the effect of interlayer cations. American Mineralogist, 82: 69-78

    [55]

    [55]Zhang Y. 1998. Mechanical and phase equilibria in inclusion-host systems. Earthand Planetary Science Letters, 157: 209 - 222

    [56]

    [56]Zotov N, and Keppler H. 2000. In-situ Raman spectra of dissolved silica species inaqueous fluids to 900 ℃ and 14 kbar. American Mineralogist, 85: 600-604

  • 加载中
计量
  • 文章访问数:  7630
  • PDF下载数:  10419
  • 施引文献:  0
出版历程
刊出日期:  2003-05-31

目录