扬子地台西南缘康滇断隆带海孜双峰式侵入岩体年代学、地球化学及其地质意义

杨斌, 王伟清, 董国臣, 郭阳, 王子正, 侯林. 扬子地台西南缘康滇断隆带海孜双峰式侵入岩体年代学、地球化学及其地质意义[J]. 岩石学报, 2015, 31(5): 1361-1373.
引用本文: 杨斌, 王伟清, 董国臣, 郭阳, 王子正, 侯林. 扬子地台西南缘康滇断隆带海孜双峰式侵入岩体年代学、地球化学及其地质意义[J]. 岩石学报, 2015, 31(5): 1361-1373.
YANG Bin, WANG WeiQing, DONG GuoChen, GUO Yang, WANG ZiZheng, HOU Lin. Geochemistry, geochronology and their significances of Haizi bimodal intrusions in Kangdian fault-uplift zone, southwestern margin of Yangtze platform[J]. Acta Petrologica Sinica, 2015, 31(5): 1361-1373.
Citation: YANG Bin, WANG WeiQing, DONG GuoChen, GUO Yang, WANG ZiZheng, HOU Lin. Geochemistry, geochronology and their significances of Haizi bimodal intrusions in Kangdian fault-uplift zone, southwestern margin of Yangtze platform[J]. Acta Petrologica Sinica, 2015, 31(5): 1361-1373.

扬子地台西南缘康滇断隆带海孜双峰式侵入岩体年代学、地球化学及其地质意义

  • 基金项目:

    本文受国家"973"项目(2015CB452604、2009CB421002)、111计划项目(B07011)、长江学者和创新团队发展计划(IRT1083)、国家自然科学基金项目(41272091)和中国地质调查项目(12120114022501、1212011120640)联合资助.

详细信息

Geochemistry, geochronology and their significances of Haizi bimodal intrusions in Kangdian fault-uplift zone, southwestern margin of Yangtze platform

More Information
  • 海孜辉绿岩-花岗斑岩双峰式侵入岩体位于扬子地台西南缘康滇断隆带中的武定-元江裂陷槽内,本文对海孜辉绿岩和花岗斑岩主要进行了LA-ICP-MS锆石U-Pb定年和地球化学研究。花岗斑岩的定年结果为1764±18Ma,辉绿岩的定年结果为1765±5.4Ma。岩相学及地球化学测定数据显示海孜地区辉绿岩具有细粒和粗粒两种结构,与花岗斑岩之间存在明显的组分间断,形成双峰态,其中花岗斑岩为钙碱性(SiO2=70.93%~73.04%,σ=1.28),辉绿岩属过碱性(SiO2=42.46%~48.26%,σ=15.3),Hf同位素特征表明两者可能均与幔源母岩浆相关。而海孜双峰式分布特征显示大陆裂谷拉张环境的构造背景,暗示海孜岩体是1.7Ga时昆阳裂谷裂解时期产物,与全球Columbia超大陆的裂解事件相呼应。作为扬子地台西南缘首次发现的1.7Ga双峰式侵入岩,海孜双峰式侵入岩的发现具有重要的地质意义。
  • 加载中
  • [1]

    Bacon CR and Druitt TH. 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2): 224-256

    [2]

    Black S, MacDonald R and Kelly MR. 1997. Crustal origin for per alkaline rhyolites from Kenya: Evidence from U-series disequilibria and Th-isotopes. Journal of Petrology, 38(2): 277-297

    [3]

    Chang XY, Zhu BQ and Sun DZ. 1997. Isotope geochemistry study of Dongchuan copper deposits in Middle Yunnan Province, SW China: I. Stratigraphic chronology and application of geochemical exploration by lead isotopes. Geochimica, 26(2): 32-38 (in Chinese with English abstract)

    [4]

    Christiansen EH, Haapala I and Hart GL.2007. Are Cenozoic topaz rhyolites the erupted equivalents of Proterozoic rapakivi granites? Examples from the western United States and Finland. Lithos, 97(1-2): 219-246

    [5]

    Condie KC. 2002. Break up of a Paleoproterozoic supercontinent. Gondwana Research, 5(1): 41-43

    [6]

    Cull JP, O'Reilly SY and Griffin WL. 1991. Xenolith geotherms and crustal models in eastern Australia. Tectonophysics, 192(3-4): 359-366

    [7]

    Davies GR and MacDonald R. 1987. Crustal influences in the pathogenesis of the Naivasha basalt-cementite complex: Combined trace element and Sr-Nd-Pb isotope constraints. Journal of Petrology, 28(6):1009-1031

    [8]

    Deng JF. 1996. Continental Roots-Plume Tectonics of China: Key to the Continental Dynamics. Beijing: Geological Publishing House, 49-52 (in Chinese)

    [9]

    Doe T and Remer J. 1982. Analysis of constant-head well tests in nonporous fractured rock. Journal of Petrology, 18: 104-141

    [10]

    Fitzsimons ICW. 2000. Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional origins. Geology, 28(10): 879-882

    [11]

    Geist D, Howard KA and Larson P. 1995. The generation of oceanic rhyolites by crystal fractionation: The basalt-rhyolite association at volcano Alcedo, Galápagos Archipelago. Journal of Petrology, 36(4): 965-982

    [12]

    Grove TL and Kinzler RJ. 1986. Annual Review of Earth and Planetary Sciences. Petrogenesis of Andesite, 14: 417-418

    [13]

    Guo Y, Wang SW, Sun XM et al. 2014. The Paleoproterozoic breakup event in the Southwest Yangtze Block: Evidence from U-Pb zircon age and geochemistry of diabase in Wuding, Yunnan Province, SW China. Acta Geologica Sinica, 88(9): 1651-1665 (in Chinese with English abstract)

    [14]

    Hildreth W. 1981. Gradients in silicic magma chambers: Implications for lithospheric magmatism. Journal of Geophysical Research: Solid Earth (1978~2012), 86(B11): 10153-10192

    [15]

    Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)

    [16]

    Hou L, Ding J, Wang CM et al. 2013. Ore-forming fluid and metallogenesis of the Yinachang Fe-Cu-Au-REE deposit, Wuding, Yunnan Province, China. Acta Petrologica Sinica, 29(4):1187-1202 (in Chinese with English abstract)

    [17]

    Huppert HE and Sparks RSJ. 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology, 29(3): 599-624

    [18]

    Le Maître RW. 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press

    [19]

    LeCheminant AN and Heaman LM. 1991. U-Pb ages for the 1.27Ga Mackenzie igneous events, Canada: Support for a plume initiation model. Program with Abstracts, A73, Geological Association on Canada, Waterloo, 16

    [20]

    Li ZX, Zhang L, Christopher MA et al. 1995. South China in Rodinia-Part of the missing link between Australia-East Antarctica and Laurentia? Geology, 23(5): 407-410

    [21]

    Li ZX, Li XH, Zhou HW et al. 2002. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implication for the configuration of Rodinia. Geology, 30(2): 163-166

    [22]

    Lin Q, Ge WS, Sun YD et al. 2000. Genetic relationships between two types of Mesozoic rhyolites and basalts in Great Xing'an Ridge. Changchun Univ. Sci. Technol., 30(4): 322-328 (in Chinese with English abstract)

    [23]

    Lu SN, Yang CL, Li HK et al. 2002. North China continent and Columbia Supercontinent. Earth Science Frontiers, 9(4): 225-233 (in Chinese with English abstract)

    [24]

    MacDonald R, Davies GR, Bliss CM et al. 1987. Geochemistry of high-silica per alkaline rhyolites, Naiveté, Kenya rift valley. Journal of Petrology, 28(6): 979-1008

    [25]

    Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56 (3-4): 207-218

    [26]

    Pearce JJA and Norry MJ. 1979. Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Intrusive rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47

    [27]

    Peng M, Wu YB, Wang J et al. 2009. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication. Chinese Science Bulletin, 54(5): 641-647 (in Chinese)

    [28]

    Rogers JW and Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22

    [29]

    Sigurdsson H. 1977. Generation of Icelandic rhyolites by melting of plagiogranites in the oceanic layer. Nature, 269(5623): 25-28

    [30]

    Wang HJ, Li JC and Xue JY. 2009. Response of Proterozoic mineralization on the Kangdian axis to the Rodinia breakup. Acta Geologica Sichuan, 29(1): 11-15 (in Chinese with English abstract)

    [31]

    Wang ZZ, Guo Y, Yang B et al. 2013. Discovery of the 1.73Ga Haizi androgenic type granite in the western margin of Yangtze Craton, and its geological significance. Acta Geologica Sinica, 87(7): 931-942 (in Chinese with English abstract)

    [32]

    Wu FY, Li XH, Zheng YF et al. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)

    [33]

    Yan DP, Zhou MF, Song HL et al. 2002. Where was South China located in the reconstruction of Rodinia? Earth Science Frontiers, 9(4): 249-256 (in Chinese with English abstract)

    [34]

    Yin FG, Wang DB, Sun ZM et al. 2012. Columbia supercontinent: New insights from the western margin of the Yangtze landmass. Sedimentary Geology and Tethyan Geology, 32(3): 31-40 (in Chinese with English abstract)

    [35]

    Zhao GC, Cawood PA, Wilde SA et al. 2002. Review of global 2.1~1.8Ga origins: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125-162

    [36]

    Zhao GC, Sun M and Wilde SA. 2002. Early-Middle Mesoproterozoic Columbia Supercontinent research progress. Chinese Science Bulletin, 47(18): 1361-1364 (in Chinese)

    [37]

    Zhao XF, Zhou MF, Li JW et al. 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block. Precambrian Research, 182(1-2): 57-69

    [38]

    常向阳, 朱炳泉, 孙大中. 1997. 东川铜矿床同位素地球化学研究: 地层年代与铅同位素化探应用. 地球化学, 26(2): 32-38

    [39]

    邓晋福. 1996. 中国大陆根-柱构造: 大陆动力学的钥匙. 北京: 地质出版社, 49-52

    [40]

    郭阳, 王生伟, 孙晓明. 2014. 扬子地台西南缘古元古代末的裂解事件——来自武定地区辉绿岩锆石U-Pb年龄和地球化学证据. 地质学报, 88(9): 1651-1665

    [41]

    侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492

    [42]

    侯林, 丁俊, 王长明. 2013. 云南武定迤纳厂铁-铜-金-稀土矿床成矿流体与成矿作用. 岩石学报, 29(4): 1187-1202

    [43]

    林强, 葛文春, 孙德有. 2000. 大兴安岭中生代两类流纹岩与玄武岩的成因联系. 长春科技大学学报, 30(4): 322-328

    [44]

    陆松年, 杨春亮, 李怀坤. 2002. 华北古大陆与哥伦比亚超大陆. 地学前缘, 9(4): 225-233

    [45]

    彭敏, 吴元保, 汪晶. 2009. 扬子崆岭高级变质地体古元古代基性岩脉的发现及其意义. 科学通报, 54(5): 641-647

    [46]

    王红军, 李巨初, 薛钧月. 2009. 康滇地轴元古代成矿作用对Rodinia事件的响应. 四川地质学报, 29(1): 11-15

    [47]

    王子正, 郭阳, 杨斌. 2013. 扬子克拉通西缘1.73Ga非造山型花岗斑岩的发现及其地质意义. 地质学报, 87(7): 931-942

    [48]

    吴福元, 李献华, 郑永飞. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220

    [49]

    颜丹平, 周美夫, 宋鸿林. 2002. 华南在Rodinia古陆中位置的讨论-扬子地块西缘变质-岩浆杂岩证据及其与Seychelles地块的对比. 地学前缘, 9(4): 249-256

    [50]

    尹福光, 王冬兵, 孙志明. 2012. 哥伦比亚超大陆在扬子陆块西缘的探秘. 沉积与特提斯地质, 32(3): 31-40

    [51]

    赵国春, 孙敏, Wilde SA. 2002. 早-中元古代Columbia超级大陆研究进展. 科学通报, 47(18): 1361-1364

  • 加载中
计量
  • 文章访问数:  5719
  • PDF下载数:  5748
  • 施引文献:  0
出版历程
收稿日期:  2014-05-20
修回日期:  2015-02-01
刊出日期:  2015-05-31

目录