南苏鲁芝麻房石榴石橄榄岩中橄榄石的“C”类组构及其形成条件探讨

许志琴 陈晶 王勤 曾令森 杨经绥 陈方远 李天福 梁凤华. 南苏鲁芝麻房石榴石橄榄岩中橄榄石的“C”类组构及其形成条件探讨[J]. 岩石学报, 2005, 21(2): 389-397.
引用本文: 许志琴 陈晶 王勤 曾令森 杨经绥 陈方远 李天福 梁凤华. 南苏鲁芝麻房石榴石橄榄岩中橄榄石的“C”类组构及其形成条件探讨[J]. 岩石学报, 2005, 21(2): 389-397.
XU ZhiQin,CHEN Jing,WANG Qin,ZENG LingSen,YANG JingSui,CHEN FangYuan,LI TianFu and LIANG FengHua Key Lab. of Continental Dynamics,Ministry of Land and Resources, Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China Institute of Physics,Peking University,Beijing 100871,China Department of Earth Sciences,Nanjing University,Nanjing 210093,China. Type-C olivine fabric in the Zhimafang garnet peridotite of the southern Sulu ultrahigh- pressure metamorphic terrane: Formation conditions and tectonic implications[J]. Acta Petrologica Sinica, 2005, 21(2): 389-397.
Citation: XU ZhiQin,CHEN Jing,WANG Qin,ZENG LingSen,YANG JingSui,CHEN FangYuan,LI TianFu and LIANG FengHua Key Lab. of Continental Dynamics,Ministry of Land and Resources, Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China Institute of Physics,Peking University,Beijing 100871,China Department of Earth Sciences,Nanjing University,Nanjing 210093,China. Type-C olivine fabric in the Zhimafang garnet peridotite of the southern Sulu ultrahigh- pressure metamorphic terrane: Formation conditions and tectonic implications[J]. Acta Petrologica Sinica, 2005, 21(2): 389-397.

南苏鲁芝麻房石榴石橄榄岩中橄榄石的“C”类组构及其形成条件探讨

  • 基金项目:

    国家重点基础研究发展规划项目(编号2003CB716504)国家自然科学基金重大项目(编号40399141),中国地质调查局地质大调查项目(编号121201056606)的成果之一

  • 上地幔地震的各向异性主要归因于橄榄石的优选方位,不同的橄榄石优选方位模式可以作为上地幔不同动力学作用的指示剂。不同应力和含水量条件下的高温变形实验已经确定出五类橄榄石组构模式(“A”型、“B”型、“C”型、“D”型和“E”型)。本运用电子背散射(EBSD)技术对来自苏鲁超高压变质带南部的芝麻房石榴石橄榄岩的橄榄石进行了优选方位测定,不同变形程度的橄榄石均显示了[100]轴近垂直于面理和[001]轴近平行于线理的特征,为“C”类组构模式,可见组构类型与变形程度没有关系,并且橄榄石组构所显示的NW向SE的剪切指向,与围岩.正、副片麻岩中形成于折返过程的石英优选方位所显示的SE向NW的剪切指向完全不同,说明芝麻房石榴石橄榄岩中橄榄石的“C”类组构是折返前形成的。结合橄榄石结构水的测量和已有的芝麻房石榴石橄榄岩形成的温压条件,推测该组构形成于含水俯冲带中,认为芝麻房石榴石橄榄岩的原岩来自于高含水的上部地慢楔碎块,与俯冲的陆壳物质一起经历了超高压变质作用并最终折返至地表。
  • 加载中
  • [1]

    Bell DR, Rossman GR, Maldener J, Endisch D, and Rauch F. 2003. Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum. Journal of Geophysical Research, 108, B2, 2105, doi: 10. 1029/2001 JB000679.

    [2]

    Ben Ismail W, Mainprice D. 1998. An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy.Tectonophysics, 269: 145 - 157.

    [3]

    Boullier AM, Nicolas A. 1975. Classification of textures and fabrics of peridotite xenoliths from South African kimberlites. Physics and Chemistry of the Earth, 9: 467 - 475.

    [4]

    Bystrick M, Kunze K, Burlini L, Burg J-P. 2000. High shear strain of olivine aggregates: rheological and seismic consequences. Science,290: 1564 - 1567.

    [5]

    Christensen NI. 1984. The magnitude, symmtry and origin of upper mantle anisotropy based on fabric analysis of ultramafic tectonics.Geophysical Journal of the Royal Astronomical Society, 76: 89 - 111.

    [6]

    Den Tex E. 1969. Origin of ultramafic rocks, their tectonic setting and history: a contribution to the discussing of the paper "The origin of ultramafic and ultrabasic rocks′ by P. J. Wyllie. Tectonophysics, 7:457 - 488.

    [7]

    Frese K, Trommsdorf V, Kunze K. 2003. Olivine [100] normal to foliation: lattice preferred orientation in prograde garnet peridotite formed at high H2 O activity, Cima di Gagnone (Central Apls).Contribution to Mineralogy and Petrology, 145:73 -86.

    [8]

    Ji SC, Zhao X, Francis D. 1994. Calibration of shear-wave splitting in the subcontinental upper mantle beneath active orogenic belts using ultramafic xenoliths from the Canadian Cordillera and Alaska.Tectonophysics, 239: 1 - 27.

    [9]

    Jung H, Karato S. 2001. Water-induced fabric transitions in olivine.Science, 293: 1460 - 1463.

    [10]

    Katayama I, Jung H, Karato S. 2004. New type of olivine fabric from deformation experiments at modest water content and low stress.Geology, 32: 1045 - 1048.

    [11]

    Li TF, Yang JS, Zhang RY. 2003. Peridotite from the pre-pilot hole (PP1) of the Chinese Continental Scientific Drilling Project and its bearing on depleted and metasomatic upper mantle. Acta Geologica Sinica, 77:492 -509 (in Chinese with English abstract).

    [12]

    Littlejohn AL, Greenwood HJ. 1974. Lherzolite nodules in basalts from British Columbia, Canada. Canadian Journal of Earth Sciences, 11:1288 - 1308.

    [13]

    Liu FL, Xu ZQ, Katayama I, Yang JS, Maruyama Sh.,Liou JG. 2001. Mineral inclusions in Zircons of para- and orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling project.Lithos, 59:199-215.

    [14]

    Mehl L, Hacker BR, Hirth G. 2003. Arc-parallel flow within the mantle wedge: evidence from the acereted Talkeenta arc, south central Alaska. Journal of Geophysical Research, 108, B8, 2375, 10.1029/2002JB002233.

    [15]

    Mercier J-CC. 1985. Olivine and pyroxenes. In: Wenk, H. -R. (Ed.),Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis. Academic Press. 407 -430.

    [16]

    Mercier J-CC, Nicolas A. 1975. Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16: 454 -487.

    [17]

    Mizukami T, Wallis SR, Yamamoto J. 2004. Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum. Nature, 427: 432 - 436.

    [18]

    Mockel JR. 1969. Structural petrology of the garnet peridotite of Aple Arami (Ticino, Switzerland). Leidse Geol. Med. , 42:61 -130.

    [19]

    Nicolas A, Christensen NI. 1987. Formation of anisotropy in upper mantle peridotites a review. In: Fuchs, K. , and Froideoaux, C.(eds.), Composition, structure and dynamics of the lithosphereasthenosphere system. Trans. ed. Washington, D. C.: AGU, 16:407 - 433.

    [20]

    Nimis P, Trommsdorff V. 2001. Revised thermobarometry of Alpe Arami and other garnet peridotites from the central Alps. Journal of Petrology, 42:103 - 115.

    [21]

    Park J, Levin V. 2002. Seismic anisotropy: tracing plate dynamics in the mantle. Science, 296: 485 - 489.

    [22]

    Paterson MS. 1982. The determination of hydroxyl by infrared absorption in quartz silicate glasses and similar materials. Bulletin of Materials,105: 20 - 29.

    [23]

    Sawaguchi T. 2004. Deformation history and exhumation process of the Horoman peridotite complex, Hokkaido, Japan. Tectonophysics,379: 109 - 126.

    [24]

    Xu ZQ, Chen J, Yang JS, Li XP, Chen FY. 2003a. Discovery of titanoclinohumite and titanochondrodite exsolution in clinopyroxene included in garnet peridotite and their significance. Acta Geologica Sinica, 77:549 -555 (in Chinese with English abstract).

    [25]

    Xu ZQ, Zhang ZM, Liu FL, Yang JS, Li HB, Yang TN, Qiu HJ, Li TF, Meng FC, Cheng SZ, Tang ZM, Chen FY. 2003b. Exhumation structure and mechanism of the Sulu ultrahigh-pressure metamorphic belt, central China. Acta Geologica Sinica, 77:433 -450 (in Chinese with English abstract).

    [26]

    Yang JJ, Jahn B-M. 2000. Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHP metamorphic terrane in China.Journal of Metamorphic Geology, 18:167-180.

    [27]

    Yang JJ, Godard G, Kienast JR, Lu Y, Sun J. 1993. Ultrahigh-pressure magnesite-bearing garnet peridotites from northeastern Jiangsu,China. Journal of Geology, 101: 541 - 554.

    [28]

    Yang JS, Xu ZQ, Wu CL, Liu FL, Shi RD, Wooden J, Maruyama S.2002. SHRIMP U-Pb dating on coesite-bearing zircon: evidence for Indosinian ultrahigh-pressure metamorphism in Su-Lu, east China.Acta Geologica Sinica, 76:354 -372 (in Chinese with English abstract).

    [29]

    Zhang RY, Liou JG. 1998. Dual origin of garnet peridotites of DabieSulu UHP terrane, eastern-central China. Episodes, 21:229-234.

    [30]

    Zhang RY, Liou JG, Yang JS, Yui TF. 2000. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. Journal of Metamorphic Geology,18:149-166.

    [31]

    Zhang S, Karato S. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375:774 -777.

    [32]

    Zhang S, Karato S, Fitz Gerald J, Faul UH, Zhou Y. 2000. Simple shear deformation of olivine aggregates. Tectonophysics, 316:133 -152.

  • 加载中
计量
  • 文章访问数:  6085
  • PDF下载数:  4164
  • 施引文献:  0
出版历程
修回日期:  2005-01-26
刊出日期:  2005-03-31

目录