中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群)

许志琴, 马绪宣. 中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群)[J]. 岩石学报, 2015, 31(12): 3509-3523.
引用本文: 许志琴, 马绪宣. 中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群)[J]. 岩石学报, 2015, 31(12): 3509-3523.
XU ZhiQin, MA XuXuan. The Chinese Phanerozoic gneiss domes: Subduction-related type, collision-related type and combination type of subduction-collision[J]. Acta Petrologica Sinica, 2015, 31(12): 3509-3523.
Citation: XU ZhiQin, MA XuXuan. The Chinese Phanerozoic gneiss domes: Subduction-related type, collision-related type and combination type of subduction-collision[J]. Acta Petrologica Sinica, 2015, 31(12): 3509-3523.

中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群)

  • 基金项目:

    本文受国家自然科学基金项目(40921001、41430212、41202153、41472198)、中国地质调查局项目(1212010818094、12120115026801)和国土资源部公益性行业基金项目(201511022、201211093)联合资助.

The Chinese Phanerozoic gneiss domes: Subduction-related type, collision-related type and combination type of subduction-collision

  • 片麻岩穹窿(gneiss dome)是中下地壳热动力学过程产生的、与岩浆作用(或混合岩化作用)密切相关的穹窿状构造。片麻岩穹窿大部分是地壳深层次变动的产物,在世界范围内几乎出露在所有的折返造山带中, 反映了所在地区地壳的大幅度抬升。片麻岩穹窿核部主要是无或弱岩浆组构的花岗岩体和高级变质岩(例如混合岩),边部是具有岩浆组构的花岗片麻岩,幔部由来自地壳深部的高级片岩和片麻岩组成。片麻岩穹窿的形成经历从垂直上升的地壳流导致的岩浆上涌的挤压收缩机制到岩浆体侵位的顶部伸展机制的转化过程。根据片麻岩穹窿的岩石组合、组构特征、成因机制和大地构造背景以及片麻岩穹窿与地壳流关系的分析,结合中国大陆典型片麻岩穹窿的研究,提出中国大陆显生宙的片麻岩穹窿和片麻岩穹窿群可以划分为与大洋岩石圈板片俯冲增生与随后的折返造山相关的"俯冲型"片麻岩穹窿(群),如秦岭片麻岩穹窿;与陆陆碰撞折返造山有关的"碰撞型"片麻岩穹窿(群),如北喜马拉雅拉轨岗日片麻岩穹窿(群)和松潘甘孜雅江片麻岩穹窿(群);与俯冲和碰撞的叠合作用有关的"复合式"片麻岩穹窿(群),如帕米尔空喀山片麻岩穹窿和东冈底斯林芝片麻岩穹窿(群)。
  • 加载中
  • [1]

    Amato JM, Wright JE, Gans PB and Miller EL. 1994. Magmatically induced metamorphism and deformation in the Kigluaik gneiss dome, Seward Peninsula, Alaska. Tectonics, 13: 515-527

    [2]

    Amato JM, Heizler MT, Boullion AO, Sanders AE, Toro J, McLemore VT and Andronicos CL. 2011. Syntectonic 1.46Ga magmatism and rapid cooling of a gneiss dome in the southern Mazatzal Province: Burro Mountains, New Mexico. GSA Bulletin, 123: 1720-1744

    [3]

    Andresen A, Augland LE, Boghdady GY, Lundmark AM, Elnady OM, Hassan MA and Abu El-Rus MA. 2010. Structural constraints on the evolution of the Meatiq Gneiss Dome (Egypt), East-African Orogen. Journal of African Earth Sciences, 57: 413-422

    [4]

    Arenas R, Martínez Catalán JR, Sánchez Martínez S, Díaz García F, Abati J, Fernández-Suárez J, Andonaegui P and Gómez-Barreiro J. 2007. Paleozoic ophiolites in the Variscan suture of Galicia (Northwest Spain): Distribution, characteristics and meaning. In: Hatcher Jr. RD, Carlson MP, McBride JH and Martínez Catalán JR (eds.). Four-D Evolution of Continental Crust. Geol. Soc. Am. Mem., 200: 425-444

    [5]

    Arnold J, Sandiford M and Wetherley S. 1995. Metamorphic events in the eastern Arunta Inlier; Part 1, Metamorphic petrology. Precambrian Research, 71: 183-205

    [6]

    Ayarza P and Martínez Catalán JR. 2007. Potential field constraints on the deep structure of the Lugo gneiss dome (NW Spain). Tectonophysics, 439: 67-87

    [7]

    Beaumont C, Jamieson RA, Nguyen MH and Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414: 738-742

    [8]

    Buick IS and Holland TJB. 1989. The P-T-t path associated with crustal extension, Naxos, Cyclades, Greece. In: Daly JS, Cliff RA and Yardley BWD. (eds.). Evolution of Metamorphic Belts. Geological Society of London, Special Publication, 43: 365-369

    [9]

    Burg JP, Guiraud M, Chen GM and Li GC. 1984. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China). Earth and Planetary Science Letters, 69: 391-400

    [10]

    Burg JP, Kaus BJP and Podladchikov YY. 2004. Dome structures in collision orogens: Mechanical investigation of the gravity/compression interplay. Geological Society of America Special Paper, 380: 47-66

    [11]

    Brown RL, Journeay JM, Lane LS, Murphy DC and Rees CJ. 1986. Obduction, back-folding and piggyback thrusting in the metamorphic hinterland of the southeastern Canadian Cordillera. Journal of Structural Geology, 8: 255-268

    [12]

    Brun JP. 1980. The cluster-ridge pattern of mantled gneiss domes in eastern Finland: Evidence for large-scale gravitational instability in the Proterozoic crust. Earth and Planetary Science Letters, 47: 441-449

    [13]

    Brun JP, Sokoutis D and Van Den Driessche J. 1994. Analogue modeling of detachment fault systems and core complexes. Geology, 22: 319-322

    [14]

    Buck WR. 1991. Modes of continental lithospheric extension. Journal of Geophysical Research, 96: 20161-20178

    [15]

    Calvert A, Gans PB and Amato JM. 1999. Diapiric ascent and cooling of a sillimanite gneiss dome revealed by 40Ar/39Ar thermochronology: The Kigluaik Mountains, Seward Peninsula, Alaska. In: Ring U et al. (eds.). Exhumation Processes: Normal Faulting, Ductile Flow, and Erosion. Geological Society of London, Special Publication, 154: 205-232

    [16]

    Cawood PA, Johnson MRW and Nemchin AA. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth and Planetary Science Letters, 255: 70-84

    [17]

    Chardon D, Choukroune P and Jayananda M. 1998. Sinking of the Dharwar Basin (South India): Implications for Archaean tectonics. Precambrian Research, 91: 15-39

    [18]

    Chen Z, Liu Y, Hodges KV, Burchfiel BC, Royden LH and Deng C. 1990. The Kangmardome: A metamorphic core complex in southern Xizang (Tibet). Science, 250: 1552-1556

    [19]

    Collins WJ, Van Kranendonk MJ and Teyssier C. 1998. Partial convective overturn of Archean crust in the East Pilbara Craton, western Australia: Driving mechanism and tectonic implications. Journal of Structural Geology, 20: 1405-1424

    [20]

    Crowley JL, Brown RL and Parrish RR. 2001. Diachronous deformation and a strain gradient beneath the Selkirk Allochthon, northern Monashee complex, southeastern Canadian Cordillera. Journal of Structural Geology, 23: 1103-1121

    [21]

    Cui JJ, Hu JM and Liu XC. 2009. Exhumation of high-pressure metamorphic terrane at the crustal levels in the Tongbai area, central China. Acta Petrologica Sinica, 25(9): 2165-2176 (in Chinese with English abstract)

    [22]

    Debon F, Le Fort P, Dautel D, Sonet J and Zimmermann JL. 1987. Granites of western Karakorum and northern Kohistan (Pakistan): A composite Mid-Cretaceous to Upper Cenozoic magmatism: Lithos, 20: 19-40

    [23]

    Denèle Y, Olivier P, Gleizes G and Barbey P. 2009. Decoupling between the middle and upper crust during transpression-related lateral flow: Variscan evolution of the Aston gneiss dome (Pyrenees, France). Tectonophysics, 477: 244-261

    [24]

    Duncan IJ. 1984. Structural evolution of the Thor-Odin gneiss dome. Tectonophysics, 101: 87-130

    [25]

    Edwards MA, Kidd WSF and Schneider DA. 2002. A guide to dome improvement, Lesson 1: Is your dome built on granite or gneiss? Geological Society of America Abstracts with Programs, 34(6): 109

    [26]

    Escuder Viruete J, Indares A and Arenas R. 2000. P-T paths derived from garnet growth zoning in an extensional setting: An example from the Tormes Gneiss Dome (Iberian Massif, Spain). Journal of Petrology, 41: 1489-1515

    [27]

    Eskola PE. 1949. The problem of mantled gneiss domes. Quarterly Journal of the Geological Society of London, 104: 461-476

    [28]

    Fayon AK, Whitney DL and Teyssier C. 2004. Exhumation of orogenic crust: Diapiric ascent versus low-angle normal faulting. Geological Society of America Special Paper, 380: 129-139

    [29]

    Fisher GW and Olsen SN. 2004. The Baltimore gneiss domes of the Maryland Piedmont. Geological Society of America Special Paper, 380: 307-320

    [30]

    Fletcher RC. 1972. Application of a mathematical model to the emplacement of mantled gneiss domes. American Journal of Science, 272: 197-216

    [31]

    Fletcher RC and Hallet B. 2004. Initiation of gneiss domes by necking, density instability, and erosion. Geological Society of America Special Paper, 380: 79-95

    [32]

    Gao LE, Zeng LS and Xie KJ. 2011. Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 56: 3078-3090 (in Chinese)

    [33]

    Gao LE, Zeng LS and Hou KJ. 2013. Episodic crustal anatexis and the formation of Paiku composite leucogranitic pluton in the Malashan gneiss dome, Southern Tibet. Chinese Science Bulletin, 58: 3546-3563

    [34]

    Gervais F, Nadeau L and Malo M. 2004. Migmatitic structures and solid-state diapirism in orthogneiss domes, eastern Grenville Province, Canada. Geological Society of America Special Paper, 380: 359-378

    [35]

    Guo L, Zhang JJ and Zhang B. 2008. Structures, kinematics, thermochronology and tectonic evolution of the Ramba gneiss dome in the northern Himalaya. Progress in Natural Science, 18: 851-860

    [36]

    Gu PY, He SP, Li RS, Wang C, Shi C, Dong ZC, Wu JL and Wang Y. 2013. Geochemical features and tectonic significance of granitic gneiss of Laguigangri metamorphic core complexes in southern Tibet. Acta Petrologica Sinica, 29(3): 756-768 (in Chinese with English abstract)

    [37]

    Harrison TM, Oscar ML and Marty G. 1997. New insight into the origin of two contrasting Himalayan granite belts. Geology, 25: 899-902

    [38]

    Jolivet L, Famin V, Mehl C, Parra T, Aubourg C, Hébert R and Philippot P. 2004. Strain localization during crustal-scale boudinage to form extensional metamorphic domes in the Aegean Sea. Geological Society of America Special Paper, 380: 185-210

    [39]

    King J, Harris N and Argles T. 2011. The contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geol. Soc. Amer. Bull., 123: 218-239

    [40]

    Kröner A, Zhang GW and Sun Y. 1993. Granulites in the Tongbai area, Qinling belt, China: Geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia. Tectonics, 12(1): 245-255

    [41]

    Lagarde JL, Dallain C, Ledru P and Courrioux G. 1994. Strain pattern within the Variscan granite dome of Velay, French Massif Central. Journal of Structural Geology, 16: 839-852

    [42]

    Ledru P, Courrioux G, Dallain C, Lardeaux JM, Montel JM, Vanderhaeghe O and Vitel G. 2001. The Velay dome (French Massif Central): Melt generation and granite emplacement during orogenic evolution. Tectonophysics, 342: 207-237

    [43]

    Lee J, Hacker BR, Dinklage WS, Wang Y, Gans P, Calvert A, Wan J, Chen W, Blythe AE and McLelland W. 2000. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics, 19: 872-895

    [44]

    Lee J, Hacker B and Wang Y. 2004. Evolution of North Himalayan gneiss domes: Structural and metamorphic studies in Mabja Dome, southern Tibet. Journal of Structural Geology, 26: 2297-2316

    [45]

    Lemennicier Y. 1996. Le complexe métamorphique du Sud Karakorum dans le secteur de Chogo Lungma (Balistan-Nord Karakorum)-Etude structurale, métamorphique, géochimique et radiochronologique. Ph.D. Dissertation. Grenoble, Université Joseph Fourier, 1-171

    [46]

    Lister GS and Davis GA. 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, USA. Journal of Structural Geology, 11: 65-94

    [47]

    Liu XC, Jahn BM, Hu J, Li SZ, Liu X and Song B. 2011. Metamorphic patterns and SHRIMP zircon ages of medium-to-high grade rocks from the Tongbei orogen, central China: Implications for multiple accretion/collision processes prior to terminal continental collision. Journal of Metamorphic Geology, 29: 979-1002

    [48]

    Mahéo G, Pêcher A, Guillot S, Rolland Y and Delacourt C. 2004. Exhumation of Neogene gneiss domes between oblique crustal boundaries in south Karakorum (northwest Himalaya, Pakistan). Geological Society of America Special Paper, 380: 141-154

    [49]

    Martínez Catalán JR, Arenas R, Díaz garcía F, Gómez-Barreiro J, Gónzalez Cuadra P, Abati J, Castieiras P, Fernández-Suárez J, Sánchez Martínez S, Andonaegui P, Gónzalez Clavijo E, Díez Montes A, Rubio Pascual FJ and Valle Aguado B. 2007. Space and time in the tectonic evolution of the northwestern Iberian Massif: Implications for the comprehension of the Variscan belt. In: Hatcher Jr. RD, Carlson MP, McBride JH and Martínez Catalán JR (eds.). Four-D Evolution of Continental Crust. Geol. Soc. Am. Mem., 200: 403-423

    [50]

    Norlander BN, Whitney DL, Teyssier C and Vanderhaeghe O. 2002. Partial melting and decompression of the Thor-Odin dome, Shuswap metamorphic core complex, Canadian Cordillera. Lithos, 61: 103-125

    [51]

    Olivier Ph, Gleizes G and Paquette JL. 2004. Gneiss domes and granite emplacement in an obliquely convergent regime: New interpretation of the Variscan Agly Massif (Eastern Pyrenees, France). Geological Society of America Special Paper, 380: 1-14

    [52]

    Paterson SR, Fowler Jr. TK, Schmidt KL, Yoshinobu AS, Yuan ES and Miller RB. 1998. Interpreting magmatic fabric patterns in plutons. Lithos, 44: 53-82

    [53]

    Pêcher A and Le Fort P. 1999. Late Miocene tectonic evolution of the Karakoram-Nanga Parbat contact zone (northern Pakistan). In: Macfarlane A, Sorkhabi RB and Quade J (eds.). Himalaya and Tibet: Mountain Roots to Mountain Tops. Boulder, Colorado: Geological Society of America Special Paper, 328: 145-158

    [54]

    Quigley MC, Yu LJ and Gregory C. 2008. U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome, southern Tibet. Tectonophysics, 446: 97-113

    [55]

    Ramberg H. 1981. Gravity, Deformation, and the Earth's Crust: In Theory, Experiments, and Geological Application. New York: Academic Press, 1-452

    [56]

    Ramsay JG and Huber MI. 1987. The Techniques of Modern Structural Geology; Volume 2: Folds and Fractures: London: Academic Press, 1-462

    [57]

    Reesor JE and Moore JM. 1971. Thor-Odin dome, Shuswap metamorphic complex, British Columbia. Geological Survey of Canada Bulletin, 195: 146

    [58]

    Rey P. 2001. From continental thickening and divergent collapse to active continental rifting. In: Miller JA et al. (eds.). Continental Reactivation and Reworking. Geological Society of London, Special Publication, 184: 77-88

    [59]

    Robinson AC, Yin A, Manning CE, Harrison TM, Zhang SH and Wang XF. 2004. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China. GSA Bulletin, 116: 953-973

    [60]

    Robinson AC, Ducea M and Lapen TJ. 2012. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir. Tectonics, 31: TC2016

    [61]

    Rolland Y, Mahéo G, Guillot S and Pêcher A. 2001. Tectono-metamorphic evolution of the Karakorum Metamorphic complex (Dassu-Askole area, NE Pakistan): Exhumation of mid-crustal HT-MP gneisses in a convergent context. Journal of Metamorphic Geology, 19: 717-737

    [62]

    Sánchez Martínez S, Arenas R, Díaz García F, Martínez Catalán JR, Gómez-Barreiro J and Pearce JA. 2007. The Careón Ophiolite, NW Spain: Supra-subduction zone setting for the youngest Rheic Ocean floor. Geology, 35: 53-56

    [63]

    Schrer U, Xu R and Allegre C. 1986. U-(Th)-Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth and Planetary Science Letters, 77: 35-48

    [64]

    Schmidt J, Hacker BR, Ratschbacher L, Stubner K, Stearns M, Kylander-Clark A, Cottle JM, Alexander A, Webb G, Gehrels G and Minaev V. 2011. Cenozoic deep crust in the Pamir. Earth and Planetary Science Letters, 312: 411-421

    [65]

    Schneider DA, Holm DK, O’Boyle C, Hamilton M and Jercinovic M. 2004. Paleoproterozoic development of a gneiss dome corridor in the southern Lake Superior region, USA. Geological Society of America Special Paper, 380: 339-357

    [66]

    Siddoway CS, Richard SM, Fanning CM and Luyendyk BP. 2004. Origin and emplacement of a Middle Cretaceous gneiss dome, Fosdick Mountains, West Antarctica. Geological Society of America Special Paper, 380: 267-294

    [67]

    Soula JC. 1982. Characteristics and mode of emplacement of gneiss domes and plutonic domes in central-eastern Pyrenees. Journal of Structural Geology, 4: 313-342

    [68]

    Spear FS, Kohn MJ, Cheney JT and Florence F. 2002. Metamorphic, thermal, and tectonic evolution of central New England. Journal of Petrology, 43: 2097-2120

    [69]

    Stipska P, Schulmann K and Hock V. 2000. Complex metamorphic zonation of the Thaya dome: Result of buckling and gravitational collapse of an imbricated nappe sequence. In: Cosgrove JW and Ameen MS (eds.). Forced Folds and Fractures. Geological Society of London, Special Publication, 169: 197-211

    [70]

    Stübner K, Ratschbacher L and Weise C. 2013. The giant Shakhdara migmatitic gneiss dome, Pamir, India-Asia collision zone: 2. Timing of dome formation. Tectonics, 32: 1404-1431

    [71]

    Teyssier C and Whitney D. 2002. Gneiss domes and orogeny. Geology, 30: 1139-1142

    [72]

    Tinkham DK and Marshak S. 2004. Precambrian dome-and-keel structure in the Penokean orogenic belt of northern Michigan, USA. Geological Society of America Special Paper, 380: 321-338

    [73]

    Tirel C, Brun JP and Burov E. 2004. Thermomechanical modeling of extensional gneiss domes. Geological Society of America Special Paper, 380: 67-78

    [74]

    Vanderhaeghe O, Teyssier C and Wysoczanski R. 1999. Structural and geochronological constraints on the role of partial melting during the formation of the Shuswap metamorphic core complex at the latitude of the Thor-Odin Dome, British Columbia. Canadian Journal of Earth Sciences, 36: 917-943

    [75]

    Vanderhaeghe O. 2004. Structural development of the Naxos migmatite dome. Geological Society of America Special Paper, 380: 211-227

    [76]

    Vernon RH. 2000. Review of microstructural evidence of magmatic and solid-state flow. Electronic Geosciences, 5: 2

    [77]

    Wang GC and Sang LK. 1996. A gigantic A-type antiform and its tectonic setting in Tongbai gneiss complex, eastern Tongbai orogeny, central China. Earth Science, 21(3): 291-294 (in Chinese with English abstract)

    [78]

    Wang H, Wu YB, Gao S, Liu XC, Gong HJ, Li QL, Li XH and Yuan HL. 2011a. Eclogite origin and timing in the North Qinling terrane,and their bearing on the amalgamation of the South and North China Blocks. Journal of Metamorphic Geology, 29: 1019-1031

    [79]

    Wang H, Wu YB, Gao S, Zhang HF, Liu XC, Gong HJ, Peng M, Wang J and Yuan HL. 2011b. Silurian granilite-facies metamorphism, and coeval metamorphism and crustal growth in Tongbai orogen, central China. Lithos, 125: 249-271

    [80]

    Wang T, Wang XX, Tian W, Zhang CL, Li WP and Li S. 2009. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China. Science in China (Series D), 52: 1359-1384

    [81]

    Whitney DL, Teyssier C and Vanderhaeghe OV. 2004. Gneiss domes and crustal flow. Geological Society of America Special Paper, 380: 1-20

    [82]

    Xiang H, Zhang L, Zhong ZQ, Santosh M, Zhou HW, Zhang HF, Zheng JP and Zheng S. 2012. Ultrahigh-temperature metamorphism and anticlockwise PTt path of Paleozoic granulites from North Qinling-Tongbai orogen, central China. Condwana Research, 21: 559-576

    [83]

    Xiang H, Zhong ZQ, Li Y, Qi M, Zhou HW, Zhang L, Zhang ZM and Santosh M. 2014. Sappirine-bearing granulites from the Tongbai orogen, China: Petrology, phase eguilibria, zircon U-Pb geochronology and implications for Paleozoic ultrahign temperature metamorphism. Lithos, 208: 446-461

    [84]

    Xu ZQ. 1988. The Formation of Eastern Qinling Orogen-Deformation, Evolution and Dynamics. Beijing: China Environmental Science Press, 1-193 (in Chinese)

    [85]

    Xu ZQ, Hou LW, Wang ZX et al. 1992. The Orogeny of the Chinese Songpan-Ganze Orogen. Beijing: Geological Publishing House (in Chinese)

    [86]

    Xu ZQ, Yang JS, Li HB, Zhang JX and Wu CL. 2007. The Orogeny Tibetan Plateau: The Accretion, Collision and Exhumation of Terranes. Beijing: Geological Publishing House (in Chinese)

    [87]

    Xue F, Kroner A, Reischmann T and Lerch F. 1996. Paleozoic pre- and post-collision calcalkaline magmatism in the Qinling orogenic belt, Central China, as documented by zircon ages on granitoid rocks. Journal of the Geological Society, 153: 409-417

    [88]

    Yang JS, Xu ZQ, Pei XZ, Shi RD, Wu CL, Zhang JX, Li HB, Meng FC and Rong H. 2002. Discovery of diamond in North Qinling: Evidence for a giant UHPM belt across central China and recognition of Paleozoic and Mesozoic dual deep subduction between North China and Yangtze plates. Acta Geologica Sinica, 76(4): 484-495 (in Chinese with English abstract)

    [89]

    Yin A. 2004. Gneiss domes and gneiss dome systems. Geological Society of America Special Paper, 380: 1-14

    [90]

    You ZD, Han YJ, Suo ST, Chen NS and Zhong ZQ. 1993. Metamorphic history and tectonic evolution of the Qinling Complex, eastern Qinling Mountains, China. Journal of Metamorphic Geology, 11(4): 549-560

    [91]

    Yuan YM, Li DW, Zhang XH, Lu L and Li QL. 2003. Characteristics and geological meaning of metamorphic zonation of top Laguigangri metamorphic core complex, Tibet. Earth Science, 28(6): 690-694 (in Chinese with English abstract)

    [92]

    Zeng LS, Gao LE, Xie KJ and Zeng JL. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes: Melting thickened lower continental crust. Earth and Planetary Science Letters, 303: 251-266

    [93]

    Zhang GW et al. 1988. Formation and Evolution of the Qinling Mountains. Xi'an: Northwest University Press, 1-192 (in Chinese)

    [94]

    Zhang GW, Zhang BR and Yuan XC. 2001. The Qinling Orogeny and Continental Dynamics. Beijing: Science Press, 1-855 (in Chinese)

    [95]

    Zhang JJ, Yang XY, Qi GW and Wang DC. 2011. Geochronology of the Malashan dome and its application in formation of the Southern Tibet detachment system (STDS) and Northern Himalaya gneiss domes (NHGD). Acta Petrologica Sinica, 27(12): 3535-3544 (in Chinese with English abstract)

    [96]

    Zhang JY, Liao QA, Li DW, Zhang XH and Yuan YM. 2003. Laguigangri leucogranites and its relation with Laguigangri metamorphic core complex in Sajia, South Tibet. Earth Sciences, 28(6): 695-701 (in Chinese with English abstract)

    [97]

    Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Shen K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction? Gondwana Research, 17: 615-631

    [98]

    Zhang ZM, Dong X, Xiang H, Liou JG and Santosh M. 2013. Building of the deep Gangdese arc, South Tibet: Paleocene plutonism and granulite-facies metamorphism. Journal of Petrology, 54: 2547-2580

    [99]

    崔建军,胡健民,刘晓春.2009.桐柏地区高压变质地体在地壳中的抬升机制.岩石学报,25(9):2165-2176

    [100]

    高利娥,曾令森,谢克家.2011.北喜马拉雅片麻岩穹窿始新世高级变质和深熔作用的厘定.科学通报,56:3078-3090

    [101]

    辜平阳,何世平,李荣社等.2013.藏南拉轨岗日变质核杂岩核部花岗质片麻岩的地球化学特征及构造意义.岩石学报,29(3):756-768

    [102]

    王国灿,桑隆康.1996.桐柏造山带东段结晶基底杂岩中的大型A型背形及其构造背景.地球科学,21(3):291-294

    [103]

    许志琴. 1988. 东秦岭复合山链的形成——变形、演化及板块动力学. 北京:中国环境科学出版社, 1-193

    [104]

    许志琴,候立玮,王宗秀等.1992.中国松潘-甘孜造山带的造山过程. 北京:地质出版社

    [105]

    许志琴,杨经绥,李海兵,张建新,吴才来等.2007.造山的高原——青藏高原的地体拼合、碰撞造山及隆升机制. 北京:地质出版社

    [106]

    杨经绥,许志琴,裴先治,史仁灯,吴才来,张建新,李海兵,孟繁聪,戎合. 2002. 秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别. 地质学报,76(4):484-495

    [107]

    袁晏明,李德威,张雄华等.2003.西藏拉轨岗日核杂岩盖层变质分带特征及其地质意义.地球科学,28:690-694

    [108]

    张国伟等.1988.秦岭造山带形成及其演化.西安:西北大学出版社,1-192

    [109]

    张国伟, 张本仁, 袁学诚等. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1-855

    [110]

    张金阳,廖群安,李德威等.2003.藏南萨迦拉轨岗日淡色花岗岩特征及与变质核杂岩的关系. 地球科学,28:675-701

    [111]

    张进江,杨雄英,戚国伟,王德朝.2011.马拉山穹窿的活动时限及其在藏南拆离系-北喜马拉雅片麻岩穹窿形成机制的应用.岩石学报,27:3535-3544

  • 加载中
计量
  • 文章访问数:  6844
  • PDF下载数:  7661
  • 施引文献:  0
出版历程
收稿日期:  2015-07-20
修回日期:  2015-09-09
刊出日期:  2015-12-31

目录