滇西兰坪盆地茅草坪脉状Cu矿床流体包裹体和稳定同位素地球化学研究

程杨, 宋玉财, 侯增谦, 薛传东, 黄世强, 韩朝辉, 庄亮亮. 滇西兰坪盆地茅草坪脉状Cu矿床流体包裹体和稳定同位素地球化学研究[J]. 岩石学报, 2015, 31(11): 3363-3379.
引用本文: 程杨, 宋玉财, 侯增谦, 薛传东, 黄世强, 韩朝辉, 庄亮亮. 滇西兰坪盆地茅草坪脉状Cu矿床流体包裹体和稳定同位素地球化学研究[J]. 岩石学报, 2015, 31(11): 3363-3379.
CHENG Yang, SONG YuCai, HOU ZengQian, XUE ChuanDong, HUANG ShiQiang, HAN ChaoHui, ZHUANG LiangLiang. Fluid inclusitions and stable isotopes study of Maocaoping vein Cu deposit in Lanping basin, western Yunnan.[J]. Acta Petrologica Sinica, 2015, 31(11): 3363-3379.
Citation: CHENG Yang, SONG YuCai, HOU ZengQian, XUE ChuanDong, HUANG ShiQiang, HAN ChaoHui, ZHUANG LiangLiang. Fluid inclusitions and stable isotopes study of Maocaoping vein Cu deposit in Lanping basin, western Yunnan.[J]. Acta Petrologica Sinica, 2015, 31(11): 3363-3379.

滇西兰坪盆地茅草坪脉状Cu矿床流体包裹体和稳定同位素地球化学研究

  • 基金项目:

    本文受国家重点基础研究发展计划(973计划)(2015CB52601)、国家自然科学基金项目(41273050、41373049、41320104004)和中国地质调查局地质调查项目(12120114010301、1212011220908)联合资助.

详细信息

Fluid inclusitions and stable isotopes study of Maocaoping vein Cu deposit in Lanping basin, western Yunnan.

More Information
  • 兰坪盆地西缘发育一条重要的脉状Cu矿带,矿床的成矿流体来源一直存在较大的争议。本次研究对该矿带南段新发现的茅草坪矿床进行流体包裹体和H-O-C-S同位素研究,结合前人发表的该矿带矿床的同位素数据,探讨矿床成矿流体特征和来源。茅草坪矿床早(A1脉)、晚(A2脉)两期含矿石英脉中的流体包裹体均为含CO2盐水包裹体,可细分为含石盐子晶、富液相(水溶液相)、富气相(CO2相)包裹体等不同类型。根据流体包裹体的共生特点,将其划分为3组包裹体组合:(1)第I组,出现在A1脉石英中,为富液相(I-W型)、富气相(I-C型)和含石盐子晶(I-S型)包裹体共生;(2)第Ⅱ组,同样出现在A1脉石英中,为富液相(Ⅱ-W型)和富气相(Ⅱ-C型)包裹体共生;(3)第Ⅲ组,出现在A2脉石英中,为富液相(Ⅲ-W型)和富气相(Ⅲ-C型)包裹体共生。测温结果显示:I-S型包裹体均一温度在293~370℃之间,流体盐度为30.06%~39.76% NaCleqv;Ⅱ-W型包裹体均一温度在302~490℃之间,流体盐度为1.23%~18.63% NaCleqv;Ⅲ-W型包裹体均一温度在263~400℃之间,流体盐度为1.20%~11.34% NaCleqv。同一组内,包裹体气/液相比高度变化,表明包裹体捕获时的流体呈不均一态,此时包裹体均一温度中低值部分近似代表该组包裹体真实的捕获温度。因此,从I组到Ⅲ组,包裹体分别捕获于280~320℃(I组、Ⅱ组)和260~280℃(Ⅲ组),结合盐度数据,反应初始成矿流体发生沸腾作用,伴随石盐子晶析出,流体盐度下降,随后温度降低。茅草坪矿床成矿流体富CO2的特点与区域内其他脉状Cu矿床一致,但盐度明显偏高。矿床热液石英的δDV-SMOW值变化在-94.6‰~-56.2‰之间,计算的流体的δ18OV-SMOW值集中在+8.1‰~+9.6‰之间,与区域其他脉状Cu矿床相似,数据主要落在原生岩浆水区域的下方,表明流体来源于岩浆水,但经历了开放系统下的脱气作用,没有盆地流体或大气降水的贡献;热液碳酸盐方解石的δ13CV-PDF值为-8.3‰~-2.4‰,δ18OV-SMOW值为14.46‰~16.63‰,与区域其他脉状Cu矿床的C-O同位素组成相似,但C同位素组成明显低于区域脉状Pb-Zn矿床(碳主要来自盆地流体溶解的碳酸盐岩);黄铜矿的δ34SV-CDT值变化于-6.4‰~-3.9‰之间,处于区域其他脉状Cu矿床的S同位素组成范围内,但区别于区域砂岩型Cu矿床(硫来自硫酸盐的细菌还原作用)。因此,推测矿床的CO2和硫可能也来自脱气的岩浆。茅草坪脉状Cu矿床成矿流体的研究表明:兰坪盆地西缘脉状Cu矿床成矿流体可能来自富CO2、经历脱气的岩浆水,没有大气降水和盆地卤水的参与。
  • 加载中
  • [1]

    Bodnar RJ. 1993. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta, 57(3):683-684

    [2]

    Cao SY, Liu JL, Leiss B, Neubauer F, Genser J and Zhao CQ. 2011. Oligo-Miocene shearing along the Ailao Shan-Red River shear zone:Constraints from structural analysis and zircon U/Pb geochronology of magmatic rocks in the Diancang Shan massif, SE Tibet, China. Gondwana Research, 19(4):975-993

    [3]

    Cartigny P, Harris JW and Javoy M. 1998. Eclogitic diamond formation at Jwaneng:No room for a recycled component. Science, 280(5368):1421-1424

    [4]

    Chen J and Wang HN. 2004. Geochemistry. Beijing:Science Press, 116-117(in Chinese)

    [5]

    Chen KX, He LQ, Yang ZQ, Wei JQ and Yang AP. 2000. Oxygen and carbon isotope geochemlstry in Sanshan-Baiyangping copper-sliver polymetallogenic enrichment district, Langping, Yunnan. Geology Mineral Resources of South China, (4):1-8(in Chinese with English abstract)

    [6]

    Cheng X. 2014. Geoligical-geochemical characteristics and genesis of Maocaoping vein Cu-Pb-Zn (-Ag) deposit, northwest Yunnan. Master Degree Thesis. Kunming:Kunming University of Science and Technology, 20-22(in Chinese)

    [7]

    Cheng Y, Song YC, Xue CD and Huang SQ. 2015. A synthetic study of veins structure and mineralogenetic epoch of Maocaoping vein-type Cu deposit, western Yunnan. Acta Geologica Sinica, 89(3):583-598(in Chinese with English abstract)

    [8]

    Chi GX and Xue CJ. 2011. Abundance of CO2-rich fluid inclusions in a sedimentary basin-hosted Cu deposit at Jinman, Yunnan, China:Implications for mineralization environment and classification of the deposit. Minerium Deposita, 46:365-380

    [9]

    Claypool GE, Holser WT, Kaplan LR, Sakai H and Zak L. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28:199-260

    [10]

    Clayton RN, Friedman I, Graf DL, Mayeda TK, Meents WF and Shimp NF. 1966. The origin of saline formation waters:1. Isotopic composition. Journal of Geophysical Research, 71(16):3869-3882

    [11]

    Collins PLF. 1979. Gas hydrates in CO2-bearing fluid inclusion and the use of freezing data for estimation of salinity. Econ. Geol., 74(6):1435-1444

    [12]

    Deines P, Harris JW and Gurney JJ. 1991. The carbon isotopic composition and nitrogen content of lithospheric and asthenospheric diamonds from the Jagersfontein and Koffiefontein kimberlite, South Africa. Geochimica et Cosmochimica Acta, 55(9):2615-2625

    [13]

    Deng J, Wang QF, Li GJ and Santosh M. 2014a. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138:268-299

    [14]

    Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014b. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2):419-437

    [15]

    Deng J and Wang QF. 2015. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research, doi:10.1016/j.gr.2015.10.003

    [16]

    Detmers J, Brüchert V, Habicht KS and Kuever J. 2001. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Applied and Environmental Microbiology, 67(2):888-894

    [17]

    Gao GL. 1991. Formation age and involved problems on anhydrite ore in Jinding lead-zinc ore area. Yunnan Geology, 10(2):191-205(in Chinese with English abstract)

    [18]

    Ge LS, Deng J, Yang LQ, Wang ZH, Guo XD and Yuan SS. 2012. Characteristics of deep-seated structure and its controlaction for magmatic activity and mineralization in western Yunnan Province. Acta Petrologica Sinica, 28(5):1387-1400(in Chinese with English abstract)

    [19]

    Goldfarb R, Baker T, Dube B, Groves DI, Hart CJR and Gosselin P. 2005. Distribution, character and genesis of gold deposits in metamorphic terranes. In:Hedenquist JW, Thompson JFH, Goldfarb RG and Richards JP (eds.). Economic Geology, 100th Anniversary Volume:407-450

    [20]

    He LQ, Song YC, Chen KX, Hou ZQ, Yu FM and Yang ZS. 2009. Thrust-controlled, sediment-hosted, Himalayan Zn-Pb-Cu-Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan Plateau. Ore Geology Reviews, 36:106-132

    [21]

    Hitchon B and Friedman I. 1969. Geochemistry and origin of formation waters in the western Canada sedimentary basin-I. Stable isotopes of hydrogen and oxygen. Geochimica et Cosmochimica Acta, 33(11):1321-1349

    [22]

    Hou ZQ, Mo XX, Yang ZM, Wang AJ, Pan GT, Qu XM and Nie FJ. 2006. Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau:Tectonic setting, tempo-spatial distribution and ore deposit types. Geology in China, 33(2):340-351(in Chinese with English abstract)

    [23]

    Hou ZQ and Cook NJ. 2009. Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue. Ore Geology Reviews, 36(1-3):2-24

    [24]

    Ji HB and Li CY. 1998. Geochemical characteristics and source of ore-forming fluid for Jinman copper deposit in western Yunnan Province, China. Acta Mineralogica Sinica, 18(1):28-37(in Chinese with English abstract)

    [25]

    Li F, Fu WM and Ran CY. 1992. On the source of the ore-forming materials in the Jinman copper deposits, Lanping. Journal of Kunming Institute of Technology, 17(4):8-15, 23(in Chinese with English abstract)

    [26]

    Li F, Huang DY and Fu WM. 1994. On the geological characteristics and genesis of Shuixie copper deposit in Yongping. Yunnan Geology, 13(4):341-349(in Chinese with English abstract)

    [27]

    Li F, Huang DY and Fu WM. 1995. Metallogenic law of red-bed copper deposits of the Lanping-Simao basin, Yunnan, China. Geotectoniea et Metallogenia, 19(4):322-335(in Chinese with English abstract)

    [28]

    Li F, Fu WM and Li L. 1997. The material origin of the regional metallogenesis of Cu deposits in red beds of West Yunnan. Yunnan Geology, 16(3):233-244(in Chinese with English abstract)

    [29]

    Li F and Fu WM. 2000. Geology of Red-bed Cu Deposits, Western Yunnan. Kunming:Yunnan University Press (in Chinese)

    [30]

    Liu JJ, Li CY, Pan JY, Hu RZ, Liu XF and Zhang Q. 2000. Isotopic geochemistry of copper deposits from sandstone and shale of Lanping-Simao basin, western Yunnan. Mineral Deposits, 19(3):223-234(in Chinese with English abstract)

    [31]

    Liu JJ, He MQ, Li ZM, Liu YP, Li CY, Zhang Q, Yang WG and Yang AP. 2004. Oxygen and carbon isotopic geochemistry of Baiyangping silver copper polymetallic ore concentration area in Lanping basin of Yunnan Province and its significance. Mineral Deposits, 23(1):1-10(in Chinese with English abstract)

    [32]

    Liu JL, Song ZJ, Cao SY, Zhai YF, Wang AJ, Gao L, Xiu QY and Cao DH. 2006. The dynamic setting and processes of tectonic and magmatic cvolution of the oblique collision zone between Indian and Eurasian plate:Exemplified by the tectonic evolution of the Three River region, eastern Tibet. Acta Petrologica Sinica, 22(4):775-786(in Chinese with English abstract)

    [33]

    Liu JM and Liu JJ. 1997. Basin fluid genetic model of sediment-hosted micro-disseminated gold deposits in the gold-triangle area between Guizhou, Guangxi and Yunnan. Acta Mineralogica Sinica, 17(4):448-456(in Chinese with English abstract)

    [34]

    Lu HZ, Fan HR, Ni P, Ou GX, Shen K and Zhang WH. 2004. Fluid Inclusion. Beijing:Science Press, 1-487(in Chinese)

    [35]

    Misra KC. 2000. Understanding Mineral Deposits. London:Kluwer Academic Publisher, 574-612

    [36]

    Peng TP, Wang YJ, Zhao GC, Fan WM and Peng BX. 2008. Arc-like volcanic rocks from the southern Lancangjiang zone, SW China:Geochronological and geochemical constraints on their petrogenesis and tectonic implications. Lithos, 102(1-2):358-373

    [37]

    Que MY, Cheng DM, Zhang LS, Xia WJ and Zhu CY. 1998. Copper Deposits in the Lanping-Simao Basin. Beijing:Geological Publishing House (in Chinese)

    [38]

    Shmulovich KI, Landwehr D, Simon K and Heinrich W. 1999. Stable isotope fractionation between liquid and vapour in water-salt systems up to 600℃. Chemical Geology, 157(3-4):343-354

    [39]

    Song YC, Hou ZQ, Yang TN, Zhang HR, Yang ZS, Tian SH, Liu YC, Wang XH, Liu YX, Xue CD, Wang GH and Li Z. 2011. Sediment-hosted Himalayan base metal deposits in Sanjiang region:Characteristics and genetic types. Acta Petrologica et Mineralogiga, 30(3):355-380(in Chinese with English abstract)

    [40]

    Tang Y, Yin FG, Wang LQ, Wang DB, Liao SY, Sun ZM and Sun J. 2013. Structural characterization of and geochronological constraints on sinistral strike-slip shearing along the southern segment of Chongshan shear zone, western Yunnan. Acta Petrologica Sinica, 29(4):1311-1324(in Chinese with English abstract)

    [41]

    Taylor BE. 1986. Magmatic volatiles:Isotopic variation of C, H, and S. Reviews in Mineralogy and Geochemistry, 16(1):185-225

    [42]

    Teng YG, Liu JD, Zhang CJ, Ni SJ and Peng XH. 2000. Geological and geochemical in formation of deep ore fluid in Lanping basin, Yunnan Province. Geological Prospecting Review, 15(4):314-319(in Chinese with English abstract)

    [43]

    Wang CM, Deng J, Carranza EJM and Santosh M. 2014. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:Nature, deposit types, and tectonic setting. Gondwana Research, 26(2):576-593

    [44]

    Wang EQ and Burchfiel BC. 1997. Interpretation of Cenozic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. Int. Geol. Rev., 39(3):191-219

    [45]

    Wang G, Chen L, Zhang FS, Zhang DH and Duan SJ. 1991. Sandstone-type and hydrothermal-type copper deposits in Lanping-Simao basin,western Yunnan. Southwest Mineral Geology, 5(4):6-35(in Chinese)

    [46]

    Wang GH. 2010. A study of genesis in Jinman-Liancheng vein Cu deposit in Lanping basin, western Yunnan. Master Degree Thesis. Kunming:Kunming University of Science and Technology, 43-56(in Chinese)

    [47]

    Wang JH, Yin A, Harrison TM, Grove M, Zhang YQ and Xie GH. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters, 188(1-2):123-133

    [48]

    Wang XH, Song YC, Hou ZQ, Zhang HR, Wang Z, Zhuang TM, Zhang C and Zhang TF. 2011. Geological characteristics of the Baiyangping Pb-Zn-Cu-Ag polymetallic deposit in northern Lanping basin. Acta Petrologica et Mineralogica, 30(3):507-518(in Chinese with English abstract)

    [49]

    Warren JK. 2000. Evaporites, brines and base metals:Low-temperature ore emplacement controlled by evaporite diagenesis. Australian Journal of Earth Sciences, 47(2):179-208

    [50]

    Wu NP, Jiang SY, Liao QL, Pan JY and Dai BZ. 2003. Lead and sulfur isotope geochemistry and the ore sources of the vein-type copper deposits in Lanping-Simao Basin, Yunan Province. Acta Petrologica Sinica, 19(4):799-807(in Chinese with English abstract)

    [51]

    Xiao RG. 1989. Reservation of thermal brine with ore-forming materials and abrupt mineralization. Post-Doctor Research Report. Guiyang:Institute of Geochemistry, Chinese Academy of Sciences (in Chinese)

    [52]

    Xiao RG and Li CY. 1993. The discovery of a mineralized body in spurting fluid deposits of the Lajing hot spring, Lanping, Yunnan, and its geological implication. Geological Review, 39(1):73-78(in Chinese with English abstract)

    [53]

    Xiao RG, Chen HQ, Shuai KY and Yang ZF. 1994. Mineralization of Jinman copper deposit in Mesozoic sedimentary rocks in Lanping, Yunnan Province. Geoscience, 8(4):490-496(in Chinese with English abstract)

    [54]

    Xu QD and Li JW. 2003. Migration of ore-forming fluids and its relation to zoning of mineralization in northern Lanping Cu-polymetallic area, Yunnan Province:Evidence from fluid inclusions and stable isotopes. Mineral Deposits, 22(4):365-376(in Chinese with English abstract)

    [55]

    Xu SH, Gu XX, Tang JX, Chen JP and Dong SY. 2005. Stable isotopic geochemistry of three major types of Cu-Ag polymetallic deposits in the Lanping basin,Yunnan. Bulletin of Mineralogy, Petrology and Geochemistry, 24(4):309-316(in Chinese with English abstract)

    [56]

    Xu XC, Xie QQ, Lu SM, Chen TH, Huang Z and Yue SC. 2005. Fluid inclusion characteristics of copper deposits on the western border of Lanping Basin, Yunnan Province. Acta Mineralogica Sinica, 25(2):170-176(in Chinese with English abstract)

    [57]

    Xue W, Xue CJ, Li HJ, Chi GX and Zeng R. 2012. Sources of the ore-forming material of the Baiyangping poly-metallic deposit in Lanping basin, northwestern Yunnan:Constraints from C, H, O, S and Pb isotope geochemistry. Geoscience, 26(4):663-672(in Chinese with English abstract)

    [58]

    Yan W. 1993. Geochemical study of a new type of copper deposit. Ph. D. Dissertation. Guiyang:Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)

    [59]

    Yan W and Li CY. 1995. The material source of a new type of copper deposits:Evidence from stable isotopes. Chinese Journal of Geochemistry, 14(2):168-178Yan W and Li CY. 1997. Geochemical characteristics and their hydrothermal sedmentaray genesis of a new type of copper deposit. Geochimica, 26(1):54-63(in Chinese with English abstract)

    [60]

    Zhang B, Zhuang JJ, Zhong DL, Wang XX, Qu JF and Guo L. 2011. Structural feature and its significance of the northernmost segment of the Tertiary Biluoxueshan-Chongshan shear zone, east of the Eastern Himalayan Syntaxis. Science China (Earth Sciences), 54(7):959-974

    [61]

    Zhang J, Deng J, Chen HY, Yang LQ, Cooke D, Danyushevsky L and Gong QJ. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China:Implication for ore-forming process. Gondwana Research, 26(2):557-575

    [62]

    Zhang JR, Wen HJ, Qin CJ and Wang JS. 2012. Fluid inclusion and stable isotopes study of Liancheng Cu-Mo polymetallic deposit in Lanping Basin, Yunnan Province. Acta Petrologica Sinica, 28(5):1373-1386(in Chinese with English abstract)

    [63]

    Zhang L, Zheng Y and Chen YJ. 2012. Ore geology and fluid inclusion geochemistry of the Tiemurt Pb-Zn-Cu deposit, Altay, Xinjiang, China:A case study of oeogenic-type Pb-Zn systems. Journal of Asian Earth Sciences, 49:69-79

    [64]

    Zhang LG, Liu JX, Zhou HB and Chen ZS. 1990. Oxygen isotope fraction in the quartz water-salt system. Mineral Deposits, 9(2):158-166(in Chinese with English abstract)

    [65]

    Zhang LS. 2000. Stable isotope compositions and their implications for ore genesis of vein tetrahedrite-type copper deposits. Sedimentary Geology and Tethyan Geology, 20(2):74-82(in Chinese with English abstract)

    [66]

    Zhao DK. 2004. Broomlike structural zone and its ore-controlling in Baiyangping silver multimetallic ore field, Yunlong. Yunnan Geology, 23(3):370-377(in Chinese with English abstract)

    [67]

    Zhao HB. 2006. Study on the characteristics and metallogenic condition of copper-polymetallic deposits in middle-northern Lanping Basin, western Yunnan. Ph. D. Dissertation. Beijing:China University of Geosciences, 77-81(in Chinese with English summary)

    [68]

    Zheng YF. 1990. Sulfur isotope fractionation in magmatic systems:Models of Rayleigh distillation and selective flux. Chinese Journal of Geochemistry, 9(1):27-45

    [69]

    Zheng YF, Fu B and Zhang XH. 1996. Effects of magma degassing on the carbon and sulfur isotope compositions of igneous rocks. Scientia Geologica Sinica, 31(1):43-53(in Chinese with English abstract)

    [70]

    Zhu JJ, Hu RZ, Bi XW, Zhong H and Chen H. 2011. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China:Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean. Lithos, 126(3-4):248-264

    [71]

    Zou ZC, Hu RZ, Bi XW, Wu LY, Feng CX and Tang YY. 2012. Study on isotope geochemistry compositions of the Baiyangping silver-copper polymetallic ore deposit area, Yunnan Province. Geochimica, 41(6):515-529(in Chinese with English abstract)

    [72]

    陈骏,王鹤年. 2004.地球化学.北京:科学出版社, 116-117

    [73]

    陈开旭,何龙清,杨振强,魏君奇,杨爱平. 2000.云南兰坪三山-白秧坪铜银多金属成矿富集区的碳氧同位素地球化学.华南地质与矿产, (4):1-8

    [74]

    成祥. 2014.滇西北云龙茅草坪脉状Cu-Pb-Zn(-Ag)矿床地质-地球化学特征及成因.硕士学位论文.昆明:昆明理工大学, 20-22

    [75]

    程杨,宋玉财,薛传东,黄世强. 2015.滇西兰坪盆地茅草坪脉状铜矿床脉体构造与成矿时代研究.地质学报, 89(3):583-598

    [76]

    高广立. 1991.金顶铅锌矿区硬石膏矿的形成时代及其所涉及的问题.云南地质, 10(2):191-205

    [77]

    葛良胜,邓军,杨立强,王治华,郭晓东,袁士松. 2012.滇西地区深部构造特征及其对成岩-成矿的控制作用.岩石学报, 28(5):1387-1400

    [78]

    侯增谦,莫宣学,杨志明,王安建,潘桂棠,曲晓明,聂凤军. 2006.青藏高原碰撞造山带成矿作用:构造背景,时空分布和主要类型.中国地质, 33(2):340-351

    [79]

    季宏兵,李朝阳. 1998.滇西金满铜矿床成矿流体地球化学特征及来源.矿物学报, 18(1):28-37

    [80]

    李峰,甫为民,冉崇英. 1992.兰坪金满铜矿床成矿物质来源研究.昆明工学院学报, 17(4):8-15, 23

    [81]

    李峰,黄敦义,甫为民. 1994.永平水泄铜矿床地质特征及其成因.云南地质, 13(4):341-349

    [82]

    李峰,黄敦义,甫为民. 1995.兰坪-思茅盆地红层铜矿成矿规律.大地构造与成矿学, 19(4):322-335

    [83]

    李峰,甫为民,李雷. 1997.滇西红层铜矿区域成矿物质来源.云南地质, 16(3):233-244

    [84]

    李峰,甫为民. 2000.滇西红层铜矿地质.昆明:云南大学出版社

    [85]

    刘家军,李朝阳,潘家永,胡瑞忠,刘显凡,张乾. 2000.兰坪-思茅盆地砂页岩中铜矿床同位素地球化学.矿床地质, 19(3):223-234

    [86]

    刘家军,何明勤,李志明,刘玉平,李朝阳,张乾,杨伟光,杨爱平. 2004.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质, 23(1):1-10

    [87]

    刘俊来,宋志杰,曹淑云,翟云峰,王安建,高兰,修群业,曹殿华. 2006.印度-欧亚侧向碰撞带构造-岩浆演化的动力学背景与过程——以藏东三江地区构造演化为例.岩石学报, 22(4):775-786

    [88]

    刘建明,刘家军. 1997.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报, 17(4):448-456

    [89]

    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮. 2004.流体包裹体.北京:科学出版社, 1-487

    [90]

    阙梅英,程敦模,张立生,夏文杰,朱创业. 1998.兰坪-思茅盆地铜矿床.北京:地质出版社

    [91]

    宋玉财,侯增谦,杨天南,张洪瑞,杨竹森,田世洪,刘英超,王晓虎,刘燕学,薛传东,王光辉,李政. 2011. "三江"喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型.岩石矿物学杂志, 30(3):355-380

    [92]

    唐渊,尹福光,王立全,王冬兵,廖世勇,孙志明,孙洁. 2013.滇西崇山剪切带南段左行走滑作用的构造特征及时代约束.岩石学报, 29(4):1311-1324

    [93]

    滕彦国,刘家铎,张成江,倪师军,彭秀红. 2000.兰坪盆地深源流体成矿的地质-地球化学信息.地质找矿论丛, 15(4):314-319

    [94]

    王根,陈玲,张佛生,张道红,段生杰. 1991.云南兰坪-思茅盆地砂岩型和热液型铜矿成因探讨.西南矿产地质, 5(4):6-35

    [95]

    王光辉. 2010.滇西兰坪盆地金满-连城脉状铜矿床成因研究.硕士学位论文.昆明:昆明理工大学, 43-56

    [96]

    王晓虎,宋玉财,侯增谦,张洪瑞,王哲,庄天明,张翀,张天福. 2011.兰坪盆地北部白秧坪铅锌铜银多金属矿床地质特征.岩石矿物学杂志, 30(3):507-518

    [97]

    吴南平,蒋少涌,廖启林,潘家永,戴宝章. 2003.云南兰坪-思茅盆地脉状铜矿床铅、硫同位素地球化学与成矿物质来源研究.岩石学报, 19(4):799-807

    [98]

    肖荣阁. 1989.含矿热卤水储备与突发成矿作用.博士后科研报告.贵阳:中国科学院地球化学研究所

    [99]

    肖荣阁,李朝阳. 1993.云南兰坪啦井温泉喷流沉积矿化体的发现及其地质意义.地质论评, 39(1):73-78

    [100]

    肖荣阁,陈卉泉,帅开业,杨忠芳. 1994.云南兰坪金满中生代沉积岩中的铜矿成矿作用.现代地质, 8(4):490-496

    [101]

    徐启东,李建威. 2003.云南兰坪北部铜多金属矿化区成矿流体流动与矿化分带——流体包裹体和稳定同位素证据.矿床地质, 22(4):365-376

    [102]

    徐仕海,顾雪祥,唐菊兴,陈建平,董树义. 2005.兰坪盆地三类主要铜银多金属矿床的稳定同位素地球化学.矿物岩石地球化学通报,24(4):309-316

    [103]

    徐晓春,谢巧勤,陆三明,陈天虎,黄震,岳书仓. 2005.滇西兰坪盆地西缘铜矿床矿物流体包裹体研究.矿物学报, 25(2):170-176

    [104]

    薛伟,薛春纪,李洪军,池国祥,曾荣. 2012.滇西北兰坪盆地白秧坪多金属矿床成矿物质来源:C, H, O, S和Pb同位素制约.现代地质, 26(4):663-672

    [105]

    颜文. 1993.一种新类型铜矿床的地球化学研究.博士学位论文.贵阳:中国科学院地球化学研究所

    [106]

    颜文,李朝阳. 1997.一种新类型铜矿床的地球化学特征及其热水沉积成因.地球化学, 26(1):54-63

    [107]

    张锦让,温汉捷,秦朝建,王加昇. 2012.兰坪盆地连城Cu-Mo多金属矿床流体包裹体和稳定同位素地球化学研究.岩石学报, 28(5):1373-1386

    [108]

    张理刚,刘敬秀,周环波,陈振胜. 1990.石英-水-盐体系氧同位素分馏作用.矿床地质, 9(2):158-166

    [109]

    张立生. 2000.脉状黝铜矿型铜矿床的稳定同位素组成及其成因意义.沉积与特提斯地质, 20(2):74-82

    [110]

    赵大康. 2004.云龙白洋厂银多金属矿区帚状构造带及其控矿作用.云南地质, 23(3):370-377、

    [111]

    赵海滨. 2006.滇西兰坪盆地中北部铜多金属矿床成矿地质特征及地质条件.博士学位论文.北京:中国地质大学, 77-81

    [112]

    郑永飞,傅斌,张学华. 1996.岩浆去气作用的碳硫同位素效应.地质科学, 31(1):43-53

    [113]

    邹志超,胡瑞忠,毕献武,武丽艳,冯彩霞,唐永永. 2013.云南白秧坪银铜多金属矿集区成矿流体的稳定同位素地球化学研究.地球化学, 41(6):515-529

  • 加载中
计量
  • 文章访问数:  6665
  • PDF下载数:  6344
  • 施引文献:  0
出版历程
收稿日期:  2015-04-01
修回日期:  2015-07-29
刊出日期:  2015-11-30

目录